marcelo-castro-cardoso commited on
Commit
a7ab009
1 Parent(s): 4bbe624

correcao de dependencia

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -6,7 +6,7 @@ from transformers import pipeline
6
  from langchain.llms.base import LLM
7
  from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex, PromptHelper, LLMPredictor, ServiceContext
8
  from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
9
- from llama_index.node_parser import SimpleNodeParser
10
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
11
 
12
  from llama_index.embeddings import LangchainEmbedding
@@ -17,8 +17,9 @@ index_files = list(Path(INPUT_FOLDER).glob("*"))
17
 
18
  max_input_size = 2048
19
  num_output = 256
20
- max_chunk_overlap = 0.5
21
- prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
 
22
 
23
  pipe = pipeline("text-generation", model="databricks/dolly-v2-3b", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
24
  embed_model = LangchainEmbedding(HuggingFaceEmbeddings())
@@ -41,8 +42,8 @@ class CustomLLM(LLM):
41
  # define our LLM
42
  llm_predictor = LLMPredictor(llm=CustomLLM())
43
 
44
- node_parser = SimpleNodeParser(text_splitter=TokenTextSplitter(chunk_size=512, chunk_overlap=max_chunk_overlap))
45
- prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
46
  service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model, prompt_helper=prompt_helper, node_parser=node_parser, chunk_size_limit=512)
47
  # Load your data
48
  documents = SimpleDirectoryReader(input_files=index_files).load_data()
@@ -55,4 +56,4 @@ def greet(query):
55
  return query_engine.query(query)
56
 
57
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
58
- iface.launch()
 
6
  from langchain.llms.base import LLM
7
  from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex, PromptHelper, LLMPredictor, ServiceContext
8
  from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
9
+ from llama_index.node_parser import SentenceSplitter
10
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
11
 
12
  from llama_index.embeddings import LangchainEmbedding
 
17
 
18
  max_input_size = 2048
19
  num_output = 256
20
+ max_chunk_overlap = 20
21
+ max_prompt_chunk_overlap = 0.5
22
+ prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
23
 
24
  pipe = pipeline("text-generation", model="databricks/dolly-v2-3b", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
25
  embed_model = LangchainEmbedding(HuggingFaceEmbeddings())
 
42
  # define our LLM
43
  llm_predictor = LLMPredictor(llm=CustomLLM())
44
 
45
+ node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=max_chunk_overlap)
46
+ prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
47
  service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model, prompt_helper=prompt_helper, node_parser=node_parser, chunk_size_limit=512)
48
  # Load your data
49
  documents = SimpleDirectoryReader(input_files=index_files).load_data()
 
56
  return query_engine.query(query)
57
 
58
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
59
+ iface.launch(share=True)