Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
8fdf34e
1
Parent(s):
f079043
加入GPT Index
Browse files- ChuanhuChatbot.py +7 -2
- chat_func.py +447 -0
- llama_func.py +201 -0
- overwrites.py +97 -0
- presets.py +47 -15
- requirements.txt +3 -1
- utils.py +39 -405
ChuanhuChatbot.py
CHANGED
@@ -6,9 +6,11 @@ import sys
|
|
6 |
import argparse
|
7 |
from utils import *
|
8 |
from presets import *
|
|
|
|
|
9 |
|
10 |
logging.basicConfig(
|
11 |
-
level=logging.
|
12 |
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
|
13 |
)
|
14 |
|
@@ -49,6 +51,7 @@ else:
|
|
49 |
authflag = True
|
50 |
|
51 |
gr.Chatbot.postprocess = postprocess
|
|
|
52 |
|
53 |
with open("custom.css", "r", encoding="utf-8") as f:
|
54 |
customCSS = f.read()
|
@@ -165,7 +168,7 @@ with gr.Blocks(
|
|
165 |
label="实时传输回答", value=True, visible=enable_streaming_option
|
166 |
)
|
167 |
use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
|
168 |
-
index_files = gr.
|
169 |
|
170 |
with gr.Tab(label="Prompt"):
|
171 |
systemPromptTxt = gr.Textbox(
|
@@ -286,6 +289,7 @@ with gr.Blocks(
|
|
286 |
use_streaming_checkbox,
|
287 |
model_select_dropdown,
|
288 |
use_websearch_checkbox,
|
|
|
289 |
],
|
290 |
[chatbot, history, status_display, token_count],
|
291 |
show_progress=True,
|
@@ -306,6 +310,7 @@ with gr.Blocks(
|
|
306 |
use_streaming_checkbox,
|
307 |
model_select_dropdown,
|
308 |
use_websearch_checkbox,
|
|
|
309 |
],
|
310 |
[chatbot, history, status_display, token_count],
|
311 |
show_progress=True,
|
|
|
6 |
import argparse
|
7 |
from utils import *
|
8 |
from presets import *
|
9 |
+
from overwrites import *
|
10 |
+
from chat_func import *
|
11 |
|
12 |
logging.basicConfig(
|
13 |
+
level=logging.DEBUG,
|
14 |
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
|
15 |
)
|
16 |
|
|
|
51 |
authflag = True
|
52 |
|
53 |
gr.Chatbot.postprocess = postprocess
|
54 |
+
PromptHelper.compact_text_chunks = compact_text_chunks
|
55 |
|
56 |
with open("custom.css", "r", encoding="utf-8") as f:
|
57 |
customCSS = f.read()
|
|
|
168 |
label="实时传输回答", value=True, visible=enable_streaming_option
|
169 |
)
|
170 |
use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
|
171 |
+
index_files = gr.Files(label="上传索引文件", type="file", multiple=True)
|
172 |
|
173 |
with gr.Tab(label="Prompt"):
|
174 |
systemPromptTxt = gr.Textbox(
|
|
|
289 |
use_streaming_checkbox,
|
290 |
model_select_dropdown,
|
291 |
use_websearch_checkbox,
|
292 |
+
index_files
|
293 |
],
|
294 |
[chatbot, history, status_display, token_count],
|
295 |
show_progress=True,
|
|
|
310 |
use_streaming_checkbox,
|
311 |
model_select_dropdown,
|
312 |
use_websearch_checkbox,
|
313 |
+
index_files
|
314 |
],
|
315 |
[chatbot, history, status_display, token_count],
|
316 |
show_progress=True,
|
chat_func.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding:utf-8 -*-
|
2 |
+
from __future__ import annotations
|
3 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# import openai
|
9 |
+
import os
|
10 |
+
import traceback
|
11 |
+
import requests
|
12 |
+
|
13 |
+
# import markdown
|
14 |
+
import csv
|
15 |
+
import mdtex2html
|
16 |
+
from pypinyin import lazy_pinyin
|
17 |
+
from presets import *
|
18 |
+
from llama_func import *
|
19 |
+
from utils import *
|
20 |
+
import tiktoken
|
21 |
+
from tqdm import tqdm
|
22 |
+
import colorama
|
23 |
+
import os
|
24 |
+
from llama_index import (
|
25 |
+
GPTSimpleVectorIndex,
|
26 |
+
GPTTreeIndex,
|
27 |
+
GPTKeywordTableIndex,
|
28 |
+
GPTListIndex,
|
29 |
+
)
|
30 |
+
from llama_index import SimpleDirectoryReader, download_loader
|
31 |
+
from llama_index import (
|
32 |
+
Document,
|
33 |
+
LLMPredictor,
|
34 |
+
PromptHelper,
|
35 |
+
QuestionAnswerPrompt,
|
36 |
+
RefinePrompt,
|
37 |
+
)
|
38 |
+
from langchain.llms import OpenAIChat, OpenAI
|
39 |
+
from duckduckgo_search import ddg
|
40 |
+
import datetime
|
41 |
+
|
42 |
+
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from typing import TypedDict
|
46 |
+
|
47 |
+
class DataframeData(TypedDict):
|
48 |
+
headers: List[str]
|
49 |
+
data: List[List[str | int | bool]]
|
50 |
+
|
51 |
+
|
52 |
+
initial_prompt = "You are a helpful assistant."
|
53 |
+
API_URL = "https://api.openai.com/v1/chat/completions"
|
54 |
+
HISTORY_DIR = "history"
|
55 |
+
TEMPLATES_DIR = "templates"
|
56 |
+
|
57 |
+
def get_response(
|
58 |
+
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
|
59 |
+
):
|
60 |
+
headers = {
|
61 |
+
"Content-Type": "application/json",
|
62 |
+
"Authorization": f"Bearer {openai_api_key}",
|
63 |
+
}
|
64 |
+
|
65 |
+
history = [construct_system(system_prompt), *history]
|
66 |
+
|
67 |
+
payload = {
|
68 |
+
"model": selected_model,
|
69 |
+
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
|
70 |
+
"temperature": temperature, # 1.0,
|
71 |
+
"top_p": top_p, # 1.0,
|
72 |
+
"n": 1,
|
73 |
+
"stream": stream,
|
74 |
+
"presence_penalty": 0,
|
75 |
+
"frequency_penalty": 0,
|
76 |
+
}
|
77 |
+
if stream:
|
78 |
+
timeout = timeout_streaming
|
79 |
+
else:
|
80 |
+
timeout = timeout_all
|
81 |
+
|
82 |
+
# 获取环境变量中的代理设置
|
83 |
+
http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy")
|
84 |
+
https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy")
|
85 |
+
|
86 |
+
# 如果存在代理设置,使用它们
|
87 |
+
proxies = {}
|
88 |
+
if http_proxy:
|
89 |
+
logging.info(f"Using HTTP proxy: {http_proxy}")
|
90 |
+
proxies["http"] = http_proxy
|
91 |
+
if https_proxy:
|
92 |
+
logging.info(f"Using HTTPS proxy: {https_proxy}")
|
93 |
+
proxies["https"] = https_proxy
|
94 |
+
|
95 |
+
# 如果有代理,使用代理发送请求,否则使用默认设置发送请求
|
96 |
+
if proxies:
|
97 |
+
response = requests.post(
|
98 |
+
API_URL,
|
99 |
+
headers=headers,
|
100 |
+
json=payload,
|
101 |
+
stream=True,
|
102 |
+
timeout=timeout,
|
103 |
+
proxies=proxies,
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
response = requests.post(
|
107 |
+
API_URL,
|
108 |
+
headers=headers,
|
109 |
+
json=payload,
|
110 |
+
stream=True,
|
111 |
+
timeout=timeout,
|
112 |
+
)
|
113 |
+
return response
|
114 |
+
|
115 |
+
|
116 |
+
def stream_predict(
|
117 |
+
openai_api_key,
|
118 |
+
system_prompt,
|
119 |
+
history,
|
120 |
+
inputs,
|
121 |
+
chatbot,
|
122 |
+
all_token_counts,
|
123 |
+
top_p,
|
124 |
+
temperature,
|
125 |
+
selected_model,
|
126 |
+
):
|
127 |
+
def get_return_value():
|
128 |
+
return chatbot, history, status_text, all_token_counts
|
129 |
+
|
130 |
+
logging.info("实时回答模式")
|
131 |
+
partial_words = ""
|
132 |
+
counter = 0
|
133 |
+
status_text = "开始实时传输回答……"
|
134 |
+
history.append(construct_user(inputs))
|
135 |
+
history.append(construct_assistant(""))
|
136 |
+
chatbot.append((parse_text(inputs), ""))
|
137 |
+
user_token_count = 0
|
138 |
+
if len(all_token_counts) == 0:
|
139 |
+
system_prompt_token_count = count_token(construct_system(system_prompt))
|
140 |
+
user_token_count = (
|
141 |
+
count_token(construct_user(inputs)) + system_prompt_token_count
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
user_token_count = count_token(construct_user(inputs))
|
145 |
+
all_token_counts.append(user_token_count)
|
146 |
+
logging.info(f"输入token计数: {user_token_count}")
|
147 |
+
yield get_return_value()
|
148 |
+
try:
|
149 |
+
response = get_response(
|
150 |
+
openai_api_key,
|
151 |
+
system_prompt,
|
152 |
+
history,
|
153 |
+
temperature,
|
154 |
+
top_p,
|
155 |
+
True,
|
156 |
+
selected_model,
|
157 |
+
)
|
158 |
+
except requests.exceptions.ConnectTimeout:
|
159 |
+
status_text = (
|
160 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
161 |
+
)
|
162 |
+
yield get_return_value()
|
163 |
+
return
|
164 |
+
except requests.exceptions.ReadTimeout:
|
165 |
+
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
|
166 |
+
yield get_return_value()
|
167 |
+
return
|
168 |
+
|
169 |
+
yield get_return_value()
|
170 |
+
error_json_str = ""
|
171 |
+
|
172 |
+
for chunk in tqdm(response.iter_lines()):
|
173 |
+
if counter == 0:
|
174 |
+
counter += 1
|
175 |
+
continue
|
176 |
+
counter += 1
|
177 |
+
# check whether each line is non-empty
|
178 |
+
if chunk:
|
179 |
+
chunk = chunk.decode()
|
180 |
+
chunklength = len(chunk)
|
181 |
+
try:
|
182 |
+
chunk = json.loads(chunk[6:])
|
183 |
+
except json.JSONDecodeError:
|
184 |
+
logging.info(chunk)
|
185 |
+
error_json_str += chunk
|
186 |
+
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
|
187 |
+
yield get_return_value()
|
188 |
+
continue
|
189 |
+
# decode each line as response data is in bytes
|
190 |
+
if chunklength > 6 and "delta" in chunk["choices"][0]:
|
191 |
+
finish_reason = chunk["choices"][0]["finish_reason"]
|
192 |
+
status_text = construct_token_message(
|
193 |
+
sum(all_token_counts), stream=True
|
194 |
+
)
|
195 |
+
if finish_reason == "stop":
|
196 |
+
yield get_return_value()
|
197 |
+
break
|
198 |
+
try:
|
199 |
+
partial_words = (
|
200 |
+
partial_words + chunk["choices"][0]["delta"]["content"]
|
201 |
+
)
|
202 |
+
except KeyError:
|
203 |
+
status_text = (
|
204 |
+
standard_error_msg
|
205 |
+
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
|
206 |
+
+ str(sum(all_token_counts))
|
207 |
+
)
|
208 |
+
yield get_return_value()
|
209 |
+
break
|
210 |
+
history[-1] = construct_assistant(partial_words)
|
211 |
+
chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
|
212 |
+
all_token_counts[-1] += 1
|
213 |
+
yield get_return_value()
|
214 |
+
|
215 |
+
|
216 |
+
def predict_all(
|
217 |
+
openai_api_key,
|
218 |
+
system_prompt,
|
219 |
+
history,
|
220 |
+
inputs,
|
221 |
+
chatbot,
|
222 |
+
all_token_counts,
|
223 |
+
top_p,
|
224 |
+
temperature,
|
225 |
+
selected_model,
|
226 |
+
):
|
227 |
+
logging.info("一次性回答模式")
|
228 |
+
history.append(construct_user(inputs))
|
229 |
+
history.append(construct_assistant(""))
|
230 |
+
chatbot.append((parse_text(inputs), ""))
|
231 |
+
all_token_counts.append(count_token(construct_user(inputs)))
|
232 |
+
try:
|
233 |
+
response = get_response(
|
234 |
+
openai_api_key,
|
235 |
+
system_prompt,
|
236 |
+
history,
|
237 |
+
temperature,
|
238 |
+
top_p,
|
239 |
+
False,
|
240 |
+
selected_model,
|
241 |
+
)
|
242 |
+
except requests.exceptions.ConnectTimeout:
|
243 |
+
status_text = (
|
244 |
+
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
245 |
+
)
|
246 |
+
return chatbot, history, status_text, all_token_counts
|
247 |
+
except requests.exceptions.ProxyError:
|
248 |
+
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
|
249 |
+
return chatbot, history, status_text, all_token_counts
|
250 |
+
except requests.exceptions.SSLError:
|
251 |
+
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
|
252 |
+
return chatbot, history, status_text, all_token_counts
|
253 |
+
response = json.loads(response.text)
|
254 |
+
content = response["choices"][0]["message"]["content"]
|
255 |
+
history[-1] = construct_assistant(content)
|
256 |
+
chatbot[-1] = (parse_text(inputs), parse_text(content))
|
257 |
+
total_token_count = response["usage"]["total_tokens"]
|
258 |
+
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
259 |
+
status_text = construct_token_message(total_token_count)
|
260 |
+
return chatbot, history, status_text, all_token_counts
|
261 |
+
|
262 |
+
|
263 |
+
def predict(
|
264 |
+
openai_api_key,
|
265 |
+
system_prompt,
|
266 |
+
history,
|
267 |
+
inputs,
|
268 |
+
chatbot,
|
269 |
+
all_token_counts,
|
270 |
+
top_p,
|
271 |
+
temperature,
|
272 |
+
stream=False,
|
273 |
+
selected_model=MODELS[0],
|
274 |
+
use_websearch_checkbox=False,
|
275 |
+
files = None,
|
276 |
+
should_check_token_count=True,
|
277 |
+
): # repetition_penalty, top_k
|
278 |
+
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
279 |
+
if files:
|
280 |
+
msg = "构建索引中……(这可能需要比较久的时间)"
|
281 |
+
logging.info(msg)
|
282 |
+
yield chatbot, history, msg, all_token_counts
|
283 |
+
index = construct_index(openai_api_key, file_src=files)
|
284 |
+
msg = "索引构建完成,获取回答中……"
|
285 |
+
yield chatbot, history, msg, all_token_counts
|
286 |
+
history, chatbot, status_text = chat_ai(openai_api_key, index, inputs, history, chatbot)
|
287 |
+
yield chatbot, history, status_text, all_token_counts
|
288 |
+
return
|
289 |
+
if use_websearch_checkbox:
|
290 |
+
results = ddg(inputs, max_results=3)
|
291 |
+
web_results = []
|
292 |
+
for idx, result in enumerate(results):
|
293 |
+
logging.info(f"搜索结果{idx + 1}:{result}")
|
294 |
+
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
295 |
+
web_results = "\n\n".join(web_results)
|
296 |
+
inputs = (
|
297 |
+
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
298 |
+
.replace("{query}", inputs)
|
299 |
+
.replace("{web_results}", web_results)
|
300 |
+
)
|
301 |
+
if len(openai_api_key) != 51:
|
302 |
+
status_text = standard_error_msg + no_apikey_msg
|
303 |
+
logging.info(status_text)
|
304 |
+
chatbot.append((parse_text(inputs), ""))
|
305 |
+
if len(history) == 0:
|
306 |
+
history.append(construct_user(inputs))
|
307 |
+
history.append("")
|
308 |
+
all_token_counts.append(0)
|
309 |
+
else:
|
310 |
+
history[-2] = construct_user(inputs)
|
311 |
+
yield chatbot, history, status_text, all_token_counts
|
312 |
+
return
|
313 |
+
if stream:
|
314 |
+
yield chatbot, history, "开始生成回答……", all_token_counts
|
315 |
+
if stream:
|
316 |
+
logging.info("使用流式传输")
|
317 |
+
iter = stream_predict(
|
318 |
+
openai_api_key,
|
319 |
+
system_prompt,
|
320 |
+
history,
|
321 |
+
inputs,
|
322 |
+
chatbot,
|
323 |
+
all_token_counts,
|
324 |
+
top_p,
|
325 |
+
temperature,
|
326 |
+
selected_model,
|
327 |
+
)
|
328 |
+
for chatbot, history, status_text, all_token_counts in iter:
|
329 |
+
yield chatbot, history, status_text, all_token_counts
|
330 |
+
else:
|
331 |
+
logging.info("不使用流式传输")
|
332 |
+
chatbot, history, status_text, all_token_counts = predict_all(
|
333 |
+
openai_api_key,
|
334 |
+
system_prompt,
|
335 |
+
history,
|
336 |
+
inputs,
|
337 |
+
chatbot,
|
338 |
+
all_token_counts,
|
339 |
+
top_p,
|
340 |
+
temperature,
|
341 |
+
selected_model,
|
342 |
+
)
|
343 |
+
yield chatbot, history, status_text, all_token_counts
|
344 |
+
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
345 |
+
if len(history) > 1 and history[-1]["content"] != inputs:
|
346 |
+
logging.info(
|
347 |
+
"回答为:"
|
348 |
+
+ colorama.Fore.BLUE
|
349 |
+
+ f"{history[-1]['content']}"
|
350 |
+
+ colorama.Style.RESET_ALL
|
351 |
+
)
|
352 |
+
if stream:
|
353 |
+
max_token = max_token_streaming
|
354 |
+
else:
|
355 |
+
max_token = max_token_all
|
356 |
+
if sum(all_token_counts) > max_token and should_check_token_count:
|
357 |
+
status_text = f"精简token中{all_token_counts}/{max_token}"
|
358 |
+
logging.info(status_text)
|
359 |
+
yield chatbot, history, status_text, all_token_counts
|
360 |
+
iter = reduce_token_size(
|
361 |
+
openai_api_key,
|
362 |
+
system_prompt,
|
363 |
+
history,
|
364 |
+
chatbot,
|
365 |
+
all_token_counts,
|
366 |
+
top_p,
|
367 |
+
temperature,
|
368 |
+
stream=False,
|
369 |
+
selected_model=selected_model,
|
370 |
+
hidden=True,
|
371 |
+
)
|
372 |
+
for chatbot, history, status_text, all_token_counts in iter:
|
373 |
+
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
374 |
+
yield chatbot, history, status_text, all_token_counts
|
375 |
+
|
376 |
+
|
377 |
+
def retry(
|
378 |
+
openai_api_key,
|
379 |
+
system_prompt,
|
380 |
+
history,
|
381 |
+
chatbot,
|
382 |
+
token_count,
|
383 |
+
top_p,
|
384 |
+
temperature,
|
385 |
+
stream=False,
|
386 |
+
selected_model=MODELS[0],
|
387 |
+
):
|
388 |
+
logging.info("重试中……")
|
389 |
+
if len(history) == 0:
|
390 |
+
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
391 |
+
return
|
392 |
+
history.pop()
|
393 |
+
inputs = history.pop()["content"]
|
394 |
+
token_count.pop()
|
395 |
+
iter = predict(
|
396 |
+
openai_api_key,
|
397 |
+
system_prompt,
|
398 |
+
history,
|
399 |
+
inputs,
|
400 |
+
chatbot,
|
401 |
+
token_count,
|
402 |
+
top_p,
|
403 |
+
temperature,
|
404 |
+
stream=stream,
|
405 |
+
selected_model=selected_model,
|
406 |
+
)
|
407 |
+
logging.info("重试完毕")
|
408 |
+
for x in iter:
|
409 |
+
yield x
|
410 |
+
|
411 |
+
|
412 |
+
def reduce_token_size(
|
413 |
+
openai_api_key,
|
414 |
+
system_prompt,
|
415 |
+
history,
|
416 |
+
chatbot,
|
417 |
+
token_count,
|
418 |
+
top_p,
|
419 |
+
temperature,
|
420 |
+
stream=False,
|
421 |
+
selected_model=MODELS[0],
|
422 |
+
hidden=False,
|
423 |
+
):
|
424 |
+
logging.info("开始减少token数量……")
|
425 |
+
iter = predict(
|
426 |
+
openai_api_key,
|
427 |
+
system_prompt,
|
428 |
+
history,
|
429 |
+
summarize_prompt,
|
430 |
+
chatbot,
|
431 |
+
token_count,
|
432 |
+
top_p,
|
433 |
+
temperature,
|
434 |
+
stream=stream,
|
435 |
+
selected_model=selected_model,
|
436 |
+
should_check_token_count=False,
|
437 |
+
)
|
438 |
+
logging.info(f"chatbot: {chatbot}")
|
439 |
+
for chatbot, history, status_text, previous_token_count in iter:
|
440 |
+
history = history[-2:]
|
441 |
+
token_count = previous_token_count[-1:]
|
442 |
+
if hidden:
|
443 |
+
chatbot.pop()
|
444 |
+
yield chatbot, history, construct_token_message(
|
445 |
+
sum(token_count), stream=stream
|
446 |
+
), token_count
|
447 |
+
logging.info("减少token数量完毕")
|
llama_func.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from llama_index import (
|
3 |
+
GPTSimpleVectorIndex,
|
4 |
+
GPTTreeIndex,
|
5 |
+
GPTKeywordTableIndex,
|
6 |
+
GPTListIndex,
|
7 |
+
)
|
8 |
+
from llama_index import SimpleDirectoryReader, download_loader
|
9 |
+
from llama_index import (
|
10 |
+
Document,
|
11 |
+
LLMPredictor,
|
12 |
+
PromptHelper,
|
13 |
+
QuestionAnswerPrompt,
|
14 |
+
RefinePrompt,
|
15 |
+
)
|
16 |
+
from langchain.llms import OpenAIChat, OpenAI
|
17 |
+
from googlesearch import search as google_search
|
18 |
+
from baidusearch.baidusearch import search as baidu_search
|
19 |
+
from duckduckgo_search import ddg
|
20 |
+
import colorama
|
21 |
+
|
22 |
+
import logging
|
23 |
+
import sys
|
24 |
+
|
25 |
+
from presets import *
|
26 |
+
from utils import *
|
27 |
+
|
28 |
+
|
29 |
+
def get_documents(file_src):
|
30 |
+
documents = []
|
31 |
+
index_name = ""
|
32 |
+
logging.debug("Loading documents...")
|
33 |
+
logging.debug(f"file_src: {file_src}")
|
34 |
+
for file in file_src:
|
35 |
+
logging.debug(f"file: {file.name}")
|
36 |
+
index_name += file.name
|
37 |
+
if os.path.splitext(file.name)[1] == ".pdf":
|
38 |
+
logging.debug("Loading PDF...")
|
39 |
+
CJKPDFReader = download_loader("CJKPDFReader")
|
40 |
+
loader = CJKPDFReader()
|
41 |
+
documents += loader.load_data(file=file.name)
|
42 |
+
elif os.path.splitext(file.name)[1] == ".docx":
|
43 |
+
logging.debug("Loading DOCX...")
|
44 |
+
DocxReader = download_loader("DocxReader")
|
45 |
+
loader = DocxReader()
|
46 |
+
documents += loader.load_data(file=file.name)
|
47 |
+
elif os.path.splitext(file.name)[1] == ".epub":
|
48 |
+
logging.debug("Loading EPUB...")
|
49 |
+
EpubReader = download_loader("EpubReader")
|
50 |
+
loader = EpubReader()
|
51 |
+
documents += loader.load_data(file=file.name)
|
52 |
+
else:
|
53 |
+
logging.debug("Loading text file...")
|
54 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
55 |
+
text = add_space(f.read())
|
56 |
+
documents += [Document(text)]
|
57 |
+
index_name = sha1sum(index_name)
|
58 |
+
return documents, index_name
|
59 |
+
|
60 |
+
|
61 |
+
def construct_index(
|
62 |
+
api_key,
|
63 |
+
file_src,
|
64 |
+
max_input_size=4096,
|
65 |
+
num_outputs=1,
|
66 |
+
max_chunk_overlap=20,
|
67 |
+
chunk_size_limit=600,
|
68 |
+
embedding_limit=None,
|
69 |
+
separator=" ",
|
70 |
+
num_children=10,
|
71 |
+
max_keywords_per_chunk=10,
|
72 |
+
):
|
73 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
74 |
+
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
|
75 |
+
embedding_limit = None if embedding_limit == 0 else embedding_limit
|
76 |
+
separator = " " if separator == "" else separator
|
77 |
+
|
78 |
+
llm_predictor = LLMPredictor(
|
79 |
+
llm=OpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
|
80 |
+
)
|
81 |
+
prompt_helper = PromptHelper(
|
82 |
+
max_input_size,
|
83 |
+
num_outputs,
|
84 |
+
max_chunk_overlap,
|
85 |
+
embedding_limit,
|
86 |
+
chunk_size_limit,
|
87 |
+
separator=separator,
|
88 |
+
)
|
89 |
+
documents, index_name = get_documents(file_src)
|
90 |
+
if os.path.exists(f"./index/{index_name}.json"):
|
91 |
+
logging.info("找到了缓存的索引文件,加载中……")
|
92 |
+
return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
|
93 |
+
else:
|
94 |
+
try:
|
95 |
+
logging.debug("构建索引中……")
|
96 |
+
index = GPTSimpleVectorIndex(
|
97 |
+
documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
98 |
+
)
|
99 |
+
os.makedirs("./index", exist_ok=True)
|
100 |
+
index.save_to_disk(f"./index/{index_name}.json")
|
101 |
+
return index
|
102 |
+
except Exception as e:
|
103 |
+
print(e)
|
104 |
+
return None
|
105 |
+
|
106 |
+
|
107 |
+
def chat_ai(
|
108 |
+
api_key,
|
109 |
+
index,
|
110 |
+
question,
|
111 |
+
context,
|
112 |
+
chatbot,
|
113 |
+
):
|
114 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
115 |
+
|
116 |
+
logging.info(f"Question: {question}")
|
117 |
+
|
118 |
+
response, status_text = ask_ai(
|
119 |
+
api_key,
|
120 |
+
index,
|
121 |
+
question,
|
122 |
+
replace_today(PROMPT_TEMPLATE),
|
123 |
+
REFINE_TEMPLATE,
|
124 |
+
SIM_K,
|
125 |
+
INDEX_QUERY_TEMPRATURE,
|
126 |
+
context,
|
127 |
+
)
|
128 |
+
if response is None:
|
129 |
+
status_text = "查询失败,请换个问法试试"
|
130 |
+
return context, chatbot
|
131 |
+
response = response
|
132 |
+
|
133 |
+
context.append({"role": "user", "content": question})
|
134 |
+
context.append({"role": "assistant", "content": response})
|
135 |
+
chatbot.append((question, response))
|
136 |
+
|
137 |
+
os.environ["OPENAI_API_KEY"] = ""
|
138 |
+
return context, chatbot, status_text
|
139 |
+
|
140 |
+
|
141 |
+
def ask_ai(
|
142 |
+
api_key,
|
143 |
+
index,
|
144 |
+
question,
|
145 |
+
prompt_tmpl,
|
146 |
+
refine_tmpl,
|
147 |
+
sim_k=1,
|
148 |
+
temprature=0,
|
149 |
+
prefix_messages=[],
|
150 |
+
):
|
151 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
152 |
+
|
153 |
+
logging.debug("Index file found")
|
154 |
+
logging.debug("Querying index...")
|
155 |
+
llm_predictor = LLMPredictor(
|
156 |
+
llm=OpenAI(
|
157 |
+
temperature=temprature,
|
158 |
+
model_name="gpt-3.5-turbo-0301",
|
159 |
+
prefix_messages=prefix_messages,
|
160 |
+
)
|
161 |
+
)
|
162 |
+
|
163 |
+
response = None # Initialize response variable to avoid UnboundLocalError
|
164 |
+
qa_prompt = QuestionAnswerPrompt(prompt_tmpl)
|
165 |
+
rf_prompt = RefinePrompt(refine_tmpl)
|
166 |
+
response = index.query(
|
167 |
+
question,
|
168 |
+
llm_predictor=llm_predictor,
|
169 |
+
similarity_top_k=sim_k,
|
170 |
+
text_qa_template=qa_prompt,
|
171 |
+
refine_template=rf_prompt,
|
172 |
+
response_mode="compact",
|
173 |
+
)
|
174 |
+
|
175 |
+
if response is not None:
|
176 |
+
logging.info(f"Response: {response}")
|
177 |
+
ret_text = response.response
|
178 |
+
ret_text += "\n----------\n"
|
179 |
+
nodes = []
|
180 |
+
for index, node in enumerate(response.source_nodes):
|
181 |
+
brief = node.source_text[:25].replace("\n", "")
|
182 |
+
nodes.append(
|
183 |
+
f"<details><summary>[{index+1}]\t{brief}...</summary><p>{node.source_text}</p></details>"
|
184 |
+
)
|
185 |
+
ret_text += "\n\n".join(nodes)
|
186 |
+
logging.info(
|
187 |
+
f"Response: {colorama.Fore.BLUE}{ret_text}{colorama.Style.RESET_ALL}"
|
188 |
+
)
|
189 |
+
os.environ["OPENAI_API_KEY"] = ""
|
190 |
+
return ret_text, f"查询消耗了{llm_predictor.last_token_usage} tokens"
|
191 |
+
else:
|
192 |
+
logging.warning("No response found, returning None")
|
193 |
+
os.environ["OPENAI_API_KEY"] = ""
|
194 |
+
return None
|
195 |
+
|
196 |
+
|
197 |
+
def add_space(text):
|
198 |
+
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
|
199 |
+
for cn_punc, en_punc in punctuations.items():
|
200 |
+
text = text.replace(cn_punc, en_punc)
|
201 |
+
return text
|
overwrites.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import os
|
3 |
+
|
4 |
+
import llama_index
|
5 |
+
|
6 |
+
from llama_index import (
|
7 |
+
LLMPredictor,
|
8 |
+
GPTTreeIndex,
|
9 |
+
Document,
|
10 |
+
GPTSimpleVectorIndex,
|
11 |
+
SimpleDirectoryReader,
|
12 |
+
RefinePrompt,
|
13 |
+
QuestionAnswerPrompt,
|
14 |
+
GPTListIndex,
|
15 |
+
PromptHelper,
|
16 |
+
)
|
17 |
+
from pathlib import Path
|
18 |
+
from docx import Document as DocxDocument
|
19 |
+
from tqdm import tqdm
|
20 |
+
import re
|
21 |
+
from langchain.llms import OpenAIChat, OpenAI
|
22 |
+
from llama_index.composability import ComposableGraph
|
23 |
+
from IPython.display import Markdown, display
|
24 |
+
import json
|
25 |
+
from llama_index import Prompt
|
26 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
27 |
+
|
28 |
+
import logging
|
29 |
+
import sys
|
30 |
+
|
31 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
|
32 |
+
import logging
|
33 |
+
import json
|
34 |
+
import gradio as gr
|
35 |
+
|
36 |
+
# import openai
|
37 |
+
import os
|
38 |
+
import traceback
|
39 |
+
import requests
|
40 |
+
|
41 |
+
# import markdown
|
42 |
+
import csv
|
43 |
+
import mdtex2html
|
44 |
+
from pypinyin import lazy_pinyin
|
45 |
+
from presets import *
|
46 |
+
from llama_func import *
|
47 |
+
import tiktoken
|
48 |
+
from tqdm import tqdm
|
49 |
+
import colorama
|
50 |
+
import os
|
51 |
+
from llama_index import (
|
52 |
+
GPTSimpleVectorIndex,
|
53 |
+
GPTTreeIndex,
|
54 |
+
GPTKeywordTableIndex,
|
55 |
+
GPTListIndex,
|
56 |
+
)
|
57 |
+
from llama_index import SimpleDirectoryReader, download_loader
|
58 |
+
from llama_index import (
|
59 |
+
Document,
|
60 |
+
LLMPredictor,
|
61 |
+
PromptHelper,
|
62 |
+
QuestionAnswerPrompt,
|
63 |
+
RefinePrompt,
|
64 |
+
)
|
65 |
+
from langchain.llms import OpenAIChat, OpenAI
|
66 |
+
from duckduckgo_search import ddg
|
67 |
+
import datetime
|
68 |
+
|
69 |
+
def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
|
70 |
+
logging.debug("Compacting text chunks...🚀🚀🚀")
|
71 |
+
combined_str = [c.strip() for c in text_chunks if c.strip()]
|
72 |
+
combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
|
73 |
+
combined_str = "\n\n".join(combined_str)
|
74 |
+
# resplit based on self.max_chunk_overlap
|
75 |
+
text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
|
76 |
+
return text_splitter.split_text(combined_str)
|
77 |
+
|
78 |
+
|
79 |
+
def postprocess(
|
80 |
+
self, y: List[Tuple[str | None, str | None]]
|
81 |
+
) -> List[Tuple[str | None, str | None]]:
|
82 |
+
"""
|
83 |
+
Parameters:
|
84 |
+
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
|
85 |
+
Returns:
|
86 |
+
List of tuples representing the message and response. Each message and response will be a string of HTML.
|
87 |
+
"""
|
88 |
+
if y is None:
|
89 |
+
return []
|
90 |
+
for i, (message, response) in enumerate(y):
|
91 |
+
y[i] = (
|
92 |
+
# None if message is None else markdown.markdown(message),
|
93 |
+
# None if response is None else markdown.markdown(response),
|
94 |
+
None if message is None else message,
|
95 |
+
None if response is None else mdtex2html.convert(response, extensions=['fenced_code','codehilite','tables']),
|
96 |
+
)
|
97 |
+
return y
|
presets.py
CHANGED
@@ -1,4 +1,23 @@
|
|
1 |
# -*- coding:utf-8 -*-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
title = """<h1 align="left" style="min-width:200px; margin-top:0;">川虎ChatGPT 🚀</h1>"""
|
3 |
description = """\
|
4 |
<div align="center" style="margin:16px 0">
|
@@ -12,6 +31,7 @@ description = """\
|
|
12 |
"""
|
13 |
|
14 |
summarize_prompt = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
|
|
|
15 |
MODELS = [
|
16 |
"gpt-3.5-turbo",
|
17 |
"gpt-3.5-turbo-0301",
|
@@ -21,7 +41,8 @@ MODELS = [
|
|
21 |
"gpt-4-32k-0314",
|
22 |
] # 可选的模型
|
23 |
|
24 |
-
|
|
|
25 |
Web search results:
|
26 |
|
27 |
{web_results}
|
@@ -31,18 +52,29 @@ Instructions: Using the provided web search results, write a comprehensive reply
|
|
31 |
Query: {query}
|
32 |
Reply in 中文"""
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
+
# 错误信息
|
3 |
+
standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
|
4 |
+
error_retrieve_prompt = "请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
|
5 |
+
connection_timeout_prompt = "连接超时,无法获取对话。" # 连接超时
|
6 |
+
read_timeout_prompt = "读取超时,无法获取对话。" # 读取超时
|
7 |
+
proxy_error_prompt = "代理错误,无法获取对话。" # 代理错误
|
8 |
+
ssl_error_prompt = "SSL错误,无法获取对话。" # SSL 错误
|
9 |
+
no_apikey_msg = "API key长度不是51位,请检查是否输入正确。" # API key 长度不足 51 位
|
10 |
+
|
11 |
+
max_token_streaming = 3500 # 流式对话时的最大 token 数
|
12 |
+
timeout_streaming = 30 # 流式对话时的超时时间
|
13 |
+
max_token_all = 3500 # 非流式对话时的最大 token 数
|
14 |
+
timeout_all = 200 # 非流式对话时的超时时间
|
15 |
+
enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
|
16 |
+
HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
|
17 |
+
|
18 |
+
SIM_K = 5
|
19 |
+
INDEX_QUERY_TEMPRATURE = 1.0
|
20 |
+
|
21 |
title = """<h1 align="left" style="min-width:200px; margin-top:0;">川虎ChatGPT 🚀</h1>"""
|
22 |
description = """\
|
23 |
<div align="center" style="margin:16px 0">
|
|
|
31 |
"""
|
32 |
|
33 |
summarize_prompt = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
|
34 |
+
|
35 |
MODELS = [
|
36 |
"gpt-3.5-turbo",
|
37 |
"gpt-3.5-turbo-0301",
|
|
|
41 |
"gpt-4-32k-0314",
|
42 |
] # 可选的模型
|
43 |
|
44 |
+
|
45 |
+
WEBSEARCH_PTOMPT_TEMPLATE = """\
|
46 |
Web search results:
|
47 |
|
48 |
{web_results}
|
|
|
52 |
Query: {query}
|
53 |
Reply in 中文"""
|
54 |
|
55 |
+
PROMPT_TEMPLATE = """\
|
56 |
+
Context information is below.
|
57 |
+
---------------------
|
58 |
+
{context_str}
|
59 |
+
---------------------
|
60 |
+
Using the provided context information, write a comprehensive reply to the given query.
|
61 |
+
Make sure to cite results using [number] notation after the reference.
|
62 |
+
If the provided context information refer to multiple subjects with the same name, write separate answers for each subject.
|
63 |
+
Use prior knowledge only if the given context didn't provide enough information.
|
64 |
+
Today is {current_date}.
|
65 |
+
Answer the question: {query_str}
|
66 |
+
Reply in 中文
|
67 |
+
"""
|
68 |
|
69 |
+
REFINE_TEMPLATE = """\
|
70 |
+
The original question is as follows: {query_str}
|
71 |
+
We have provided an existing answer: {existing_answer}
|
72 |
+
We have the opportunity to refine the existing answer
|
73 |
+
(only if needed) with some more context below.
|
74 |
+
------------
|
75 |
+
{context_msg}
|
76 |
+
------------
|
77 |
+
Given the new context, refine the original answer to better
|
78 |
+
Answer in the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch.
|
79 |
+
If the context isn't useful, return the original answer.
|
80 |
+
"""
|
requirements.txt
CHANGED
@@ -6,4 +6,6 @@ socksio
|
|
6 |
tqdm
|
7 |
colorama
|
8 |
duckduckgo_search
|
9 |
-
Pygments
|
|
|
|
|
|
6 |
tqdm
|
7 |
colorama
|
8 |
duckduckgo_search
|
9 |
+
Pygments
|
10 |
+
llama_index
|
11 |
+
langchain
|
utils.py
CHANGED
@@ -18,8 +18,25 @@ from presets import *
|
|
18 |
import tiktoken
|
19 |
from tqdm import tqdm
|
20 |
import colorama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from duckduckgo_search import ddg
|
22 |
import datetime
|
|
|
23 |
|
24 |
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
|
25 |
|
@@ -37,27 +54,6 @@ HISTORY_DIR = "history"
|
|
37 |
TEMPLATES_DIR = "templates"
|
38 |
|
39 |
|
40 |
-
def postprocess(
|
41 |
-
self, y: List[Tuple[str | None, str | None]]
|
42 |
-
) -> List[Tuple[str | None, str | None]]:
|
43 |
-
"""
|
44 |
-
Parameters:
|
45 |
-
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
|
46 |
-
Returns:
|
47 |
-
List of tuples representing the message and response. Each message and response will be a string of HTML.
|
48 |
-
"""
|
49 |
-
if y is None:
|
50 |
-
return []
|
51 |
-
for i, (message, response) in enumerate(y):
|
52 |
-
y[i] = (
|
53 |
-
# None if message is None else markdown.markdown(message),
|
54 |
-
# None if response is None else markdown.markdown(response),
|
55 |
-
None if message is None else message,
|
56 |
-
None if response is None else mdtex2html.convert(response, extensions=['fenced_code','codehilite','tables']),
|
57 |
-
)
|
58 |
-
return y
|
59 |
-
|
60 |
-
|
61 |
def count_token(message):
|
62 |
encoding = tiktoken.get_encoding("cl100k_base")
|
63 |
input_str = f"role: {message['role']}, content: {message['content']}"
|
@@ -102,389 +98,6 @@ def construct_token_message(token, stream=False):
|
|
102 |
return f"Token 计数: {token}"
|
103 |
|
104 |
|
105 |
-
def get_response(
|
106 |
-
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
|
107 |
-
):
|
108 |
-
headers = {
|
109 |
-
"Content-Type": "application/json",
|
110 |
-
"Authorization": f"Bearer {openai_api_key}",
|
111 |
-
}
|
112 |
-
|
113 |
-
history = [construct_system(system_prompt), *history]
|
114 |
-
|
115 |
-
payload = {
|
116 |
-
"model": selected_model,
|
117 |
-
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
|
118 |
-
"temperature": temperature, # 1.0,
|
119 |
-
"top_p": top_p, # 1.0,
|
120 |
-
"n": 1,
|
121 |
-
"stream": stream,
|
122 |
-
"presence_penalty": 0,
|
123 |
-
"frequency_penalty": 0,
|
124 |
-
}
|
125 |
-
if stream:
|
126 |
-
timeout = timeout_streaming
|
127 |
-
else:
|
128 |
-
timeout = timeout_all
|
129 |
-
|
130 |
-
# 获取环境变量中的代理设置
|
131 |
-
http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy")
|
132 |
-
https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy")
|
133 |
-
|
134 |
-
# 如果存在代理设置,使用它们
|
135 |
-
proxies = {}
|
136 |
-
if http_proxy:
|
137 |
-
logging.info(f"Using HTTP proxy: {http_proxy}")
|
138 |
-
proxies["http"] = http_proxy
|
139 |
-
if https_proxy:
|
140 |
-
logging.info(f"Using HTTPS proxy: {https_proxy}")
|
141 |
-
proxies["https"] = https_proxy
|
142 |
-
|
143 |
-
# 如果有代理,使用代理发送请求,否则使用默认设置发送请求
|
144 |
-
if proxies:
|
145 |
-
response = requests.post(
|
146 |
-
API_URL,
|
147 |
-
headers=headers,
|
148 |
-
json=payload,
|
149 |
-
stream=True,
|
150 |
-
timeout=timeout,
|
151 |
-
proxies=proxies,
|
152 |
-
)
|
153 |
-
else:
|
154 |
-
response = requests.post(
|
155 |
-
API_URL,
|
156 |
-
headers=headers,
|
157 |
-
json=payload,
|
158 |
-
stream=True,
|
159 |
-
timeout=timeout,
|
160 |
-
)
|
161 |
-
return response
|
162 |
-
|
163 |
-
|
164 |
-
def stream_predict(
|
165 |
-
openai_api_key,
|
166 |
-
system_prompt,
|
167 |
-
history,
|
168 |
-
inputs,
|
169 |
-
chatbot,
|
170 |
-
all_token_counts,
|
171 |
-
top_p,
|
172 |
-
temperature,
|
173 |
-
selected_model,
|
174 |
-
):
|
175 |
-
def get_return_value():
|
176 |
-
return chatbot, history, status_text, all_token_counts
|
177 |
-
|
178 |
-
logging.info("实时回答模式")
|
179 |
-
partial_words = ""
|
180 |
-
counter = 0
|
181 |
-
status_text = "开始实时传输回答……"
|
182 |
-
history.append(construct_user(inputs))
|
183 |
-
history.append(construct_assistant(""))
|
184 |
-
chatbot.append((parse_text(inputs), ""))
|
185 |
-
user_token_count = 0
|
186 |
-
if len(all_token_counts) == 0:
|
187 |
-
system_prompt_token_count = count_token(construct_system(system_prompt))
|
188 |
-
user_token_count = (
|
189 |
-
count_token(construct_user(inputs)) + system_prompt_token_count
|
190 |
-
)
|
191 |
-
else:
|
192 |
-
user_token_count = count_token(construct_user(inputs))
|
193 |
-
all_token_counts.append(user_token_count)
|
194 |
-
logging.info(f"输入token计数: {user_token_count}")
|
195 |
-
yield get_return_value()
|
196 |
-
try:
|
197 |
-
response = get_response(
|
198 |
-
openai_api_key,
|
199 |
-
system_prompt,
|
200 |
-
history,
|
201 |
-
temperature,
|
202 |
-
top_p,
|
203 |
-
True,
|
204 |
-
selected_model,
|
205 |
-
)
|
206 |
-
except requests.exceptions.ConnectTimeout:
|
207 |
-
status_text = (
|
208 |
-
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
209 |
-
)
|
210 |
-
yield get_return_value()
|
211 |
-
return
|
212 |
-
except requests.exceptions.ReadTimeout:
|
213 |
-
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
|
214 |
-
yield get_return_value()
|
215 |
-
return
|
216 |
-
|
217 |
-
yield get_return_value()
|
218 |
-
error_json_str = ""
|
219 |
-
|
220 |
-
for chunk in tqdm(response.iter_lines()):
|
221 |
-
if counter == 0:
|
222 |
-
counter += 1
|
223 |
-
continue
|
224 |
-
counter += 1
|
225 |
-
# check whether each line is non-empty
|
226 |
-
if chunk:
|
227 |
-
chunk = chunk.decode()
|
228 |
-
chunklength = len(chunk)
|
229 |
-
try:
|
230 |
-
chunk = json.loads(chunk[6:])
|
231 |
-
except json.JSONDecodeError:
|
232 |
-
logging.info(chunk)
|
233 |
-
error_json_str += chunk
|
234 |
-
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
|
235 |
-
yield get_return_value()
|
236 |
-
continue
|
237 |
-
# decode each line as response data is in bytes
|
238 |
-
if chunklength > 6 and "delta" in chunk["choices"][0]:
|
239 |
-
finish_reason = chunk["choices"][0]["finish_reason"]
|
240 |
-
status_text = construct_token_message(
|
241 |
-
sum(all_token_counts), stream=True
|
242 |
-
)
|
243 |
-
if finish_reason == "stop":
|
244 |
-
yield get_return_value()
|
245 |
-
break
|
246 |
-
try:
|
247 |
-
partial_words = (
|
248 |
-
partial_words + chunk["choices"][0]["delta"]["content"]
|
249 |
-
)
|
250 |
-
except KeyError:
|
251 |
-
status_text = (
|
252 |
-
standard_error_msg
|
253 |
-
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
|
254 |
-
+ str(sum(all_token_counts))
|
255 |
-
)
|
256 |
-
yield get_return_value()
|
257 |
-
break
|
258 |
-
history[-1] = construct_assistant(partial_words)
|
259 |
-
chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
|
260 |
-
all_token_counts[-1] += 1
|
261 |
-
yield get_return_value()
|
262 |
-
|
263 |
-
|
264 |
-
def predict_all(
|
265 |
-
openai_api_key,
|
266 |
-
system_prompt,
|
267 |
-
history,
|
268 |
-
inputs,
|
269 |
-
chatbot,
|
270 |
-
all_token_counts,
|
271 |
-
top_p,
|
272 |
-
temperature,
|
273 |
-
selected_model,
|
274 |
-
):
|
275 |
-
logging.info("一次性回答模式")
|
276 |
-
history.append(construct_user(inputs))
|
277 |
-
history.append(construct_assistant(""))
|
278 |
-
chatbot.append((parse_text(inputs), ""))
|
279 |
-
all_token_counts.append(count_token(construct_user(inputs)))
|
280 |
-
try:
|
281 |
-
response = get_response(
|
282 |
-
openai_api_key,
|
283 |
-
system_prompt,
|
284 |
-
history,
|
285 |
-
temperature,
|
286 |
-
top_p,
|
287 |
-
False,
|
288 |
-
selected_model,
|
289 |
-
)
|
290 |
-
except requests.exceptions.ConnectTimeout:
|
291 |
-
status_text = (
|
292 |
-
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
293 |
-
)
|
294 |
-
return chatbot, history, status_text, all_token_counts
|
295 |
-
except requests.exceptions.ProxyError:
|
296 |
-
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
|
297 |
-
return chatbot, history, status_text, all_token_counts
|
298 |
-
except requests.exceptions.SSLError:
|
299 |
-
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
|
300 |
-
return chatbot, history, status_text, all_token_counts
|
301 |
-
response = json.loads(response.text)
|
302 |
-
content = response["choices"][0]["message"]["content"]
|
303 |
-
history[-1] = construct_assistant(content)
|
304 |
-
chatbot[-1] = (parse_text(inputs), parse_text(content))
|
305 |
-
total_token_count = response["usage"]["total_tokens"]
|
306 |
-
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
307 |
-
status_text = construct_token_message(total_token_count)
|
308 |
-
return chatbot, history, status_text, all_token_counts
|
309 |
-
|
310 |
-
|
311 |
-
def predict(
|
312 |
-
openai_api_key,
|
313 |
-
system_prompt,
|
314 |
-
history,
|
315 |
-
inputs,
|
316 |
-
chatbot,
|
317 |
-
all_token_counts,
|
318 |
-
top_p,
|
319 |
-
temperature,
|
320 |
-
stream=False,
|
321 |
-
selected_model=MODELS[0],
|
322 |
-
use_websearch_checkbox=False,
|
323 |
-
should_check_token_count=True,
|
324 |
-
): # repetition_penalty, top_k
|
325 |
-
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
326 |
-
if use_websearch_checkbox:
|
327 |
-
results = ddg(inputs, max_results=3)
|
328 |
-
web_results = []
|
329 |
-
for idx, result in enumerate(results):
|
330 |
-
logging.info(f"搜索结果{idx + 1}:{result}")
|
331 |
-
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
|
332 |
-
web_results = "\n\n".join(web_results)
|
333 |
-
today = datetime.datetime.today().strftime("%Y-%m-%d")
|
334 |
-
inputs = (
|
335 |
-
websearch_prompt.replace("{current_date}", today)
|
336 |
-
.replace("{query}", inputs)
|
337 |
-
.replace("{web_results}", web_results)
|
338 |
-
)
|
339 |
-
if len(openai_api_key) != 51:
|
340 |
-
status_text = standard_error_msg + no_apikey_msg
|
341 |
-
logging.info(status_text)
|
342 |
-
chatbot.append((parse_text(inputs), ""))
|
343 |
-
if len(history) == 0:
|
344 |
-
history.append(construct_user(inputs))
|
345 |
-
history.append("")
|
346 |
-
all_token_counts.append(0)
|
347 |
-
else:
|
348 |
-
history[-2] = construct_user(inputs)
|
349 |
-
yield chatbot, history, status_text, all_token_counts
|
350 |
-
return
|
351 |
-
if stream:
|
352 |
-
yield chatbot, history, "开始生成回答……", all_token_counts
|
353 |
-
if stream:
|
354 |
-
logging.info("使用流式传输")
|
355 |
-
iter = stream_predict(
|
356 |
-
openai_api_key,
|
357 |
-
system_prompt,
|
358 |
-
history,
|
359 |
-
inputs,
|
360 |
-
chatbot,
|
361 |
-
all_token_counts,
|
362 |
-
top_p,
|
363 |
-
temperature,
|
364 |
-
selected_model,
|
365 |
-
)
|
366 |
-
for chatbot, history, status_text, all_token_counts in iter:
|
367 |
-
yield chatbot, history, status_text, all_token_counts
|
368 |
-
else:
|
369 |
-
logging.info("不使用流式传输")
|
370 |
-
chatbot, history, status_text, all_token_counts = predict_all(
|
371 |
-
openai_api_key,
|
372 |
-
system_prompt,
|
373 |
-
history,
|
374 |
-
inputs,
|
375 |
-
chatbot,
|
376 |
-
all_token_counts,
|
377 |
-
top_p,
|
378 |
-
temperature,
|
379 |
-
selected_model,
|
380 |
-
)
|
381 |
-
yield chatbot, history, status_text, all_token_counts
|
382 |
-
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
383 |
-
if len(history) > 1 and history[-1]["content"] != inputs:
|
384 |
-
logging.info(
|
385 |
-
"回答为:"
|
386 |
-
+ colorama.Fore.BLUE
|
387 |
-
+ f"{history[-1]['content']}"
|
388 |
-
+ colorama.Style.RESET_ALL
|
389 |
-
)
|
390 |
-
if stream:
|
391 |
-
max_token = max_token_streaming
|
392 |
-
else:
|
393 |
-
max_token = max_token_all
|
394 |
-
if sum(all_token_counts) > max_token and should_check_token_count:
|
395 |
-
status_text = f"精简token中{all_token_counts}/{max_token}"
|
396 |
-
logging.info(status_text)
|
397 |
-
yield chatbot, history, status_text, all_token_counts
|
398 |
-
iter = reduce_token_size(
|
399 |
-
openai_api_key,
|
400 |
-
system_prompt,
|
401 |
-
history,
|
402 |
-
chatbot,
|
403 |
-
all_token_counts,
|
404 |
-
top_p,
|
405 |
-
temperature,
|
406 |
-
stream=False,
|
407 |
-
selected_model=selected_model,
|
408 |
-
hidden=True,
|
409 |
-
)
|
410 |
-
for chatbot, history, status_text, all_token_counts in iter:
|
411 |
-
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
|
412 |
-
yield chatbot, history, status_text, all_token_counts
|
413 |
-
|
414 |
-
|
415 |
-
def retry(
|
416 |
-
openai_api_key,
|
417 |
-
system_prompt,
|
418 |
-
history,
|
419 |
-
chatbot,
|
420 |
-
token_count,
|
421 |
-
top_p,
|
422 |
-
temperature,
|
423 |
-
stream=False,
|
424 |
-
selected_model=MODELS[0],
|
425 |
-
):
|
426 |
-
logging.info("重试中……")
|
427 |
-
if len(history) == 0:
|
428 |
-
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
429 |
-
return
|
430 |
-
history.pop()
|
431 |
-
inputs = history.pop()["content"]
|
432 |
-
token_count.pop()
|
433 |
-
iter = predict(
|
434 |
-
openai_api_key,
|
435 |
-
system_prompt,
|
436 |
-
history,
|
437 |
-
inputs,
|
438 |
-
chatbot,
|
439 |
-
token_count,
|
440 |
-
top_p,
|
441 |
-
temperature,
|
442 |
-
stream=stream,
|
443 |
-
selected_model=selected_model,
|
444 |
-
)
|
445 |
-
logging.info("重试完毕")
|
446 |
-
for x in iter:
|
447 |
-
yield x
|
448 |
-
|
449 |
-
|
450 |
-
def reduce_token_size(
|
451 |
-
openai_api_key,
|
452 |
-
system_prompt,
|
453 |
-
history,
|
454 |
-
chatbot,
|
455 |
-
token_count,
|
456 |
-
top_p,
|
457 |
-
temperature,
|
458 |
-
stream=False,
|
459 |
-
selected_model=MODELS[0],
|
460 |
-
hidden=False,
|
461 |
-
):
|
462 |
-
logging.info("开始减少token数量……")
|
463 |
-
iter = predict(
|
464 |
-
openai_api_key,
|
465 |
-
system_prompt,
|
466 |
-
history,
|
467 |
-
summarize_prompt,
|
468 |
-
chatbot,
|
469 |
-
token_count,
|
470 |
-
top_p,
|
471 |
-
temperature,
|
472 |
-
stream=stream,
|
473 |
-
selected_model=selected_model,
|
474 |
-
should_check_token_count=False,
|
475 |
-
)
|
476 |
-
logging.info(f"chatbot: {chatbot}")
|
477 |
-
for chatbot, history, status_text, previous_token_count in iter:
|
478 |
-
history = history[-2:]
|
479 |
-
token_count = previous_token_count[-1:]
|
480 |
-
if hidden:
|
481 |
-
chatbot.pop()
|
482 |
-
yield chatbot, history, construct_token_message(
|
483 |
-
sum(token_count), stream=stream
|
484 |
-
), token_count
|
485 |
-
logging.info("减少token数量完毕")
|
486 |
-
|
487 |
-
|
488 |
def delete_last_conversation(chatbot, history, previous_token_count):
|
489 |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
|
490 |
logging.info("由于包含报错信息,只删除chatbot记录")
|
@@ -643,6 +256,7 @@ def reset_state():
|
|
643 |
def reset_textbox():
|
644 |
return gr.update(value="")
|
645 |
|
|
|
646 |
def reset_default():
|
647 |
global API_URL
|
648 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
@@ -650,6 +264,7 @@ def reset_default():
|
|
650 |
os.environ.pop("https_proxy", None)
|
651 |
return gr.update(value=API_URL), gr.update(value=""), "API URL 和代理已重置"
|
652 |
|
|
|
653 |
def change_api_url(url):
|
654 |
global API_URL
|
655 |
API_URL = url
|
@@ -657,22 +272,41 @@ def change_api_url(url):
|
|
657 |
logging.info(msg)
|
658 |
return msg
|
659 |
|
|
|
660 |
def change_proxy(proxy):
|
661 |
os.environ["HTTPS_PROXY"] = proxy
|
662 |
msg = f"代理更改为了{proxy}"
|
663 |
logging.info(msg)
|
664 |
return msg
|
665 |
|
|
|
666 |
def hide_middle_chars(s):
|
667 |
if len(s) <= 8:
|
668 |
return s
|
669 |
else:
|
670 |
head = s[:4]
|
671 |
tail = s[-4:]
|
672 |
-
hidden =
|
673 |
return head + hidden + tail
|
674 |
|
|
|
675 |
def submit_key(key):
|
676 |
msg = f"API密钥更改为了{hide_middle_chars(key)}"
|
677 |
logging.info(msg)
|
678 |
return key, msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
import tiktoken
|
19 |
from tqdm import tqdm
|
20 |
import colorama
|
21 |
+
import os
|
22 |
+
from llama_index import (
|
23 |
+
GPTSimpleVectorIndex,
|
24 |
+
GPTTreeIndex,
|
25 |
+
GPTKeywordTableIndex,
|
26 |
+
GPTListIndex,
|
27 |
+
)
|
28 |
+
from llama_index import SimpleDirectoryReader, download_loader
|
29 |
+
from llama_index import (
|
30 |
+
Document,
|
31 |
+
LLMPredictor,
|
32 |
+
PromptHelper,
|
33 |
+
QuestionAnswerPrompt,
|
34 |
+
RefinePrompt,
|
35 |
+
)
|
36 |
+
from langchain.llms import OpenAIChat, OpenAI
|
37 |
from duckduckgo_search import ddg
|
38 |
import datetime
|
39 |
+
import hashlib
|
40 |
|
41 |
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
|
42 |
|
|
|
54 |
TEMPLATES_DIR = "templates"
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def count_token(message):
|
58 |
encoding = tiktoken.get_encoding("cl100k_base")
|
59 |
input_str = f"role: {message['role']}, content: {message['content']}"
|
|
|
98 |
return f"Token 计数: {token}"
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def delete_last_conversation(chatbot, history, previous_token_count):
|
102 |
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
|
103 |
logging.info("由于包含报错信息,只删除chatbot记录")
|
|
|
256 |
def reset_textbox():
|
257 |
return gr.update(value="")
|
258 |
|
259 |
+
|
260 |
def reset_default():
|
261 |
global API_URL
|
262 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
|
|
264 |
os.environ.pop("https_proxy", None)
|
265 |
return gr.update(value=API_URL), gr.update(value=""), "API URL 和代理已重置"
|
266 |
|
267 |
+
|
268 |
def change_api_url(url):
|
269 |
global API_URL
|
270 |
API_URL = url
|
|
|
272 |
logging.info(msg)
|
273 |
return msg
|
274 |
|
275 |
+
|
276 |
def change_proxy(proxy):
|
277 |
os.environ["HTTPS_PROXY"] = proxy
|
278 |
msg = f"代理更改为了{proxy}"
|
279 |
logging.info(msg)
|
280 |
return msg
|
281 |
|
282 |
+
|
283 |
def hide_middle_chars(s):
|
284 |
if len(s) <= 8:
|
285 |
return s
|
286 |
else:
|
287 |
head = s[:4]
|
288 |
tail = s[-4:]
|
289 |
+
hidden = "*" * (len(s) - 8)
|
290 |
return head + hidden + tail
|
291 |
|
292 |
+
|
293 |
def submit_key(key):
|
294 |
msg = f"API密钥更改为了{hide_middle_chars(key)}"
|
295 |
logging.info(msg)
|
296 |
return key, msg
|
297 |
+
|
298 |
+
|
299 |
+
def sha1sum(filename):
|
300 |
+
sha1 = hashlib.sha1()
|
301 |
+
with open(filename, "rb") as f:
|
302 |
+
while True:
|
303 |
+
data = f.read(65536)
|
304 |
+
if not data:
|
305 |
+
break
|
306 |
+
sha1.update(data)
|
307 |
+
return sha1.hexdigest()
|
308 |
+
|
309 |
+
|
310 |
+
def replace_today(prompt):
|
311 |
+
today = datetime.datetime.today().strftime("%Y-%m-%d")
|
312 |
+
return prompt.replace("{current_date}", today)
|