Updated app at sön 19 nov 2023 21:55:53 CET
Browse files- app.py +45 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
import hopsworks
|
5 |
+
import joblib
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
# Placeholder for loading your trained models
|
10 |
+
# Load your models here, e.g., model_red = joblib.load('path_to_red_wine_model')
|
11 |
+
# model_white = joblib.load('path_to_white_wine_model')
|
12 |
+
|
13 |
+
def wine_quality(wine_type, fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides,
|
14 |
+
free_sulfur_dioxide, total_sulfur_dioxide, density, ph, sulphates, alcohol):
|
15 |
+
print("Calling wine_quality() function")
|
16 |
+
df = pd.DataFrame([[fixed_acidity, volatile_acidity, citric_acid, residual_sugar, chlorides,
|
17 |
+
free_sulfur_dioxide, total_sulfur_dioxide, density, ph, sulphates, alcohol]],
|
18 |
+
columns=['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar',
|
19 |
+
'chlorides', 'free_sulfur_dioxide', 'total_sulfur_dioxide', 'density',
|
20 |
+
'ph', 'sulphates', 'alcohol'])
|
21 |
+
print("Predicting...")
|
22 |
+
print(df)
|
23 |
+
|
24 |
+
# Use the appropriate model based on the wine type
|
25 |
+
if wine_type == 'Red':
|
26 |
+
# Placeholder for prediction with the red wine model
|
27 |
+
# quality = model_red.predict(df)[0]
|
28 |
+
quality = "Red Wine Quality Prediction Placeholder"
|
29 |
+
else:
|
30 |
+
# Placeholder for prediction with the white wine model
|
31 |
+
# quality = model_white.predict(df)[0]
|
32 |
+
quality = "White Wine Quality Prediction Placeholder"
|
33 |
+
|
34 |
+
return quality
|
35 |
+
|
36 |
+
|
37 |
+
# Define the Gradio interface
|
38 |
+
iface = gr.Interface(fn=wine_quality,
|
39 |
+
inputs=["dropdown", "number", "number", "number", "number", "number",
|
40 |
+
"number", "number", "number", "number", "number", "number"],
|
41 |
+
outputs="text",
|
42 |
+
examples=[['Red', 7.4, 0.70, 0.00, 1.9, 0.076, 11.0, 34.0, 0.9978, 3.51, 0.56, 9.4],
|
43 |
+
['White', 7.0, 0.27, 0.36, 20.7, 0.045, 45.0, 170.0, 1.0010, 3.00, 0.45, 8.8]])
|
44 |
+
|
45 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
hopsworks
|
2 |
+
joblib
|
3 |
+
scikit-learn==1.1.1
|