from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL import torch import pickle as pkl import spaces device = "cuda" def get_cn_pipeline(): controlnets = [ ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True), ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16) ] vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16 ) #pipe.enable_model_cpu_offload() #if pipe.safety_checker is not None: # pipe.safety_checker = lambda images, **kwargs: (images, [False]) #pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) #pipe.to(device) return pipe def invert_image(img): # 画像を読み込む # 画像をグレースケールに変換(もしもともと白黒でない場合) img = img.convert('L') # 画像の各ピクセルを反転 inverted_img = img.point(lambda p: 255 - p) # 反転した画像を保存 return inverted_img def get_cn_detector(image): #lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators") #canny = CannyDetector() #lineart_anime_img = lineart_anime(image) #canny_img = canny(image) #canny_img = canny_img.resize((lineart_anime(image).width, lineart_anime(image).height)) re_image = invert_image(image) detectors = [re_image, image] print(detectors) return detectors @spaces.GPU def generate(pipe, detectors, prompt, negative_prompt): pipe.to("cuda") default_pos = "" default_neg = "" prompt = default_pos + prompt negative_prompt = default_neg + negative_prompt print(type(pipe)) image = pipe( prompt=prompt, negative_prompt = negative_prompt, image=detectors, num_inference_steps=50, controlnet_conditioning_scale=[1.0, 0.2], ).images[0] return image