Spaces:
Sleeping
Sleeping
Commit
·
fa297e7
1
Parent(s):
8ead2ef
Primer commit
Browse files- app.py +94 -0
- best-detect.pt +3 -0
- requirements.txt +6 -0
- seg-640.pt +3 -0
- sin_nota.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from typing import List
|
7 |
+
from ultralytics import YOLO
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
|
14 |
+
def recortar_notas(imagen_path: str) -> int:
|
15 |
+
if os.path.exists('deteccion'):
|
16 |
+
shutil.rmtree('deteccion')
|
17 |
+
if os.path.exists('diarios'):
|
18 |
+
shutil.rmtree('diarios')
|
19 |
+
if os.path.exists('recorte'):
|
20 |
+
shutil.rmtree('recorte')
|
21 |
+
|
22 |
+
model = YOLO("seg-640.pt")
|
23 |
+
results = model.predict(source=imagen_path, save=True, save_txt=True, project="diarios", classes=0, conf=0.5)
|
24 |
+
|
25 |
+
# cargar imagen tif
|
26 |
+
image = cv2.imread(imagen_path)
|
27 |
+
|
28 |
+
# crear una carpeta para guardar los recortes
|
29 |
+
filename = os.path.splitext(os.path.basename(results[0].path))[0]
|
30 |
+
foldername = os.path.splitext(filename)[0]
|
31 |
+
if not os.path.exists(f"recorte/{foldername}"):
|
32 |
+
os.makedirs(f"recorte/{foldername}")
|
33 |
+
|
34 |
+
datos = results[0].masks.xy
|
35 |
+
|
36 |
+
num_notas = 0
|
37 |
+
|
38 |
+
for i, coords in enumerate(datos):
|
39 |
+
# coordenadas de segmentación
|
40 |
+
coordenadas = np.array(coords)
|
41 |
+
|
42 |
+
# crear una máscara vacía
|
43 |
+
mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
|
44 |
+
|
45 |
+
# dibujar un polígono en la máscara
|
46 |
+
cv2.fillPoly(mask, [coordenadas.astype(np.int32)], 255)
|
47 |
+
|
48 |
+
# aplicar la máscara a la imagen
|
49 |
+
masked = cv2.bitwise_and(image, image, mask=mask)
|
50 |
+
|
51 |
+
# recortar la imagen utilizando la caja delimitadora de la máscara
|
52 |
+
x, y, w, h = cv2.boundingRect(mask)
|
53 |
+
recorte = masked[y:y+h, x:x+w]
|
54 |
+
|
55 |
+
# guardar el recorte como una imagen
|
56 |
+
recorte_path = os.path.join(f"recorte/{foldername}", f"nota {i}.jpg")
|
57 |
+
cv2.imwrite(recorte_path, recorte)
|
58 |
+
|
59 |
+
num_notas += 1
|
60 |
+
|
61 |
+
noticias(foldername)
|
62 |
+
segmentacion = f"diarios/predict/{filename}.png"
|
63 |
+
recorte1 = f"recorte/{foldername}/nota 0.jpg"
|
64 |
+
prediccion = f"deteccion/{foldername}/predict/nota 0.jpg"
|
65 |
+
|
66 |
+
try:
|
67 |
+
recorte2 = f"recorte/{foldername}/nota 1.jpg"
|
68 |
+
prediccion2 = f"deteccion/{foldername}/predict/nota 1.jpg"
|
69 |
+
if not os.path.exists(recorte2):
|
70 |
+
raise Exception(f"El archivo {recorte2} no existe.")
|
71 |
+
except:
|
72 |
+
recorte2 = "sin_nota.jpg"
|
73 |
+
prediccion2 = "sin_nota.jpg"
|
74 |
+
|
75 |
+
return cv2.imread(segmentacion), num_notas, recorte1, recorte2,prediccion, prediccion2
|
76 |
+
|
77 |
+
def noticias(carpeta):
|
78 |
+
nombre = carpeta
|
79 |
+
model = YOLO("best-detect.pt")
|
80 |
+
results = model.predict(source=f"recorte/{nombre}", save=True, save_txt=True,project=f"deteccion/{nombre}", conf=0.75) # save plotted images
|
81 |
+
return print(f"Imagen {nombre} procesada correctamente")
|
82 |
+
|
83 |
+
gr.Interface(
|
84 |
+
fn = recortar_notas,
|
85 |
+
inputs = [ gr.components.Image(type="filepath", label="Input") ],
|
86 |
+
outputs = [ gr.components.Image(type="filepath", label="Segmentacion"), gr.Label(label="Numero de Notas"),
|
87 |
+
gr.components.Image(type="filepath", label="Recorte Nota"),gr.components.Image(type="filepath", label="Recorte Nota"),
|
88 |
+
gr.components.Image(type="filepath", label="Deteccion"),gr.components.Image(type="filepath", label="Deteccion"), ],
|
89 |
+
|
90 |
+
title="IA por la Identidad",
|
91 |
+
description="Datathon Fundacion Sadosky",
|
92 |
+
examples=[ ['clarin.jpg']],
|
93 |
+
allow_flagging="never"
|
94 |
+
).launch(debug=True, enable_queue=True)
|
best-detect.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2feb142d660f1147ebe3bae95a449830e98fae0db05489c2d4fd2913002e199
|
3 |
+
size 6225400
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
typing==3.7.4.3
|
3 |
+
ultralytics==8.0.70
|
4 |
+
opencv-python==4.6.0.66
|
5 |
+
numpy==1.23.5
|
6 |
+
|
seg-640.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da27e0b0275104f65e48cb3d4174afbb7b67b8bf72cfc0624f92ba4d3fbf3bb6
|
3 |
+
size 92283287
|
sin_nota.jpg
ADDED
![]() |