import streamlit as st import torch import numpy as np import views from resources import load_corrector, load_data, load_model_and_tokenizer use_cpu = not torch.cuda.is_available() device = "cpu" if use_cpu else "cuda" df = load_data() encoder, tokenizer = load_model_and_tokenizer() corrector = load_corrector() # Caching the precomputed embeddings since they are stored locally and large @st.cache_data def load_embeddings(): return np.load("syac-title-embeddings.npy") embeddings = load_embeddings() tab1, tab2 = st.tabs(["plot", "diffs"]) with tab1: views.plot() with tab2: views.diffs()