matdmiller commited on
Commit
8dde6b0
·
1 Parent(s): 78370f2

fix audio file safari

Browse files
Files changed (2) hide show
  1. app.ipynb +51 -56
  2. app.py +38 -25
app.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 15,
6
  "id": "3bedf0dc-8d8e-4ede-a9e6-b8f35136aa00",
7
  "metadata": {},
8
  "outputs": [],
@@ -12,19 +12,10 @@
12
  },
13
  {
14
  "cell_type": "code",
15
- "execution_count": 16,
16
  "id": "667802a7-0f36-4136-a381-e66210b20462",
17
  "metadata": {},
18
- "outputs": [
19
- {
20
- "name": "stdout",
21
- "output_type": "stream",
22
- "text": [
23
- "OPENAI_API_KEY environment variable was found.\n",
24
- "GRADIO_PASSWORD environment variable was found.\n"
25
- ]
26
- }
27
- ],
28
  "source": [
29
  "#| export\n",
30
  "#tts_openai_secrets.py content:\n",
@@ -53,7 +44,7 @@
53
  },
54
  {
55
  "cell_type": "code",
56
- "execution_count": 17,
57
  "id": "4d9863fc-969e-409b-8e20-b9c3cd2cc3e7",
58
  "metadata": {},
59
  "outputs": [],
@@ -67,7 +58,7 @@
67
  },
68
  {
69
  "cell_type": "code",
70
- "execution_count": 18,
71
  "id": "4f486d3a",
72
  "metadata": {},
73
  "outputs": [],
@@ -81,6 +72,8 @@
81
  "from math import ceil\n",
82
  "from multiprocessing.pool import ThreadPool\n",
83
  "from functools import partial\n",
 
 
84
  "from tenacity import (\n",
85
  " retry,\n",
86
  " stop_after_attempt,\n",
@@ -90,18 +83,23 @@
90
  },
91
  {
92
  "cell_type": "code",
93
- "execution_count": 19,
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  "id": "0ffd33b4-cb9b-4c01-bff6-4c3102854ab6",
95
  "metadata": {},
96
- "outputs": [
97
- {
98
- "name": "stdout",
99
- "output_type": "stream",
100
- "text": [
101
- "successfully got tts model list: ['tts-1-hd-1106', 'tts-1-hd', 'tts-1', 'tts-1-1106']\n"
102
- ]
103
- }
104
- ],
105
  "source": [
106
  "#| export\n",
107
  "try:\n",
@@ -113,7 +111,7 @@
113
  },
114
  {
115
  "cell_type": "code",
116
- "execution_count": 20,
117
  "id": "2ddbca5d-4b04-43ab-afaf-430802980e78",
118
  "metadata": {},
119
  "outputs": [],
@@ -124,7 +122,7 @@
124
  },
125
  {
126
  "cell_type": "code",
127
- "execution_count": 21,
128
  "id": "8eb7e7d5-7121-4762-b8d1-e5a9539e2b36",
129
  "metadata": {},
130
  "outputs": [],
@@ -135,7 +133,7 @@
135
  },
136
  {
137
  "cell_type": "code",
138
- "execution_count": 22,
139
  "id": "52d373be-3a79-412e-8ca2-92bb443fa52d",
140
  "metadata": {},
141
  "outputs": [],
@@ -147,7 +145,7 @@
147
  },
148
  {
149
  "cell_type": "code",
150
- "execution_count": 23,
151
  "id": "24674094-4d47-4e48-b591-55faabcff8df",
152
  "metadata": {},
153
  "outputs": [],
@@ -188,7 +186,7 @@
188
  },
189
  {
190
  "cell_type": "code",
191
- "execution_count": 24,
192
  "id": "e6224ae5-3792-42b2-8392-3abd42998a50",
193
  "metadata": {},
194
  "outputs": [],
@@ -213,20 +211,26 @@
213
  " # Concatenate this segment to the combined segment\n",
214
  " combined += audio_segment\n",
215
  "\n",
216
- " # Export the combined segment to a new mp3 file\n",
217
- " # Use a BytesIO object to handle this in memory\n",
218
- " combined_mp3 = io.BytesIO()\n",
219
- " combined.export(combined_mp3, format=\"mp3\")\n",
 
 
 
 
220
  "\n",
221
- " # Seek to the start so it's ready for reading\n",
222
- " combined_mp3.seek(0)\n",
223
  "\n",
224
- " return combined_mp3.getvalue()"
 
 
 
225
  ]
226
  },
227
  {
228
  "cell_type": "code",
229
- "execution_count": 25,
230
  "id": "4691703d-ed0f-4481-8006-b2906289b780",
231
  "metadata": {},
232
  "outputs": [],
@@ -246,7 +250,7 @@
246
  },
247
  {
248
  "cell_type": "code",
249
- "execution_count": 26,
250
  "id": "e34bb4aa-698c-4452-8cda-bd02b38f7122",
251
  "metadata": {},
252
  "outputs": [],
@@ -289,14 +293,14 @@
289
  },
290
  {
291
  "cell_type": "code",
292
- "execution_count": 33,
293
  "id": "5388e860",
294
  "metadata": {},
295
  "outputs": [],
296
  "source": [
297
  "#| export\n",
298
  "def create_speech(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress()):\n",
299
- " assert authorized() is not None,'Unauthorized M'\n",
300
  " # Split the input text into chunks\n",
301
  " chunks = split_text(input_text)\n",
302
  "\n",
@@ -340,7 +344,7 @@
340
  },
341
  {
342
  "cell_type": "code",
343
- "execution_count": 28,
344
  "id": "236dd8d3-4364-4731-af93-7dcdec6f18a1",
345
  "metadata": {},
346
  "outputs": [],
@@ -352,7 +356,7 @@
352
  },
353
  {
354
  "cell_type": "code",
355
- "execution_count": 29,
356
  "id": "0523a158-ee07-48b3-9350-ee39d4deee7f",
357
  "metadata": {},
358
  "outputs": [],
@@ -369,7 +373,7 @@
369
  },
370
  {
371
  "cell_type": "code",
372
- "execution_count": 30,
373
  "id": "b5b29507-92bc-453d-bcc5-6402c17e9a0d",
374
  "metadata": {},
375
  "outputs": [],
@@ -386,19 +390,10 @@
386
  },
387
  {
388
  "cell_type": "code",
389
- "execution_count": 31,
390
  "id": "e4fb3159-579b-4271-bc96-4cd1e2816eca",
391
  "metadata": {},
392
- "outputs": [
393
- {
394
- "name": "stderr",
395
- "output_type": "stream",
396
- "text": [
397
- "/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/oauth.py:138: UserWarning: Gradio does not support OAuth features outside of a Space environment. To help you debug your app locally, the login and logout buttons are mocked with your profile. To make it work, your machine must be logged in to Huggingface.\n",
398
- " warnings.warn(\n"
399
- ]
400
- }
401
- ],
402
  "source": [
403
  "#| export\n",
404
  "with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:\n",
@@ -429,7 +424,7 @@
429
  },
430
  {
431
  "cell_type": "code",
432
- "execution_count": 32,
433
  "id": "a00648a1-891b-470b-9959-f5d502055713",
434
  "metadata": {},
435
  "outputs": [],
@@ -492,7 +487,7 @@
492
  },
493
  {
494
  "cell_type": "code",
495
- "execution_count": 39,
496
  "id": "0420310d-930b-4904-8bd4-3458ad8bdbd3",
497
  "metadata": {},
498
  "outputs": [],
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": null,
6
  "id": "3bedf0dc-8d8e-4ede-a9e6-b8f35136aa00",
7
  "metadata": {},
8
  "outputs": [],
 
12
  },
13
  {
14
  "cell_type": "code",
15
+ "execution_count": null,
16
  "id": "667802a7-0f36-4136-a381-e66210b20462",
17
  "metadata": {},
18
+ "outputs": [],
 
 
 
 
 
 
 
 
 
19
  "source": [
20
  "#| export\n",
21
  "#tts_openai_secrets.py content:\n",
 
44
  },
45
  {
46
  "cell_type": "code",
47
+ "execution_count": null,
48
  "id": "4d9863fc-969e-409b-8e20-b9c3cd2cc3e7",
49
  "metadata": {},
50
  "outputs": [],
 
58
  },
59
  {
60
  "cell_type": "code",
61
+ "execution_count": null,
62
  "id": "4f486d3a",
63
  "metadata": {},
64
  "outputs": [],
 
72
  "from math import ceil\n",
73
  "from multiprocessing.pool import ThreadPool\n",
74
  "from functools import partial\n",
75
+ "from pathlib import Path\n",
76
+ "import uuid\n",
77
  "from tenacity import (\n",
78
  " retry,\n",
79
  " stop_after_attempt,\n",
 
83
  },
84
  {
85
  "cell_type": "code",
86
+ "execution_count": null,
87
+ "id": "ecb7f207-0fc2-4d19-a313-356c05776832",
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "#| export\n",
92
+ "TEMP = os.environ['TMPDIR']\n",
93
+ "TEMP_DIR = Path(TEMP)\n",
94
+ "print('TEMP Dir:', TEMP_DIR)"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
  "id": "0ffd33b4-cb9b-4c01-bff6-4c3102854ab6",
101
  "metadata": {},
102
+ "outputs": [],
 
 
 
 
 
 
 
 
103
  "source": [
104
  "#| export\n",
105
  "try:\n",
 
111
  },
112
  {
113
  "cell_type": "code",
114
+ "execution_count": null,
115
  "id": "2ddbca5d-4b04-43ab-afaf-430802980e78",
116
  "metadata": {},
117
  "outputs": [],
 
122
  },
123
  {
124
  "cell_type": "code",
125
+ "execution_count": null,
126
  "id": "8eb7e7d5-7121-4762-b8d1-e5a9539e2b36",
127
  "metadata": {},
128
  "outputs": [],
 
133
  },
134
  {
135
  "cell_type": "code",
136
+ "execution_count": null,
137
  "id": "52d373be-3a79-412e-8ca2-92bb443fa52d",
138
  "metadata": {},
139
  "outputs": [],
 
145
  },
146
  {
147
  "cell_type": "code",
148
+ "execution_count": null,
149
  "id": "24674094-4d47-4e48-b591-55faabcff8df",
150
  "metadata": {},
151
  "outputs": [],
 
186
  },
187
  {
188
  "cell_type": "code",
189
+ "execution_count": null,
190
  "id": "e6224ae5-3792-42b2-8392-3abd42998a50",
191
  "metadata": {},
192
  "outputs": [],
 
211
  " # Concatenate this segment to the combined segment\n",
212
  " combined += audio_segment\n",
213
  "\n",
214
+ " #### Return Bytes Method\n",
215
+ " # # Export the combined segment to a new mp3 file\n",
216
+ " # # Use a BytesIO object to handle this in memory\n",
217
+ " # combined_mp3 = io.BytesIO()\n",
218
+ " # combined.export(combined_mp3, format=\"mp3\")\n",
219
+ "\n",
220
+ " # # Seek to the start so it's ready for reading\n",
221
+ " # combined_mp3.seek(0)\n",
222
  "\n",
223
+ " # return combined_mp3.getvalue()\n",
 
224
  "\n",
225
+ " #### Return Filepath Method\n",
226
+ " filepath = TEMP_DIR/(str(uuid.uuid4())+'.mp3')\n",
227
+ " combined.export(filepath, format=\"mp3\")\n",
228
+ " return str(filepath)"
229
  ]
230
  },
231
  {
232
  "cell_type": "code",
233
+ "execution_count": null,
234
  "id": "4691703d-ed0f-4481-8006-b2906289b780",
235
  "metadata": {},
236
  "outputs": [],
 
250
  },
251
  {
252
  "cell_type": "code",
253
+ "execution_count": null,
254
  "id": "e34bb4aa-698c-4452-8cda-bd02b38f7122",
255
  "metadata": {},
256
  "outputs": [],
 
293
  },
294
  {
295
  "cell_type": "code",
296
+ "execution_count": null,
297
  "id": "5388e860",
298
  "metadata": {},
299
  "outputs": [],
300
  "source": [
301
  "#| export\n",
302
  "def create_speech(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress()):\n",
303
+ " assert authorized(profile) is not None,'Unauthorized M'\n",
304
  " # Split the input text into chunks\n",
305
  " chunks = split_text(input_text)\n",
306
  "\n",
 
344
  },
345
  {
346
  "cell_type": "code",
347
+ "execution_count": null,
348
  "id": "236dd8d3-4364-4731-af93-7dcdec6f18a1",
349
  "metadata": {},
350
  "outputs": [],
 
356
  },
357
  {
358
  "cell_type": "code",
359
+ "execution_count": null,
360
  "id": "0523a158-ee07-48b3-9350-ee39d4deee7f",
361
  "metadata": {},
362
  "outputs": [],
 
373
  },
374
  {
375
  "cell_type": "code",
376
+ "execution_count": null,
377
  "id": "b5b29507-92bc-453d-bcc5-6402c17e9a0d",
378
  "metadata": {},
379
  "outputs": [],
 
390
  },
391
  {
392
  "cell_type": "code",
393
+ "execution_count": null,
394
  "id": "e4fb3159-579b-4271-bc96-4cd1e2816eca",
395
  "metadata": {},
396
+ "outputs": [],
 
 
 
 
 
 
 
 
 
397
  "source": [
398
  "#| export\n",
399
  "with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:\n",
 
424
  },
425
  {
426
  "cell_type": "code",
427
+ "execution_count": null,
428
  "id": "a00648a1-891b-470b-9959-f5d502055713",
429
  "metadata": {},
430
  "outputs": [],
 
487
  },
488
  {
489
  "cell_type": "code",
490
+ "execution_count": 53,
491
  "id": "0420310d-930b-4904-8bd4-3458ad8bdbd3",
492
  "metadata": {},
493
  "outputs": [],
app.py CHANGED
@@ -1,9 +1,9 @@
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
- __all__ = ['secret_import_failed', 'tts_voices', 'clean_text_prompt', 'OPENAI_CLIENT_TTS_THREADS', 'launch_kwargs',
5
- 'queue_kwargs', 'split_text', 'concatenate_mp3', 'create_speech_openai', 'create_speech2', 'create_speech',
6
- 'get_input_text_len', 'get_generation_cost', 'authorized']
7
 
8
  # %% app.ipynb 1
9
  #tts_openai_secrets.py content:
@@ -38,6 +38,8 @@ from datetime import datetime
38
  from math import ceil
39
  from multiprocessing.pool import ThreadPool
40
  from functools import partial
 
 
41
  from tenacity import (
42
  retry,
43
  stop_after_attempt,
@@ -45,24 +47,29 @@ from tenacity import (
45
  ) # for exponential backoff
46
 
47
  # %% app.ipynb 4
 
 
 
 
 
48
  try:
49
  tts_models = [o.id for o in openai.models.list().data if 'tts' in o.id]
50
  print('successfully got tts model list:', tts_models)
51
  except:
52
  tts_models = ['tts-1']
53
 
54
- # %% app.ipynb 5
55
  tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
56
 
57
- # %% app.ipynb 6
58
  clean_text_prompt = """Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early."""
59
 
60
 
61
- # %% app.ipynb 7
62
  #Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.
63
  OPENAI_CLIENT_TTS_THREADS = 10
64
 
65
- # %% app.ipynb 8
66
  def split_text(input_text, max_length=4000, lookback=1000):
67
  # If the text is shorter than the max_length, return it as is
68
  if len(input_text) <= max_length:
@@ -95,7 +102,7 @@ def split_text(input_text, max_length=4000, lookback=1000):
95
 
96
  return chunks
97
 
98
- # %% app.ipynb 9
99
  def concatenate_mp3(mp3_files):
100
  if len(mp3_files) == 1:
101
  return mp3_files[0]
@@ -115,17 +122,23 @@ def concatenate_mp3(mp3_files):
115
  # Concatenate this segment to the combined segment
116
  combined += audio_segment
117
 
118
- # Export the combined segment to a new mp3 file
119
- # Use a BytesIO object to handle this in memory
120
- combined_mp3 = io.BytesIO()
121
- combined.export(combined_mp3, format="mp3")
 
122
 
123
- # Seek to the start so it's ready for reading
124
- combined_mp3.seek(0)
125
 
126
- return combined_mp3.getvalue()
127
 
128
- # %% app.ipynb 10
 
 
 
 
 
129
  def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):
130
  client = openai.OpenAI()
131
 
@@ -137,7 +150,7 @@ def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1
137
  client.close()
138
  return chunk_idx, response.content
139
 
140
- # %% app.ipynb 11
141
  def create_speech2(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress(), **kwargs):
142
  print('cs2-profile:',profile)
143
  assert authorized(profile) is not None,'Unauthorized M'
@@ -173,9 +186,9 @@ def create_speech2(input_text, model='tts-1', voice='alloy', profile: gr.OAuthPr
173
  return combined_audio
174
 
175
 
176
- # %% app.ipynb 12
177
  def create_speech(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress()):
178
- assert authorized() is not None,'Unauthorized M'
179
  # Split the input text into chunks
180
  chunks = split_text(input_text)
181
 
@@ -217,11 +230,11 @@ def create_speech(input_text, model='tts-1', voice='alloy', profile: gr.OAuthPro
217
  return combined_audio
218
 
219
 
220
- # %% app.ipynb 13
221
  def get_input_text_len(input_text):
222
  return len(input_text)
223
 
224
- # %% app.ipynb 14
225
  def get_generation_cost(input_text, tts_model_dropdown):
226
  text_len = len(input_text)
227
  if tts_model_dropdown.endswith('-hd'):
@@ -230,7 +243,7 @@ def get_generation_cost(input_text, tts_model_dropdown):
230
  cost = text_len/1000 * 0.015
231
  return "${:,.3f}".format(cost)
232
 
233
- # %% app.ipynb 15
234
  def authorized(profile: gr.OAuthProfile=None) -> str:
235
  print('Profile:', profile)
236
  if profile is not None and profile.username in ["matdmiller"]:
@@ -239,7 +252,7 @@ def authorized(profile: gr.OAuthProfile=None) -> str:
239
  print('Unauthorized',profile)
240
  return None
241
 
242
- # %% app.ipynb 16
243
  with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
244
  gr.Markdown("# OpenAI TTS")
245
  gr.Markdown("""Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.
@@ -265,13 +278,13 @@ For requests longer than 4,000 chars they will be broken into chunks of 4,000 or
265
  app.load(authorized, None, m)
266
 
267
 
268
- # %% app.ipynb 17
269
  # launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
270
  # 'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
271
  launch_kwargs = {}
272
  queue_kwargs = {'default_concurrency_limit':10}
273
 
274
- # %% app.ipynb 19
275
  #.py launch
276
  if __name__ == "__main__":
277
  app.queue(**queue_kwargs)
 
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
 
3
  # %% auto 0
4
+ __all__ = ['secret_import_failed', 'TEMP', 'TEMP_DIR', 'tts_voices', 'clean_text_prompt', 'OPENAI_CLIENT_TTS_THREADS',
5
+ 'launch_kwargs', 'queue_kwargs', 'split_text', 'concatenate_mp3', 'create_speech_openai', 'create_speech2',
6
+ 'create_speech', 'get_input_text_len', 'get_generation_cost', 'authorized']
7
 
8
  # %% app.ipynb 1
9
  #tts_openai_secrets.py content:
 
38
  from math import ceil
39
  from multiprocessing.pool import ThreadPool
40
  from functools import partial
41
+ from pathlib import Path
42
+ import uuid
43
  from tenacity import (
44
  retry,
45
  stop_after_attempt,
 
47
  ) # for exponential backoff
48
 
49
  # %% app.ipynb 4
50
+ TEMP = os.environ['TMPDIR']
51
+ TEMP_DIR = Path(TEMP)
52
+ print('TEMP Dir:', TEMP_DIR)
53
+
54
+ # %% app.ipynb 5
55
  try:
56
  tts_models = [o.id for o in openai.models.list().data if 'tts' in o.id]
57
  print('successfully got tts model list:', tts_models)
58
  except:
59
  tts_models = ['tts-1']
60
 
61
+ # %% app.ipynb 6
62
  tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
63
 
64
+ # %% app.ipynb 7
65
  clean_text_prompt = """Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early."""
66
 
67
 
68
+ # %% app.ipynb 8
69
  #Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.
70
  OPENAI_CLIENT_TTS_THREADS = 10
71
 
72
+ # %% app.ipynb 9
73
  def split_text(input_text, max_length=4000, lookback=1000):
74
  # If the text is shorter than the max_length, return it as is
75
  if len(input_text) <= max_length:
 
102
 
103
  return chunks
104
 
105
+ # %% app.ipynb 10
106
  def concatenate_mp3(mp3_files):
107
  if len(mp3_files) == 1:
108
  return mp3_files[0]
 
122
  # Concatenate this segment to the combined segment
123
  combined += audio_segment
124
 
125
+ #### Return Bytes Method
126
+ # # Export the combined segment to a new mp3 file
127
+ # # Use a BytesIO object to handle this in memory
128
+ # combined_mp3 = io.BytesIO()
129
+ # combined.export(combined_mp3, format="mp3")
130
 
131
+ # # Seek to the start so it's ready for reading
132
+ # combined_mp3.seek(0)
133
 
134
+ # return combined_mp3.getvalue()
135
 
136
+ #### Return Filepath Method
137
+ filepath = TEMP_DIR/(str(uuid.uuid4())+'.mp3')
138
+ combined.export(filepath, format="mp3")
139
+ return str(filepath)
140
+
141
+ # %% app.ipynb 11
142
  def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):
143
  client = openai.OpenAI()
144
 
 
150
  client.close()
151
  return chunk_idx, response.content
152
 
153
+ # %% app.ipynb 12
154
  def create_speech2(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress(), **kwargs):
155
  print('cs2-profile:',profile)
156
  assert authorized(profile) is not None,'Unauthorized M'
 
186
  return combined_audio
187
 
188
 
189
+ # %% app.ipynb 13
190
  def create_speech(input_text, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress()):
191
+ assert authorized(profile) is not None,'Unauthorized M'
192
  # Split the input text into chunks
193
  chunks = split_text(input_text)
194
 
 
230
  return combined_audio
231
 
232
 
233
+ # %% app.ipynb 14
234
  def get_input_text_len(input_text):
235
  return len(input_text)
236
 
237
+ # %% app.ipynb 15
238
  def get_generation_cost(input_text, tts_model_dropdown):
239
  text_len = len(input_text)
240
  if tts_model_dropdown.endswith('-hd'):
 
243
  cost = text_len/1000 * 0.015
244
  return "${:,.3f}".format(cost)
245
 
246
+ # %% app.ipynb 16
247
  def authorized(profile: gr.OAuthProfile=None) -> str:
248
  print('Profile:', profile)
249
  if profile is not None and profile.username in ["matdmiller"]:
 
252
  print('Unauthorized',profile)
253
  return None
254
 
255
+ # %% app.ipynb 17
256
  with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
257
  gr.Markdown("# OpenAI TTS")
258
  gr.Markdown("""Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.
 
278
  app.load(authorized, None, m)
279
 
280
 
281
+ # %% app.ipynb 18
282
  # launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
283
  # 'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}
284
  launch_kwargs = {}
285
  queue_kwargs = {'default_concurrency_limit':10}
286
 
287
+ # %% app.ipynb 20
288
  #.py launch
289
  if __name__ == "__main__":
290
  app.queue(**queue_kwargs)