File size: 6,575 Bytes
28d59a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2a588b
 
28d59a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2a588b
28d59a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2a588b
28d59a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from encoder.params_model import model_embedding_size as speaker_embedding_size
from utils.argutils import print_args
from utils.modelutils import check_model_paths
from synthesizer.inference import Synthesizer
from encoder import inference as encoder
from vocoder import inference as vocoder
from pathlib import Path
import numpy as np
import soundfile as sf
import librosa
import argparse
import torch
import sys
import os
from audioread.exceptions import NoBackendError
import pickle

ALIAS = os.environ.get('alias', 'breen')

if __name__ == '__main__':
    ## Info & args
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("-e", "--enc_model_fpath", type=Path, 
                        default="encoder.pt",
                        help="Path to a saved encoder")
    parser.add_argument("-s", "--syn_model_fpath", type=Path, 
                        default="synthesizer.pt",
                        help="Path to a saved synthesizer")
    parser.add_argument("-v", "--voc_model_fpath", type=Path, 
                        default="vocoder.pt",
                        help="Path to a saved vocoder")
    parser.add_argument("--cpu", action="store_true", help="If True, processing is done on CPU, even when a GPU is available.")
    parser.add_argument("--no_sound", action="store_true", help="If True, audio won't be played.")
    parser.add_argument("--seed", type=int, default=None, help="Optional random number seed value to make toolbox deterministic.")
    parser.add_argument("--no_mp3_support", action="store_true", help="If True, disallows loading mp3 files to prevent audioread errors when ffmpeg is not installed.")
    parser.add_argument("--text", type=str, required = True, help="Text Input")
    args = parser.parse_args()
    print_args(args, parser)
    if not args.no_sound:
        import sounddevice as sd

    if args.cpu:
        # Hide GPUs from Pytorch to force CPU processing
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

    if not args.no_mp3_support:
        try:
            librosa.load("samples/1320_00000.mp3")
        except NoBackendError:
            print("Librosa will be unable to open mp3 files if additional software is not installed.\n"
                  "Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.")
            exit(-1)
        
    print("Running a test of your configuration...\n")
        
    if torch.cuda.is_available():
        device_id = torch.cuda.current_device()
        gpu_properties = torch.cuda.get_device_properties(device_id)
        ## Print some environment information (for debugging purposes)
        print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
            "%.1fGb total memory.\n" % 
            (torch.cuda.device_count(),
            device_id,
            gpu_properties.name,
            gpu_properties.major,
            gpu_properties.minor,
            gpu_properties.total_memory / 1e9))
    else:
        print("Using CPU for inference.\n")
    
    ## Remind the user to download pretrained models if needed
    check_model_paths(encoder_path=args.enc_model_fpath,
                      synthesizer_path=args.syn_model_fpath,
                      vocoder_path=args.voc_model_fpath)
    
    ## Load the models one by one.
    print("Preparing the encoder, the synthesizer and the vocoder...")
    encoder.load_model(args.enc_model_fpath)
    synthesizer = Synthesizer(args.syn_model_fpath)
    vocoder.load_model(args.voc_model_fpath)

    
    ## Interactive speech generation
    print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
          "show how you can interface this project easily with your own. See the source code for "
          "an explanation of what is happening.\n")
    
    print("Interactive generation loop")
    # while True:
    # Get the reference audio filepath
    message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, "                   "wav, m4a, flac, ...):\n"


    ## Computing the embedding
    # First, we load the wav using the function that the speaker encoder provides. This is 
    # important: there is preprocessing that must be applied.
    
    # The following two methods are equivalent:
    # - Directly load from the filepath:

    with open(f'pickles/{ALIAS}.pickle', 'rb') as handle:
        preprocessed_wav = pickle.load(handle)

    print("Loaded file succesfully")

    # Then we derive the embedding. There are many functions and parameters that the 
    # speaker encoder interfaces. These are mostly for in-depth research. You will typically
    # only use this function (with its default parameters):
    embed = encoder.embed_utterance(preprocessed_wav)
    print("Created the embedding")
    
    ## Generating the spectrogram
    text = args.text
    
    # If seed is specified, reset torch seed and force synthesizer reload
    if args.seed is not None:
        torch.manual_seed(args.seed)
        synthesizer = Synthesizer(args.syn_model_fpath)

    # The synthesizer works in batch, so you need to put your data in a list or numpy array
    texts = [text]
    embeds = [embed]
    # If you know what the attention layer alignments are, you can retrieve them here by
    # passing return_alignments=True
    specs = synthesizer.synthesize_spectrograms(texts, embeds)
    spec = specs[0]
    print("Created the mel spectrogram")
    
    
    ## Generating the waveform
    print("Synthesizing the waveform:")

    # If seed is specified, reset torch seed and reload vocoder
    if args.seed is not None:
        torch.manual_seed(args.seed)
        vocoder.load_model(args.voc_model_fpath)

    # Synthesizing the waveform is fairly straightforward. Remember that the longer the
    # spectrogram, the more time-efficient the vocoder.
    generated_wav = vocoder.infer_waveform(spec)
    
    
    ## Post-generation
    # There's a bug with sounddevice that makes the audio cut one second earlier, so we
    # pad it.
    generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant")

    # Trim excess silences to compensate for gaps in spectrograms (issue #53)
    generated_wav = encoder.preprocess_wav(generated_wav)
        
    # Save it on the disk
    filename = "demo_output_1.wav"
    print(generated_wav.dtype)
    sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
    print("\nSaved output as %s\n\n" % filename)