Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from pathlib import Path | |
import argparse | |
import shutil | |
from train_dreambooth import run_training | |
css = ''' | |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} | |
.arrow{position: absolute;top: 0;right: -8px;margin-top: -8px !important} | |
#component-4, #component-3, #component-10{min-height: 0} | |
''' | |
shutil.unpack_archive("mix.zip", "mix") | |
maximum_concepts = 3 | |
def swap_values_files(*total_files): | |
file_counter = 0 | |
for files in total_files: | |
if(files): | |
for file in files: | |
filename = Path(file.orig_name).stem | |
pt=''.join([i for i in filename if not i.isdigit()]) | |
pt=pt.replace("_"," ") | |
pt=pt.replace("(","") | |
pt=pt.replace(")","") | |
instance_prompt = pt | |
print(instance_prompt) | |
file_counter += 1 | |
training_steps = (file_counter*200) | |
return training_steps | |
def swap_text(option): | |
mandatory_liability = "You must have the right to do so and you are liable for the images you use" | |
if(option == "object"): | |
instance_prompt_example = "cttoy" | |
freeze_for = 50 | |
return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here)", freeze_for] | |
elif(option == "person"): | |
instance_prompt_example = "julcto" | |
freeze_for = 100 | |
return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name the files with a unique word that represent your concept (like `{instance_prompt_example}` in this example). You can train multiple concepts as well.", freeze_for] | |
elif(option == "style"): | |
instance_prompt_example = "mspolstyll" | |
freeze_for = 10 | |
return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''<img src="file/cat-toy.png" />''', f"You should name your files with a unique word that represent your concept (as `{instance_prompt_example}` for example). You can train multiple concepts as well.", freeze_for] | |
def train(*inputs): | |
file_counter = 0 | |
for i, input in enumerate(inputs): | |
if(i < maximum_concepts-1): | |
if(input): | |
os.makedirs('instance_images',exist_ok=True) | |
files = inputs[i+(maximum_concepts*2)] | |
prompt = inputs[i+maximum_concepts] | |
for j, file in enumerate(files): | |
shutil.copy(file.name, f'instance_images/{prompt} ({j+1}).jpg') | |
file_counter += 1 | |
uses_custom = inputs[-1] | |
if(uses_custom): | |
Training_Steps = int(inputs[-3]) | |
Train_text_encoder_for = int(inputs[-2]) | |
stptxt = int((Training_Steps*Train_text_encoder_for)/100) | |
else: | |
Training_Steps = file_counter*200 | |
if(inputs[-4] == "person"): | |
class_data_dir = "mix" | |
args_txt_encoder = argparse.Namespace( | |
image_captions_filename = True, | |
train_text_encoder = True, | |
pretrained_model_name_or_path="./stable-diffusion-v1-5", | |
instance_data_dir="instance_images", | |
class_data_dir=class_data_dir, | |
output_dir="output_model", | |
with_prior_preservation=True, | |
prior_loss_weight=1.0, | |
instance_prompt="", | |
seed=42, | |
resolution=512, | |
mixed_precision="fp16", | |
train_batch_size=1, | |
gradient_accumulation_steps=1, | |
gradient_checkpointing=True, | |
use_8bit_adam=True, | |
learning_rate=2e-6, | |
lr_scheduler="polynomial", | |
lr_warmup_steps=0, | |
max_train_steps=Training_Steps, | |
num_class_images=200 | |
) | |
args_unet = argparse.Namespace( | |
image_captions_filename = True, | |
train_only_unet=True, | |
Session_dir="output_model", | |
save_starting_step=0, | |
save_n_steps=0, | |
pretrained_model_name_or_path="./stable-diffusion-v1-5", | |
instance_data_dir="instance_images", | |
output_dir="output_model", | |
instance_prompt="", | |
seed=42, | |
resolution=512, | |
mixed_precision="fp16", | |
train_batch_size=1, | |
gradient_accumulation_steps=1, | |
gradient_checkpointing=False, | |
use_8bit_adam=True, | |
learning_rate=2e-6, | |
lr_scheduler="polynomial", | |
lr_warmup_steps=0, | |
max_train_steps=Training_Steps | |
) | |
run_training(args_txt_encoder) | |
run_training(args_unet) | |
elif(inputs[-4] == "object"): | |
class_data_dir = None | |
elif(inputs[-4] == "style"): | |
class_data_dir = None | |
args_general = argparse.Namespace( | |
image_captions_filename = True, | |
train_text_encoder = True, | |
stop_text_encoder_training = stptxt, | |
save_n_steps = 0, | |
dump_only_text_encoder = True, | |
pretrained_model_name_or_path = "./stable-diffusion-v1-5", | |
instance_data_dir="instance_images", | |
class_data_dir=class_data_dir, | |
output_dir="output_model", | |
instance_prompt="", | |
seed=42, | |
resolution=512, | |
mixed_precision="fp16", | |
train_batch_size=1, | |
gradient_accumulation_steps=1, | |
use_8bit_adam=True, | |
learning_rate=2e-6, | |
lr_scheduler="polynomial", | |
lr_warmup_steps = 0, | |
max_train_steps=Training_Steps, | |
) | |
run_training(args_general) | |
os.rmdir('instance_images') | |
with gr.Blocks(css=css) as demo: | |
with gr.Box(): | |
# You can remove this part here for your local clone | |
gr.HTML(''' | |
<div class="gr-prose" style="max-width: 80%"> | |
<h2>Attention - This Space doesn't work in this shared UI</h2> | |
<p>For it to work, you have to duplicate the Space and run it on your own profile where a (paid) private GPU will be attributed to it during runtime. It will cost you < US$1 to train a model on default settings! 🤑</p> | |
<img class="instruction" src="file/duplicate.png"> | |
<img class="arrow" src="file/arrow.png" /> | |
</div> | |
''') | |
gr.Markdown("# Dreambooth training") | |
gr.Markdown("Customize Stable Diffusion by giving it with few-shot examples") | |
with gr.Row(): | |
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True) | |
#with gr.Column(): | |
#with gr.Box(): | |
# gr.Textbox(label="What prompt you would like to train it on", value="The photo of a cttoy", interactive=True).style(container=False, item_container=False) | |
# gr.Markdown("You should try using words the model doesn't know. Don't use names or well known concepts.") | |
with gr.Row(): | |
with gr.Column(): | |
thing_description = gr.Markdown("You are going to train an `object`, upload 5-10 images of the object you are planning on training on from different angles/perspectives. You must have the right to do so and you are liable for the images you use") | |
thing_image_example = gr.HTML('''<img src="file/cat-toy.png" />''') | |
things_naming = gr.Markdown("For training, you should name the files with a unique word that represent your concept (like `cctoy` in this example). You can train multiple concepts by naming multiple images at once. Images will be automatically cropped to 512x512.") | |
with gr.Column(): | |
file_collection = [] | |
concept_collection = [] | |
buttons_collection = [] | |
delete_collection = [] | |
is_visible = [] | |
row = [None] * maximum_concepts | |
for x in range(maximum_concepts): | |
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4]) | |
if(x == 0): | |
visible = True | |
is_visible.append(gr.State(value=True)) | |
else: | |
visible = False | |
is_visible.append(gr.State(value=False)) | |
file_collection.append(gr.File(label=f"Upload the images for your {ordinal(x+1)} concept", file_count="multiple", interactive=True, visible=visible)) | |
with gr.Column(visible=visible) as row[x]: | |
concept_collection.append(gr.Textbox(label=f"{ordinal(x+1)} concept prompt - use a unique, made up word to avoid collisions")) | |
with gr.Row(): | |
if(x < maximum_concepts-1): | |
buttons_collection.append(gr.Button(value="Add +1 concept", visible=visible)) | |
if(x > 0): | |
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept")) | |
counter_add = 1 | |
for button in buttons_collection: | |
if(counter_add < len(buttons_collection)): | |
button.click(lambda: | |
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None], | |
None, | |
[row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], file_collection[counter_add]]) | |
else: | |
button.click(lambda:[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True], None, [row[counter_add], file_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]]) | |
counter_add += 1 | |
counter_delete = 1 | |
for delete_button in delete_collection: | |
if(counter_delete < len(delete_collection)+1): | |
delete_button.click(lambda:[gr.update(visible=False),gr.update(visible=False), gr.update(visible=True), False], None, [file_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]]) | |
counter_delete += 1 | |
with gr.Accordion("Advanced Settings", open=False): | |
swap_auto_calculated = gr.Checkbox(label="Use these advanced setting") | |
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style`.") | |
steps = gr.Number(label="How many steps", value=800) | |
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30) | |
#for file in file_collection: | |
# file.change(fn=swap_values_files, inputs=file_collection, outputs=[steps]) | |
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder]) | |
train_btn = gr.Button("Start Training") | |
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[]) | |
demo.launch() |