matjesg commited on
Commit
807aa27
1 Parent(s): 694a1d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py CHANGED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import onnxruntime as ort
4
+ from matplotlib import pyplot as plt
5
+ from huggingface_hub import hf_hub_download
6
+
7
+ model = hf_hub_download(repo_id="matjesg/cFOS_in_HC", filename="ensemble.onnx")
8
+
9
+ def create_model_for_provider(model_path, provider="CPUExecutionProvider"):
10
+ options = ort.SessionOptions()
11
+ options.intra_op_num_threads = 1
12
+ options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
13
+ session = ort.InferenceSession(str(model_path), options, providers=[provider])
14
+ session.disable_fallback()
15
+ return session
16
+
17
+ ort_session = create_model_for_provider(model)
18
+
19
+ def inference(img):
20
+
21
+ img = img[...,:1]/255
22
+
23
+ ort_inputs = {ort_session.get_inputs()[0].name: img.astype(np.float32)}
24
+
25
+ ort_outs = ort_session.run(None, ort_inputs)
26
+
27
+ return ort_outs[0]*255
28
+
29
+
30
+ title="deepflash2"
31
+ description="deepflash2 is a deep-learning pipeline for segmentation of ambiguous microscopic images."
32
+ examples=[['1599.tif']]
33
+
34
+ gr.Interface(inference,
35
+ gr.inputs.Image(type="numpy"),
36
+ gr.outputs.Image(),
37
+ title=title,
38
+ description=description,
39
+ examples=examples
40
+ ).launch(share=True)