|
import streamlit as st |
|
import vec2text |
|
import torch |
|
from umap import UMAP |
|
import plotly.express as px |
|
import numpy as np |
|
from streamlit_plotly_events import plotly_events |
|
from resources import reduce_embeddings |
|
import utils |
|
import pandas as pd |
|
from scipy.spatial import distance |
|
|
|
|
|
def diffs(embeddings: np.ndarray, corrector): |
|
st.text(f"Embedding shape: {embeddings.shape}") |
|
st.html('<a href="https://www.flaticon.com/free-icons/array" title="array icons">Array icons created by Voysla - Flaticon</a>') |
|
|
|
def plot(df: pd.DataFrame, embeddings: np.ndarray, vectors_2d, reducer, corrector): |
|
|
|
|
|
|
|
fig = px.scatter( |
|
x=vectors_2d[:, 0], |
|
y=vectors_2d[:, 1], |
|
opacity=0.6, |
|
hover_data={"Title": df["title"]}, |
|
labels={'x': 'UMAP Dimension 1', 'y': 'UMAP Dimension 2'}, |
|
title="UMAP Scatter Plot of Reddit Titles", |
|
color_discrete_sequence=["#ff504c"] |
|
) |
|
|
|
|
|
fig.update_layout( |
|
template=None, |
|
plot_bgcolor="rgba(0, 0, 0, 0)", |
|
paper_bgcolor="rgba(0, 0, 0, 0)" |
|
) |
|
|
|
x, y = 0.0, 0.0 |
|
vec = np.array([x, y]).astype("float32") |
|
inferred_embedding = None |
|
|
|
col1, col2 = st.columns([0.6, 0.4]) |
|
|
|
with col1: |
|
|
|
selected_points = plotly_events(fig, click_event=True, hover_event=False, |
|
) |
|
with st.form(key="form1_main"): |
|
if selected_points: |
|
clicked_point = selected_points[0] |
|
x = clicked_point['x'] |
|
y = clicked_point['y'] |
|
|
|
x = st.number_input("X Coordinate", value=x, format="%.10f") |
|
y = st.number_input("Y Coordinate", value=y, format="%.10f") |
|
vec = np.array([x, y]).astype("float32") |
|
|
|
|
|
submit_button = st.form_submit_button("Submit") |
|
|
|
if selected_points or submit_button: |
|
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]])) |
|
inferred_embedding = inferred_embedding.astype("float32") |
|
|
|
output = vec2text.invert_embeddings( |
|
embeddings=torch.tensor(inferred_embedding).cuda(), |
|
corrector=corrector, |
|
num_steps=20, |
|
) |
|
|
|
st.text(str(output)) |
|
st.text(str(inferred_embedding)) |
|
else: |
|
st.text("Click on a point in the scatterplot to see its coordinates.") |
|
|
|
with col2: |
|
closest_sentence_index = utils.find_exact_match(vectors_2d, vec, decimals=3) |
|
selected_sentence = df.title.iloc[closest_sentence_index] if closest_sentence_index > -1 else None |
|
selected_sentence_embedding = embeddings[closest_sentence_index] if closest_sentence_index > -1 else None |
|
|
|
st.markdown( |
|
f"### Selected text:\n```console\n{selected_sentence}\n```" |
|
) |
|
|
|
if inferred_embedding is not None and (closest_sentence_index != -1): |
|
couple = selected_sentence_embedding.squeeze(), inferred_embedding.squeeze() |
|
st.markdown(f"### Inferred embedding distance:") |
|
st.number_input("Euclidean", value=distance.euclidean( |
|
*couple |
|
), disabled=True) |
|
st.number_input("Cosine", value=distance.cosine(*couple), disabled=True) |
|
|