matdmiller commited on
Commit
0a2958b
·
1 Parent(s): e419f45

added gradio and openai api threading

Browse files
Files changed (3) hide show
  1. app.ipynb +101 -4
  2. app.py +77 -10
  3. requirements.txt +1 -0
app.ipynb CHANGED
@@ -67,7 +67,16 @@
67
  "import gradio as gr\n",
68
  "import openai\n",
69
  "from pydub import AudioSegment\n",
70
- "import io"
 
 
 
 
 
 
 
 
 
71
  ]
72
  },
73
  {
@@ -96,6 +105,29 @@
96
  "tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']"
97
  ]
98
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  {
100
  "cell_type": "code",
101
  "execution_count": null,
@@ -175,6 +207,67 @@
175
  " return combined_mp3.getvalue()"
176
  ]
177
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  {
179
  "cell_type": "code",
180
  "execution_count": null,
@@ -264,7 +357,8 @@
264
  "#| export\n",
265
  "with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:\n",
266
  " gr.Markdown(\"# OpenAI TTS\")\n",
267
- " gr.Markdown(\"Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.\")\n",
 
268
  " with gr.Row():\n",
269
  " input_text = gr.Textbox(max_lines=100, label=\"Enter text here\")\n",
270
  " with gr.Row():\n",
@@ -277,7 +371,7 @@
277
  " input_text.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
278
  " tts_model_dropdown.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
279
  " go_btn = gr.Button(\"Go\")\n",
280
- " go_btn.click(fn=create_speech, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])\n",
281
  " clear_btn = gr.Button('Clear')\n",
282
  " clear_btn.click(fn=lambda: '', outputs=input_text)\n",
283
  " "
@@ -292,7 +386,8 @@
292
  "source": [
293
  "#| export\n",
294
  "launch_kwargs = {'auth':('username',GRADIO_PASSWORD),\n",
295
- " 'auth_message':'Please log in to Mat\\'s TTS App with username: username and password.'}"
 
296
  ]
297
  },
298
  {
@@ -304,6 +399,7 @@
304
  "source": [
305
  "#| hide\n",
306
  "#Notebook launch\n",
 
307
  "app.launch(**launch_kwargs)"
308
  ]
309
  },
@@ -317,6 +413,7 @@
317
  "#| export\n",
318
  "#.py launch\n",
319
  "if __name__ == \"__main__\":\n",
 
320
  " app.launch(**launch_kwargs)"
321
  ]
322
  },
 
67
  "import gradio as gr\n",
68
  "import openai\n",
69
  "from pydub import AudioSegment\n",
70
+ "import io\n",
71
+ "from datetime import datetime\n",
72
+ "from math import ceil\n",
73
+ "from multiprocessing.pool import ThreadPool\n",
74
+ "from functools import partial\n",
75
+ "from tenacity import (\n",
76
+ " retry,\n",
77
+ " stop_after_attempt,\n",
78
+ " wait_random_exponential,\n",
79
+ ") # for exponential backoff"
80
  ]
81
  },
82
  {
 
105
  "tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']"
106
  ]
107
  },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "id": "8eb7e7d5-7121-4762-b8d1-e5a9539e2b36",
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "#| export\n",
116
+ "clean_text_prompt = \"\"\"Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early.\"\"\"\n"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": null,
122
+ "id": "52d373be-3a79-412e-8ca2-92bb443fa52d",
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "#| export\n",
127
+ "#Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.\n",
128
+ "OPENAI_CLIENT_TTS_THREADS = 10 "
129
+ ]
130
+ },
131
  {
132
  "cell_type": "code",
133
  "execution_count": null,
 
207
  " return combined_mp3.getvalue()"
208
  ]
209
  },
210
+ {
211
+ "cell_type": "code",
212
+ "execution_count": null,
213
+ "id": "4691703d-ed0f-4481-8006-b2906289b780",
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "#| export\n",
218
+ "def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):\n",
219
+ " client = openai.OpenAI()\n",
220
+ " \n",
221
+ " @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))\n",
222
+ " def _create_speech_with_backoff(**kwargs):\n",
223
+ " return client.audio.speech.create(**kwargs)\n",
224
+ " \n",
225
+ " response = _create_speech_with_backoff(input=input, model=model, voice=voice, speed=speed, **kwargs)\n",
226
+ " client.close()\n",
227
+ " return chunk_idx, response.content"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "code",
232
+ "execution_count": null,
233
+ "id": "e34bb4aa-698c-4452-8cda-bd02b38f7122",
234
+ "metadata": {},
235
+ "outputs": [],
236
+ "source": [
237
+ "#| export\n",
238
+ "def create_speech2(input_text, model='tts-1', voice='alloy', progress=gr.Progress(), **kwargs):\n",
239
+ " start = datetime.now()\n",
240
+ " # Split the input text into chunks\n",
241
+ " chunks = split_text(input_text)\n",
242
+ "\n",
243
+ " # Initialize the progress bar\n",
244
+ " progress(0, desc=f\"Started processing {len(chunks)} text chunks using {OPENAI_CLIENT_TTS_THREADS} threads. ETA is ~{ceil(len(chunks)/OPENAI_CLIENT_TTS_THREADS)} min.\")\n",
245
+ "\n",
246
+ " # Initialize a list to hold the audio data of each chunk\n",
247
+ " audio_data = []\n",
248
+ "\n",
249
+ " # Process each chunk\n",
250
+ " with ThreadPool(processes=OPENAI_CLIENT_TTS_THREADS) as pool:\n",
251
+ " results = pool.starmap(\n",
252
+ " partial(create_speech_openai, model=model, voice=voice, **kwargs), \n",
253
+ " zip(range(len(chunks)),chunks)\n",
254
+ " )\n",
255
+ " audio_data = [o[1] for o in sorted(results)]\n",
256
+ "\n",
257
+ " # Progress\n",
258
+ " progress(.9, desc=f\"Merging audio chunks... {(datetime.now()-start).seconds} seconds to process.\")\n",
259
+ " \n",
260
+ " # Concatenate the audio data from all chunks\n",
261
+ " combined_audio = concatenate_mp3(audio_data)\n",
262
+ "\n",
263
+ " # Final update to the progress bar\n",
264
+ " progress(1, desc=f\"Processing completed... {(datetime.now()-start).seconds} seconds to process.\")\n",
265
+ " \n",
266
+ " print(f\"Processing time: {(datetime.now()-start).seconds} seconds.\")\n",
267
+ "\n",
268
+ " return combined_audio\n"
269
+ ]
270
+ },
271
  {
272
  "cell_type": "code",
273
  "execution_count": null,
 
357
  "#| export\n",
358
  "with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:\n",
359
  " gr.Markdown(\"# OpenAI TTS\")\n",
360
+ " gr.Markdown(\"\"\"Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters. \n",
361
+ "For requests longer than 4,000 chars they will be broken into chunks of 4,000 or less chars automatically.\"\"\")\n",
362
  " with gr.Row():\n",
363
  " input_text = gr.Textbox(max_lines=100, label=\"Enter text here\")\n",
364
  " with gr.Row():\n",
 
371
  " input_text.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
372
  " tts_model_dropdown.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
373
  " go_btn = gr.Button(\"Go\")\n",
374
+ " go_btn.click(fn=create_speech2, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])\n",
375
  " clear_btn = gr.Button('Clear')\n",
376
  " clear_btn.click(fn=lambda: '', outputs=input_text)\n",
377
  " "
 
386
  "source": [
387
  "#| export\n",
388
  "launch_kwargs = {'auth':('username',GRADIO_PASSWORD),\n",
389
+ " 'auth_message':'Please log in to Mat\\'s TTS App with username: username and password.'}\n",
390
+ "queue_kwargs = {'default_concurrency_limit':10}"
391
  ]
392
  },
393
  {
 
399
  "source": [
400
  "#| hide\n",
401
  "#Notebook launch\n",
402
+ "app.queue(**queue_kwargs)\n",
403
  "app.launch(**launch_kwargs)"
404
  ]
405
  },
 
413
  "#| export\n",
414
  "#.py launch\n",
415
  "if __name__ == \"__main__\":\n",
416
+ " app.queue(**queue_kwargs)\n",
417
  " app.launch(**launch_kwargs)"
418
  ]
419
  },
app.py CHANGED
@@ -1,7 +1,8 @@
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
- __all__ = ['secret_import_failed', 'tts_voices', 'launch_kwargs', 'split_text', 'concatenate_mp3', 'create_speech',
 
5
  'get_input_text_len', 'get_generation_cost']
6
 
7
  # %% app.ipynb 1
@@ -33,6 +34,15 @@ import gradio as gr
33
  import openai
34
  from pydub import AudioSegment
35
  import io
 
 
 
 
 
 
 
 
 
36
 
37
  # %% app.ipynb 4
38
  try:
@@ -45,6 +55,14 @@ except:
45
  tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
46
 
47
  # %% app.ipynb 6
 
 
 
 
 
 
 
 
48
  def split_text(input_text, max_length=4000, lookback=1000):
49
  # If the text is shorter than the max_length, return it as is
50
  if len(input_text) <= max_length:
@@ -77,7 +95,7 @@ def split_text(input_text, max_length=4000, lookback=1000):
77
 
78
  return chunks
79
 
80
- # %% app.ipynb 7
81
  def concatenate_mp3(mp3_files):
82
  if len(mp3_files) == 1:
83
  return mp3_files[0]
@@ -107,7 +125,53 @@ def concatenate_mp3(mp3_files):
107
 
108
  return combined_mp3.getvalue()
109
 
110
- # %% app.ipynb 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):
112
  # Split the input text into chunks
113
  chunks = split_text(input_text)
@@ -150,11 +214,11 @@ def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress
150
  return combined_audio
151
 
152
 
153
- # %% app.ipynb 9
154
  def get_input_text_len(input_text):
155
  return len(input_text)
156
 
157
- # %% app.ipynb 10
158
  def get_generation_cost(input_text, tts_model_dropdown):
159
  text_len = len(input_text)
160
  if tts_model_dropdown.endswith('-hd'):
@@ -163,10 +227,11 @@ def get_generation_cost(input_text, tts_model_dropdown):
163
  cost = text_len/1000 * 0.015
164
  return "${:,.3f}".format(cost)
165
 
166
- # %% app.ipynb 11
167
  with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
168
  gr.Markdown("# OpenAI TTS")
169
- gr.Markdown("Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.")
 
170
  with gr.Row():
171
  input_text = gr.Textbox(max_lines=100, label="Enter text here")
172
  with gr.Row():
@@ -179,16 +244,18 @@ with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
179
  input_text.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)
180
  tts_model_dropdown.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)
181
  go_btn = gr.Button("Go")
182
- go_btn.click(fn=create_speech, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])
183
  clear_btn = gr.Button('Clear')
184
  clear_btn.click(fn=lambda: '', outputs=input_text)
185
 
186
 
187
- # %% app.ipynb 12
188
  launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
189
  'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
 
190
 
191
- # %% app.ipynb 14
192
  #.py launch
193
  if __name__ == "__main__":
 
194
  app.launch(**launch_kwargs)
 
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
+ __all__ = ['secret_import_failed', 'tts_voices', 'clean_text_prompt', 'OPENAI_CLIENT_TTS_THREADS', 'launch_kwargs',
5
+ 'queue_kwargs', 'split_text', 'concatenate_mp3', 'create_speech_openai', 'create_speech2', 'create_speech',
6
  'get_input_text_len', 'get_generation_cost']
7
 
8
  # %% app.ipynb 1
 
34
  import openai
35
  from pydub import AudioSegment
36
  import io
37
+ from datetime import datetime
38
+ from math import ceil
39
+ from multiprocessing.pool import ThreadPool
40
+ from functools import partial
41
+ from tenacity import (
42
+ retry,
43
+ stop_after_attempt,
44
+ wait_random_exponential,
45
+ ) # for exponential backoff
46
 
47
  # %% app.ipynb 4
48
  try:
 
55
  tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
56
 
57
  # %% app.ipynb 6
58
+ clean_text_prompt = """Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early."""
59
+
60
+
61
+ # %% app.ipynb 7
62
+ #Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.
63
+ OPENAI_CLIENT_TTS_THREADS = 10
64
+
65
+ # %% app.ipynb 8
66
  def split_text(input_text, max_length=4000, lookback=1000):
67
  # If the text is shorter than the max_length, return it as is
68
  if len(input_text) <= max_length:
 
95
 
96
  return chunks
97
 
98
+ # %% app.ipynb 9
99
  def concatenate_mp3(mp3_files):
100
  if len(mp3_files) == 1:
101
  return mp3_files[0]
 
125
 
126
  return combined_mp3.getvalue()
127
 
128
+ # %% app.ipynb 10
129
+ def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):
130
+ client = openai.OpenAI()
131
+
132
+ @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))
133
+ def _create_speech_with_backoff(**kwargs):
134
+ return client.audio.speech.create(**kwargs)
135
+
136
+ response = _create_speech_with_backoff(input=input, model=model, voice=voice, speed=speed, **kwargs)
137
+ client.close()
138
+ return chunk_idx, response.content
139
+
140
+ # %% app.ipynb 11
141
+ def create_speech2(input_text, model='tts-1', voice='alloy', progress=gr.Progress(), **kwargs):
142
+ start = datetime.now()
143
+ # Split the input text into chunks
144
+ chunks = split_text(input_text)
145
+
146
+ # Initialize the progress bar
147
+ progress(0, desc=f"Started processing {len(chunks)} text chunks using {OPENAI_CLIENT_TTS_THREADS} threads. ETA is ~{ceil(len(chunks)/OPENAI_CLIENT_TTS_THREADS)} min.")
148
+
149
+ # Initialize a list to hold the audio data of each chunk
150
+ audio_data = []
151
+
152
+ # Process each chunk
153
+ with ThreadPool(processes=OPENAI_CLIENT_TTS_THREADS) as pool:
154
+ results = pool.starmap(
155
+ partial(create_speech_openai, model=model, voice=voice, **kwargs),
156
+ zip(range(len(chunks)),chunks)
157
+ )
158
+ audio_data = [o[1] for o in sorted(results)]
159
+
160
+ # Progress
161
+ progress(.9, desc=f"Merging audio chunks... {(datetime.now()-start).seconds} seconds to process.")
162
+
163
+ # Concatenate the audio data from all chunks
164
+ combined_audio = concatenate_mp3(audio_data)
165
+
166
+ # Final update to the progress bar
167
+ progress(1, desc=f"Processing completed... {(datetime.now()-start).seconds} seconds to process.")
168
+
169
+ print(f"Processing time: {(datetime.now()-start).seconds} seconds.")
170
+
171
+ return combined_audio
172
+
173
+
174
+ # %% app.ipynb 12
175
  def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):
176
  # Split the input text into chunks
177
  chunks = split_text(input_text)
 
214
  return combined_audio
215
 
216
 
217
+ # %% app.ipynb 13
218
  def get_input_text_len(input_text):
219
  return len(input_text)
220
 
221
+ # %% app.ipynb 14
222
  def get_generation_cost(input_text, tts_model_dropdown):
223
  text_len = len(input_text)
224
  if tts_model_dropdown.endswith('-hd'):
 
227
  cost = text_len/1000 * 0.015
228
  return "${:,.3f}".format(cost)
229
 
230
+ # %% app.ipynb 15
231
  with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
232
  gr.Markdown("# OpenAI TTS")
233
+ gr.Markdown("""Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.
234
+ For requests longer than 4,000 chars they will be broken into chunks of 4,000 or less chars automatically.""")
235
  with gr.Row():
236
  input_text = gr.Textbox(max_lines=100, label="Enter text here")
237
  with gr.Row():
 
244
  input_text.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)
245
  tts_model_dropdown.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)
246
  go_btn = gr.Button("Go")
247
+ go_btn.click(fn=create_speech2, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])
248
  clear_btn = gr.Button('Clear')
249
  clear_btn.click(fn=lambda: '', outputs=input_text)
250
 
251
 
252
+ # %% app.ipynb 16
253
  launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
254
  'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
255
+ queue_kwargs = {'default_concurrency_limit':10}
256
 
257
+ # %% app.ipynb 18
258
  #.py launch
259
  if __name__ == "__main__":
260
+ app.queue(**queue_kwargs)
261
  app.launch(**launch_kwargs)
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  openai==1.10.0
2
  gradio==4.16.0
3
  pydub==0.25.1
 
 
1
  openai==1.10.0
2
  gradio==4.16.0
3
  pydub==0.25.1
4
+ tenacity==8.2.3