File size: 6,831 Bytes
e3dd038
 
 
 
 
 
 
bbbffe1
e3dd038
 
 
 
 
2bc849d
e3dd038
 
 
 
 
 
 
 
7eecfbf
3cde1aa
bbbffe1
fe944ec
 
82e16cd
7eecfbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3dd038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b8452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3dd038
 
 
 
134c8c2
d8b8452
e3dd038
 
 
 
 
 
 
 
 
 
bbbffe1
e3dd038
 
 
 
 
 
134c8c2
 
e3dd038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134c8c2
e3dd038
 
 
 
 
134c8c2
 
 
e3dd038
 
 
 
 
 
 
 
 
 
64a6d23
e3dd038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import sys
from starline import process

from utils import load_cn_model, load_cn_config, randomname
from convertor import pil2cv, cv2pil

from sd_model import get_cn_pipeline, get_cn_detector
import cv2
import os
import numpy as np
from PIL import Image
import zipfile
import spaces

path = os.getcwd()
output_dir = f"{path}/output"
input_dir = f"{path}/input"
cn_lineart_dir = f"{path}/controlnet/lineart"

load_cn_model(cn_lineart_dir)
load_cn_config(cn_lineart_dir)
pipe = get_cn_pipeline()
pipe.to("cuda")



@spaces.GPU()
def generate(detectors, prompt, negative_prompt, reference_flg=False, reference_img=None):
    default_pos = ""
    default_neg = ""
    prompt = default_pos + prompt 
    negative_prompt = default_neg + negative_prompt 
    

    if reference_flg==False:
        image = pipe(
                    prompt=prompt,
                    negative_prompt = negative_prompt,
                    image=detectors,
                    num_inference_steps=50,
                    controlnet_conditioning_scale=[1.0, 0.2],
                    ip_adapter_image=None,
                ).images[0]
    else:

        image = pipe(
                    prompt=prompt,
                    negative_prompt = negative_prompt,
                    image=detectors,
                    num_inference_steps=50,
                    controlnet_conditioning_scale=[1.0, 0.2],
                    ip_adapter_image=reference_img,
                ).images[0]
    return image


def zip_png_files(folder_path):
    # Zipファイルの名前を設定(フォルダ名と同じにします)
    zip_path = os.path.join(folder_path, 'output.zip')
    
    # zipfileオブジェクトを作成し、書き込みモードで開く
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        # フォルダ内のすべてのファイルをループ処理
        for foldername, subfolders, filenames in os.walk(folder_path):
            for filename in filenames:
                # PNGファイルのみを対象にする
                if filename.endswith('.png'):
                    # ファイルのフルパスを取得
                    file_path = os.path.join(foldername, filename)
                    # zipファイルに追加
                    zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path))

def resize_image(img, max_size=1024):
    # 画像を開く
    width, height = img.size
    print(f"元の画像サイズ: 幅 {width} x 高さ {height}")
    
    # 縦または横がmax_sizeを超えているかチェック
    if width > max_size or height > max_size:
        # 縦横比を保ちながらリサイズ
        if width > height:
            new_width = max_size
            new_height = int(max_size * height / width)
        else:
            new_height = max_size
            new_width = int(max_size * width / height)
        
        # リサイズ実行
        resized_img = img.resize((new_width, new_height), Image.ANTIALIAS)
        print(f"リサイズ後の画像サイズ: 幅 {new_width} x 高さ {new_height}")
        return resized_img
    else:
        return img


class webui:
    def __init__(self):
        self.demo = gr.Blocks()

    def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_img):
        input_image = resize_image(input_image)
        org_line_image = input_image
        image = pil2cv(input_image)
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)

        index = np.where(image[:, :, 3] == 0)
        image[index] = [255, 255, 255, 255]
        input_image = cv2pil(image)

        detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))

        gen_image = generate(detectors, pos_prompt, neg_prompt, reference_flg, reference_img)
        color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness)
        #color_img = color_img.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS)


        output_img = Image.alpha_composite(color_img, org_line_image)
        name = randomname(10)
        if not os.path.exists(f"{output_dir}"):
            os.makedirs(f"{output_dir}")
        os.makedirs(f"{output_dir}/{name}")
        output_img.save(f"{output_dir}/{name}/output_image.png")
        org_line_image.save(f"{output_dir}/{name}/line_image.png")
        color_img.save(f"{output_dir}/{name}/color_image.png")
        unfinished.save(f"{output_dir}/{name}/unfinished_image.png")

        outputs = [output_img, org_line_image, color_img, unfinished]
        zip_png_files(f"{output_dir}/{name}")
        filename = f"{output_dir}/{name}/output.zip"

        return outputs, filename



    def launch(self, share):
        with self.demo:
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type="pil", image_mode="RGBA", label="lineart")
                    pos_prompt = gr.Textbox(value="1girl, blue hair, pink shirts, bestquality, 4K", max_lines=1000, label="positive prompt")                    
                    neg_prompt = gr.Textbox(value=" (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)", max_lines=1000, label="negative prompt")

                    alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold")
                    thickness = gr.Number(value=5, label="Thickness of correction area (Odd numbers need to be entered)")
                
                    reference_image = gr.Image(type="pil", image_mode="RGB", label="reference_image")
                    reference_flg = gr.Checkbox(value=True, label="reference_flg")
                    #gr.Slider(maximum = 21, value=3, step=2, label = "Thickness of correction area")

                    submit = gr.Button(value="Start")
                with gr.Row():
                    with gr.Column():
                        with gr.Tab("output"):
                            output_0 = gr.Gallery(format="png")
                        output_file = gr.File()
            submit.click(
                self.undercoat, 
                inputs=[input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_image], 
                outputs=[output_0, output_file]
            )

        self.demo.queue()
        self.demo.launch(share=share)


if __name__ == "__main__":
    ui = webui()
    if len(sys.argv) > 1:
        if sys.argv[1] == "share":
            ui.launch(share=True)
        else:
            ui.launch(share=False)
    else:
        ui.launch(share=False)