Spaces:
Runtime error
Runtime error
Commit
•
bfdbdf6
1
Parent(s):
9465fd2
add_stufff
Browse files- app.py +0 -0
- arrow.png +0 -0
- cat-toy-deprec.png +0 -0
- cat-toy.png +0 -0
- duplicate.png +0 -0
- mix.zip +3 -0
- train_dreambooth.py +787 -0
app.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
arrow.png
ADDED
cat-toy-deprec.png
ADDED
cat-toy.png
ADDED
duplicate.png
ADDED
mix.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e76812bdb3b21d1ef3050c6c6a09b09a16a21ae23476e92cd3dd1dfa2e846b22
|
3 |
+
size 61281901
|
train_dreambooth.py
ADDED
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Optional
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch.utils.data import Dataset
|
14 |
+
|
15 |
+
from accelerate import Accelerator
|
16 |
+
from accelerate.logging import get_logger
|
17 |
+
from accelerate.utils import set_seed
|
18 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
19 |
+
from diffusers.optimization import get_scheduler
|
20 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
21 |
+
from PIL import Image
|
22 |
+
from torchvision import transforms
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
def parse_args():
|
31 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
32 |
+
parser.add_argument(
|
33 |
+
"--pretrained_model_name_or_path",
|
34 |
+
type=str,
|
35 |
+
default=None,
|
36 |
+
required=True,
|
37 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--tokenizer_name",
|
41 |
+
type=str,
|
42 |
+
default=None,
|
43 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--instance_data_dir",
|
47 |
+
type=str,
|
48 |
+
default=None,
|
49 |
+
required=True,
|
50 |
+
help="A folder containing the training data of instance images.",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--class_data_dir",
|
54 |
+
type=str,
|
55 |
+
default=None,
|
56 |
+
required=False,
|
57 |
+
help="A folder containing the training data of class images.",
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--instance_prompt",
|
61 |
+
type=str,
|
62 |
+
default=None,
|
63 |
+
help="The prompt with identifier specifying the instance",
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--class_prompt",
|
67 |
+
type=str,
|
68 |
+
default="",
|
69 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--with_prior_preservation",
|
73 |
+
default=False,
|
74 |
+
action="store_true",
|
75 |
+
help="Flag to add prior preservation loss.",
|
76 |
+
)
|
77 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
78 |
+
parser.add_argument(
|
79 |
+
"--num_class_images",
|
80 |
+
type=int,
|
81 |
+
default=100,
|
82 |
+
help=(
|
83 |
+
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
84 |
+
" sampled with class_prompt."
|
85 |
+
),
|
86 |
+
)
|
87 |
+
parser.add_argument(
|
88 |
+
"--output_dir",
|
89 |
+
type=str,
|
90 |
+
default="",
|
91 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
92 |
+
)
|
93 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
94 |
+
parser.add_argument(
|
95 |
+
"--resolution",
|
96 |
+
type=int,
|
97 |
+
default=512,
|
98 |
+
help=(
|
99 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
100 |
+
" resolution"
|
101 |
+
),
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
105 |
+
)
|
106 |
+
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
107 |
+
parser.add_argument(
|
108 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
112 |
+
)
|
113 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
114 |
+
parser.add_argument(
|
115 |
+
"--max_train_steps",
|
116 |
+
type=int,
|
117 |
+
default=None,
|
118 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--gradient_accumulation_steps",
|
122 |
+
type=int,
|
123 |
+
default=1,
|
124 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--gradient_checkpointing",
|
128 |
+
action="store_true",
|
129 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--learning_rate",
|
133 |
+
type=float,
|
134 |
+
default=5e-6,
|
135 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--scale_lr",
|
139 |
+
action="store_true",
|
140 |
+
default=False,
|
141 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--lr_scheduler",
|
145 |
+
type=str,
|
146 |
+
default="constant",
|
147 |
+
help=(
|
148 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
149 |
+
' "constant", "constant_with_warmup"]'
|
150 |
+
),
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
157 |
+
)
|
158 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
159 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
160 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
161 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
162 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
163 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
164 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
165 |
+
parser.add_argument(
|
166 |
+
"--hub_model_id",
|
167 |
+
type=str,
|
168 |
+
default=None,
|
169 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--logging_dir",
|
173 |
+
type=str,
|
174 |
+
default="logs",
|
175 |
+
help=(
|
176 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
177 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
178 |
+
),
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--mixed_precision",
|
182 |
+
type=str,
|
183 |
+
default="no",
|
184 |
+
choices=["no", "fp16", "bf16"],
|
185 |
+
help=(
|
186 |
+
"Whether to use mixed precision. Choose"
|
187 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
188 |
+
"and an Nvidia Ampere GPU."
|
189 |
+
),
|
190 |
+
)
|
191 |
+
|
192 |
+
parser.add_argument(
|
193 |
+
"--save_n_steps",
|
194 |
+
type=int,
|
195 |
+
default=1,
|
196 |
+
help=("Save the model every n global_steps"),
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
parser.add_argument(
|
201 |
+
"--save_starting_step",
|
202 |
+
type=int,
|
203 |
+
default=1,
|
204 |
+
help=("The step from which it starts saving intermediary checkpoints"),
|
205 |
+
)
|
206 |
+
|
207 |
+
parser.add_argument(
|
208 |
+
"--stop_text_encoder_training",
|
209 |
+
type=int,
|
210 |
+
default=1000000,
|
211 |
+
help=("The step at which the text_encoder is no longer trained"),
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
parser.add_argument(
|
216 |
+
"--image_captions_filename",
|
217 |
+
action="store_true",
|
218 |
+
help="Get captions from filename",
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
parser.add_argument(
|
223 |
+
"--dump_only_text_encoder",
|
224 |
+
action="store_true",
|
225 |
+
default=False,
|
226 |
+
help="Dump only text encoder",
|
227 |
+
)
|
228 |
+
|
229 |
+
parser.add_argument(
|
230 |
+
"--train_only_unet",
|
231 |
+
action="store_true",
|
232 |
+
default=False,
|
233 |
+
help="Train only the unet",
|
234 |
+
)
|
235 |
+
|
236 |
+
parser.add_argument(
|
237 |
+
"--Session_dir",
|
238 |
+
type=str,
|
239 |
+
default="",
|
240 |
+
help="Current session directory",
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
247 |
+
|
248 |
+
args = parser.parse_args()
|
249 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
250 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
251 |
+
args.local_rank = env_local_rank
|
252 |
+
|
253 |
+
if args.instance_data_dir is None:
|
254 |
+
raise ValueError("You must specify a train data directory.")
|
255 |
+
|
256 |
+
if args.with_prior_preservation:
|
257 |
+
if args.class_data_dir is None:
|
258 |
+
raise ValueError("You must specify a data directory for class images.")
|
259 |
+
if args.class_prompt is None:
|
260 |
+
raise ValueError("You must specify prompt for class images.")
|
261 |
+
|
262 |
+
return args
|
263 |
+
|
264 |
+
|
265 |
+
class DreamBoothDataset(Dataset):
|
266 |
+
"""
|
267 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
268 |
+
It pre-processes the images and the tokenizes prompts.
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
instance_data_root,
|
274 |
+
instance_prompt,
|
275 |
+
tokenizer,
|
276 |
+
args,
|
277 |
+
class_data_root=None,
|
278 |
+
class_prompt=None,
|
279 |
+
size=512,
|
280 |
+
center_crop=False,
|
281 |
+
):
|
282 |
+
self.size = size
|
283 |
+
self.center_crop = center_crop
|
284 |
+
self.tokenizer = tokenizer
|
285 |
+
self.image_captions_filename = None
|
286 |
+
|
287 |
+
self.instance_data_root = Path(instance_data_root)
|
288 |
+
if not self.instance_data_root.exists():
|
289 |
+
raise ValueError("Instance images root doesn't exists.")
|
290 |
+
|
291 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
292 |
+
self.num_instance_images = len(self.instance_images_path)
|
293 |
+
self.instance_prompt = instance_prompt
|
294 |
+
self._length = self.num_instance_images
|
295 |
+
|
296 |
+
if args.image_captions_filename:
|
297 |
+
self.image_captions_filename = True
|
298 |
+
|
299 |
+
if class_data_root is not None:
|
300 |
+
self.class_data_root = Path(class_data_root)
|
301 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
302 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
303 |
+
self.num_class_images = len(self.class_images_path)
|
304 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
305 |
+
self.class_prompt = class_prompt
|
306 |
+
else:
|
307 |
+
self.class_data_root = None
|
308 |
+
|
309 |
+
self.image_transforms = transforms.Compose(
|
310 |
+
[
|
311 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
312 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
313 |
+
transforms.ToTensor(),
|
314 |
+
transforms.Normalize([0.5], [0.5]),
|
315 |
+
]
|
316 |
+
)
|
317 |
+
|
318 |
+
def __len__(self):
|
319 |
+
return self._length
|
320 |
+
|
321 |
+
def __getitem__(self, index):
|
322 |
+
example = {}
|
323 |
+
path = self.instance_images_path[index % self.num_instance_images]
|
324 |
+
instance_image = Image.open(path)
|
325 |
+
if not instance_image.mode == "RGB":
|
326 |
+
instance_image = instance_image.convert("RGB")
|
327 |
+
|
328 |
+
instance_prompt = self.instance_prompt
|
329 |
+
|
330 |
+
if self.image_captions_filename:
|
331 |
+
filename = Path(path).stem
|
332 |
+
pt=''.join([i for i in filename if not i.isdigit()])
|
333 |
+
pt=pt.replace("_"," ")
|
334 |
+
pt=pt.replace("(","")
|
335 |
+
pt=pt.replace(")","")
|
336 |
+
instance_prompt = pt
|
337 |
+
sys.stdout.write(" [0;32m" +instance_prompt+" [0m")
|
338 |
+
sys.stdout.flush()
|
339 |
+
|
340 |
+
|
341 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
342 |
+
example["instance_prompt_ids"] = self.tokenizer(
|
343 |
+
instance_prompt,
|
344 |
+
padding="do_not_pad",
|
345 |
+
truncation=True,
|
346 |
+
max_length=self.tokenizer.model_max_length,
|
347 |
+
).input_ids
|
348 |
+
|
349 |
+
if self.class_data_root:
|
350 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
351 |
+
if not class_image.mode == "RGB":
|
352 |
+
class_image = class_image.convert("RGB")
|
353 |
+
example["class_images"] = self.image_transforms(class_image)
|
354 |
+
example["class_prompt_ids"] = self.tokenizer(
|
355 |
+
self.class_prompt,
|
356 |
+
padding="do_not_pad",
|
357 |
+
truncation=True,
|
358 |
+
max_length=self.tokenizer.model_max_length,
|
359 |
+
).input_ids
|
360 |
+
|
361 |
+
return example
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
class PromptDataset(Dataset):
|
366 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
367 |
+
|
368 |
+
def __init__(self, prompt, num_samples):
|
369 |
+
self.prompt = prompt
|
370 |
+
self.num_samples = num_samples
|
371 |
+
|
372 |
+
def __len__(self):
|
373 |
+
return self.num_samples
|
374 |
+
|
375 |
+
def __getitem__(self, index):
|
376 |
+
example = {}
|
377 |
+
example["prompt"] = self.prompt
|
378 |
+
example["index"] = index
|
379 |
+
return example
|
380 |
+
|
381 |
+
|
382 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
383 |
+
if token is None:
|
384 |
+
token = HfFolder.get_token()
|
385 |
+
if organization is None:
|
386 |
+
username = whoami(token)["name"]
|
387 |
+
return f"{username}/{model_id}"
|
388 |
+
else:
|
389 |
+
return f"{organization}/{model_id}"
|
390 |
+
|
391 |
+
|
392 |
+
def main():
|
393 |
+
args = parse_args()
|
394 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
395 |
+
i=args.save_starting_step
|
396 |
+
accelerator = Accelerator(
|
397 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
398 |
+
mixed_precision=args.mixed_precision,
|
399 |
+
log_with="tensorboard",
|
400 |
+
logging_dir=logging_dir,
|
401 |
+
)
|
402 |
+
|
403 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
404 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
405 |
+
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
406 |
+
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
407 |
+
raise ValueError(
|
408 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
409 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
410 |
+
)
|
411 |
+
|
412 |
+
if args.seed is not None:
|
413 |
+
set_seed(args.seed)
|
414 |
+
|
415 |
+
if args.with_prior_preservation:
|
416 |
+
class_images_dir = Path(args.class_data_dir)
|
417 |
+
if not class_images_dir.exists():
|
418 |
+
class_images_dir.mkdir(parents=True)
|
419 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
420 |
+
|
421 |
+
if cur_class_images < args.num_class_images:
|
422 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
423 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
424 |
+
args.pretrained_model_name_or_path, torch_dtype=torch_dtype
|
425 |
+
)
|
426 |
+
pipeline.set_progress_bar_config(disable=True)
|
427 |
+
|
428 |
+
num_new_images = args.num_class_images - cur_class_images
|
429 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
430 |
+
|
431 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
432 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
433 |
+
|
434 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
435 |
+
pipeline.to(accelerator.device)
|
436 |
+
|
437 |
+
for example in tqdm(
|
438 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
439 |
+
):
|
440 |
+
with torch.autocast("cuda"):
|
441 |
+
images = pipeline(example["prompt"]).images
|
442 |
+
|
443 |
+
for i, image in enumerate(images):
|
444 |
+
image.save(class_images_dir / f"{example['index'][i] + cur_class_images}.jpg")
|
445 |
+
|
446 |
+
del pipeline
|
447 |
+
if torch.cuda.is_available():
|
448 |
+
torch.cuda.empty_cache()
|
449 |
+
|
450 |
+
# Handle the repository creation
|
451 |
+
if accelerator.is_main_process:
|
452 |
+
if args.push_to_hub:
|
453 |
+
if args.hub_model_id is None:
|
454 |
+
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
455 |
+
else:
|
456 |
+
repo_name = args.hub_model_id
|
457 |
+
repo = Repository(args.output_dir, clone_from=repo_name)
|
458 |
+
|
459 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
460 |
+
if "step_*" not in gitignore:
|
461 |
+
gitignore.write("step_*\n")
|
462 |
+
if "epoch_*" not in gitignore:
|
463 |
+
gitignore.write("epoch_*\n")
|
464 |
+
elif args.output_dir is not None:
|
465 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
466 |
+
|
467 |
+
# Load the tokenizer
|
468 |
+
if args.tokenizer_name:
|
469 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
470 |
+
elif args.pretrained_model_name_or_path:
|
471 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
472 |
+
|
473 |
+
# Load models and create wrapper for stable diffusion
|
474 |
+
if args.train_only_unet:
|
475 |
+
if os.path.exists(str(args.output_dir+"/text_encoder_trained")):
|
476 |
+
text_encoder = CLIPTextModel.from_pretrained(args.output_dir, subfolder="text_encoder_trained")
|
477 |
+
elif os.path.exists(str(args.output_dir+"/text_encoder")):
|
478 |
+
text_encoder = CLIPTextModel.from_pretrained(args.output_dir, subfolder="text_encoder")
|
479 |
+
else:
|
480 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
481 |
+
else:
|
482 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
483 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
|
484 |
+
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
|
485 |
+
|
486 |
+
vae.requires_grad_(False)
|
487 |
+
if not args.train_text_encoder:
|
488 |
+
text_encoder.requires_grad_(False)
|
489 |
+
|
490 |
+
if args.gradient_checkpointing:
|
491 |
+
unet.enable_gradient_checkpointing()
|
492 |
+
if args.train_text_encoder:
|
493 |
+
text_encoder.gradient_checkpointing_enable()
|
494 |
+
|
495 |
+
if args.scale_lr:
|
496 |
+
args.learning_rate = (
|
497 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
498 |
+
)
|
499 |
+
|
500 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
501 |
+
if args.use_8bit_adam:
|
502 |
+
try:
|
503 |
+
import bitsandbytes as bnb
|
504 |
+
except ImportError:
|
505 |
+
raise ImportError(
|
506 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
507 |
+
)
|
508 |
+
|
509 |
+
optimizer_class = bnb.optim.AdamW8bit
|
510 |
+
else:
|
511 |
+
optimizer_class = torch.optim.AdamW
|
512 |
+
|
513 |
+
params_to_optimize = (
|
514 |
+
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
|
515 |
+
)
|
516 |
+
optimizer = optimizer_class(
|
517 |
+
params_to_optimize,
|
518 |
+
lr=args.learning_rate,
|
519 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
520 |
+
weight_decay=args.adam_weight_decay,
|
521 |
+
eps=args.adam_epsilon,
|
522 |
+
)
|
523 |
+
|
524 |
+
noise_scheduler = DDPMScheduler(
|
525 |
+
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
526 |
+
)
|
527 |
+
|
528 |
+
train_dataset = DreamBoothDataset(
|
529 |
+
instance_data_root=args.instance_data_dir,
|
530 |
+
instance_prompt=args.instance_prompt,
|
531 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
532 |
+
class_prompt=args.class_prompt,
|
533 |
+
tokenizer=tokenizer,
|
534 |
+
size=args.resolution,
|
535 |
+
center_crop=args.center_crop,
|
536 |
+
args=args,
|
537 |
+
)
|
538 |
+
|
539 |
+
def collate_fn(examples):
|
540 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
541 |
+
pixel_values = [example["instance_images"] for example in examples]
|
542 |
+
|
543 |
+
# Concat class and instance examples for prior preservation.
|
544 |
+
# We do this to avoid doing two forward passes.
|
545 |
+
if args.with_prior_preservation:
|
546 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
547 |
+
pixel_values += [example["class_images"] for example in examples]
|
548 |
+
|
549 |
+
pixel_values = torch.stack(pixel_values)
|
550 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
551 |
+
|
552 |
+
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
|
553 |
+
|
554 |
+
batch = {
|
555 |
+
"input_ids": input_ids,
|
556 |
+
"pixel_values": pixel_values,
|
557 |
+
}
|
558 |
+
return batch
|
559 |
+
|
560 |
+
train_dataloader = torch.utils.data.DataLoader(
|
561 |
+
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn
|
562 |
+
)
|
563 |
+
|
564 |
+
# Scheduler and math around the number of training steps.
|
565 |
+
overrode_max_train_steps = False
|
566 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
567 |
+
if args.max_train_steps is None:
|
568 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
569 |
+
overrode_max_train_steps = True
|
570 |
+
|
571 |
+
lr_scheduler = get_scheduler(
|
572 |
+
args.lr_scheduler,
|
573 |
+
optimizer=optimizer,
|
574 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
575 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
576 |
+
)
|
577 |
+
|
578 |
+
if args.train_text_encoder:
|
579 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
580 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
581 |
+
)
|
582 |
+
else:
|
583 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
584 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
585 |
+
)
|
586 |
+
|
587 |
+
weight_dtype = torch.float32
|
588 |
+
if args.mixed_precision == "fp16":
|
589 |
+
weight_dtype = torch.float16
|
590 |
+
elif args.mixed_precision == "bf16":
|
591 |
+
weight_dtype = torch.bfloat16
|
592 |
+
|
593 |
+
# Move text_encode and vae to gpu.
|
594 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
595 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
596 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
597 |
+
if not args.train_text_encoder:
|
598 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
599 |
+
|
600 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
601 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
602 |
+
if overrode_max_train_steps:
|
603 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
604 |
+
# Afterwards we recalculate our number of training epochs
|
605 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
606 |
+
|
607 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
608 |
+
# The trackers initializes automatically on the main process.
|
609 |
+
if accelerator.is_main_process:
|
610 |
+
accelerator.init_trackers("dreambooth", config=vars(args))
|
611 |
+
|
612 |
+
def bar(prg):
|
613 |
+
br='|'+'█' * prg + ' ' * (25-prg)+'|'
|
614 |
+
return br
|
615 |
+
|
616 |
+
# Train!
|
617 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
618 |
+
|
619 |
+
logger.info("***** Running training *****")
|
620 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
621 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
622 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
623 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
624 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
625 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
626 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
627 |
+
# Only show the progress bar once on each machine.
|
628 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
629 |
+
global_step = 0
|
630 |
+
|
631 |
+
for epoch in range(args.num_train_epochs):
|
632 |
+
unet.train()
|
633 |
+
if args.train_text_encoder:
|
634 |
+
text_encoder.train()
|
635 |
+
for step, batch in enumerate(train_dataloader):
|
636 |
+
with accelerator.accumulate(unet):
|
637 |
+
# Convert images to latent space
|
638 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
639 |
+
latents = latents * 0.18215
|
640 |
+
|
641 |
+
# Sample noise that we'll add to the latents
|
642 |
+
noise = torch.randn_like(latents)
|
643 |
+
bsz = latents.shape[0]
|
644 |
+
# Sample a random timestep for each image
|
645 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
646 |
+
timesteps = timesteps.long()
|
647 |
+
|
648 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
649 |
+
# (this is the forward diffusion process)
|
650 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
651 |
+
|
652 |
+
# Get the text embedding for conditioning
|
653 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
654 |
+
|
655 |
+
# Predict the noise residual
|
656 |
+
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
657 |
+
|
658 |
+
if args.with_prior_preservation:
|
659 |
+
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
|
660 |
+
noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0)
|
661 |
+
noise, noise_prior = torch.chunk(noise, 2, dim=0)
|
662 |
+
|
663 |
+
# Compute instance loss
|
664 |
+
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none").mean([1, 2, 3]).mean()
|
665 |
+
|
666 |
+
# Compute prior loss
|
667 |
+
prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean")
|
668 |
+
|
669 |
+
# Add the prior loss to the instance loss.
|
670 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
671 |
+
else:
|
672 |
+
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
|
673 |
+
|
674 |
+
accelerator.backward(loss)
|
675 |
+
if accelerator.sync_gradients:
|
676 |
+
params_to_clip = (
|
677 |
+
itertools.chain(unet.parameters(), text_encoder.parameters())
|
678 |
+
if args.train_text_encoder
|
679 |
+
else unet.parameters()
|
680 |
+
)
|
681 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
682 |
+
optimizer.step()
|
683 |
+
lr_scheduler.step()
|
684 |
+
optimizer.zero_grad()
|
685 |
+
|
686 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
687 |
+
if accelerator.sync_gradients:
|
688 |
+
progress_bar.update(1)
|
689 |
+
global_step += 1
|
690 |
+
|
691 |
+
fll=round((global_step*100)/args.max_train_steps)
|
692 |
+
fll=round(fll/4)
|
693 |
+
pr=bar(fll)
|
694 |
+
|
695 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
696 |
+
progress_bar.set_postfix(**logs)
|
697 |
+
progress_bar.set_description_str("Progress:"+pr)
|
698 |
+
accelerator.log(logs, step=global_step)
|
699 |
+
|
700 |
+
if global_step >= args.max_train_steps:
|
701 |
+
break
|
702 |
+
|
703 |
+
if args.train_text_encoder and global_step == args.stop_text_encoder_training and global_step >= 30:
|
704 |
+
if accelerator.is_main_process:
|
705 |
+
print(" [0;32m" +" Freezing the text_encoder ..."+" [0m")
|
706 |
+
frz_dir=args.output_dir + "/text_encoder_frozen"
|
707 |
+
if os.path.exists(frz_dir):
|
708 |
+
subprocess.call('rm -r '+ frz_dir, shell=True)
|
709 |
+
os.mkdir(frz_dir)
|
710 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
711 |
+
args.pretrained_model_name_or_path,
|
712 |
+
unet=accelerator.unwrap_model(unet),
|
713 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
714 |
+
)
|
715 |
+
pipeline.text_encoder.save_pretrained(frz_dir)
|
716 |
+
|
717 |
+
if args.save_n_steps >= 200:
|
718 |
+
if global_step < args.max_train_steps-100 and global_step+1==i:
|
719 |
+
ckpt_name = "_step_" + str(global_step+1)
|
720 |
+
save_dir = Path(args.output_dir+ckpt_name)
|
721 |
+
save_dir=str(save_dir)
|
722 |
+
save_dir=save_dir.replace(" ", "_")
|
723 |
+
if not os.path.exists(save_dir):
|
724 |
+
os.mkdir(save_dir)
|
725 |
+
inst=save_dir[16:]
|
726 |
+
inst=inst.replace(" ", "_")
|
727 |
+
print(" [1;32mSAVING CHECKPOINT: "+args.Session_dir+"/"+inst+".ckpt")
|
728 |
+
# Create the pipeline using the trained modules and save it.
|
729 |
+
if accelerator.is_main_process:
|
730 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
731 |
+
args.pretrained_model_name_or_path,
|
732 |
+
unet=accelerator.unwrap_model(unet),
|
733 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
734 |
+
)
|
735 |
+
pipeline.save_pretrained(save_dir)
|
736 |
+
frz_dir=args.output_dir + "/text_encoder_frozen"
|
737 |
+
if args.train_text_encoder and os.path.exists(frz_dir):
|
738 |
+
subprocess.call('rm -r '+save_dir+'/text_encoder/*.*', shell=True)
|
739 |
+
subprocess.call('cp -f '+frz_dir +'/*.* '+ save_dir+'/text_encoder', shell=True)
|
740 |
+
chkpth=args.Session_dir+"/"+inst+".ckpt"
|
741 |
+
subprocess.call('python /content/diffusers/scripts/convert_diffusers_to_original_stable_diffusion.py --model_path ' + save_dir + ' --checkpoint_path ' + chkpth + ' --half', shell=True)
|
742 |
+
i=i+args.save_n_steps
|
743 |
+
|
744 |
+
accelerator.wait_for_everyone()
|
745 |
+
|
746 |
+
# Create the pipeline using using the trained modules and save it.
|
747 |
+
if accelerator.is_main_process:
|
748 |
+
if args.dump_only_text_encoder:
|
749 |
+
txt_dir=args.output_dir + "/text_encoder_trained"
|
750 |
+
if not os.path.exists(txt_dir):
|
751 |
+
os.mkdir(txt_dir)
|
752 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
753 |
+
args.pretrained_model_name_or_path,
|
754 |
+
unet=accelerator.unwrap_model(unet),
|
755 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
756 |
+
)
|
757 |
+
pipeline.text_encoder.save_pretrained(txt_dir)
|
758 |
+
|
759 |
+
elif args.train_only_unet:
|
760 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
761 |
+
args.pretrained_model_name_or_path,
|
762 |
+
unet=accelerator.unwrap_model(unet),
|
763 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
764 |
+
)
|
765 |
+
pipeline.save_pretrained(args.output_dir)
|
766 |
+
txt_dir=args.output_dir + "/text_encoder_trained"
|
767 |
+
subprocess.call('rm -r '+txt_dir, shell=True)
|
768 |
+
|
769 |
+
else:
|
770 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
771 |
+
args.pretrained_model_name_or_path,
|
772 |
+
unet=accelerator.unwrap_model(unet),
|
773 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
774 |
+
)
|
775 |
+
frz_dir=args.output_dir + "/text_encoder_frozen"
|
776 |
+
pipeline.save_pretrained(args.output_dir)
|
777 |
+
if args.train_text_encoder and os.path.exists(frz_dir):
|
778 |
+
subprocess.call('mv -f '+frz_dir +'/*.* '+ args.output_dir+'/text_encoder', shell=True)
|
779 |
+
subprocess.call('rm -r '+ frz_dir, shell=True)
|
780 |
+
|
781 |
+
if args.push_to_hub:
|
782 |
+
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
783 |
+
|
784 |
+
accelerator.end_training()
|
785 |
+
|
786 |
+
if __name__ == "__main__":
|
787 |
+
main()
|