import gradio as gr import sys from starline import process from utils import load_cn_model, load_cn_config, randomname from convertor import pil2cv, cv2pil from sd_model import get_cn_pipeline, get_cn_detector, get_ip_pipeline import cv2 import os import numpy as np from PIL import Image import zipfile import spaces path = os.getcwd() output_dir = f"{path}/output" input_dir = f"{path}/input" cn_lineart_dir = f"{path}/controlnet/lineart" load_cn_model(cn_lineart_dir) load_cn_config(cn_lineart_dir) pipe_cn = get_cn_pipeline() pipe_ip = get_ip_pipeline() pipe_cn.to("cuda") pipe_ip.to("cuda") @spaces.GPU() def generate(detectors, prompt, negative_prompt, reference_flg=False, reference_img=None): default_pos = "" default_neg = "" prompt = default_pos + prompt negative_prompt = default_neg + negative_prompt if reference_flg==True and reference_img is not None: image = pipe_ip( prompt=prompt, negative_prompt = negative_prompt, image=detectors, num_inference_steps=50, controlnet_conditioning_scale=[1.0, 0.2], ip_adapter_image=reference_img, ).images[0] else: image = pipe_cn( prompt=prompt, negative_prompt = negative_prompt, image=detectors, num_inference_steps=50, controlnet_conditioning_scale=[1.0, 0.2] ).images[0] return image def zip_png_files(folder_path): # Zipファイルの名前を設定(フォルダ名と同じにします) zip_path = os.path.join(folder_path, 'output.zip') # zipfileオブジェクトを作成し、書き込みモードで開く with zipfile.ZipFile(zip_path, 'w') as zipf: # フォルダ内のすべてのファイルをループ処理 for foldername, subfolders, filenames in os.walk(folder_path): for filename in filenames: # PNGファイルのみを対象にする if filename.endswith('.png'): # ファイルのフルパスを取得 file_path = os.path.join(foldername, filename) # zipファイルに追加 zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path)) def resize_image(img, max_size=1024): # 画像を開く width, height = img.size print(f"元の画像サイズ: 幅 {width} x 高さ {height}") # 縦または横がmax_sizeを超えているかチェック if width > max_size or height > max_size: # 縦横比を保ちながらリサイズ if width > height: new_width = max_size new_height = int(max_size * height / width) else: new_height = max_size new_width = int(max_size * width / height) # リサイズ実行 resized_img = img.resize((new_width, new_height), Image.ANTIALIAS) print(f"リサイズ後の画像サイズ: 幅 {new_width} x 高さ {new_height}") return resized_img else: return img class webui: def __init__(self): self.demo = gr.Blocks() def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_img): input_image = resize_image(input_image) org_line_image = input_image image = pil2cv(input_image) image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) index = np.where(image[:, :, 3] == 0) image[index] = [255, 255, 255, 255] input_image = cv2pil(image) detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS)) gen_image = generate(detectors, pos_prompt, neg_prompt, reference_flg, reference_img) color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness) #color_img = color_img.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS) output_img = Image.alpha_composite(color_img, org_line_image) name = randomname(10) if not os.path.exists(f"{output_dir}"): os.makedirs(f"{output_dir}") os.makedirs(f"{output_dir}/{name}") output_img.save(f"{output_dir}/{name}/output_image.png") org_line_image.save(f"{output_dir}/{name}/line_image.png") color_img.save(f"{output_dir}/{name}/color_image.png") unfinished.save(f"{output_dir}/{name}/unfinished_image.png") outputs = [output_img, org_line_image, color_img, unfinished] zip_png_files(f"{output_dir}/{name}") filename = f"{output_dir}/{name}/output.zip" return outputs, filename def launch(self, share): with self.demo: with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", image_mode="RGBA", label="lineart") pos_prompt = gr.Textbox(value="1girl, blue hair, pink shirts, bestquality, 4K", max_lines=1000, label="positive prompt") neg_prompt = gr.Textbox(value=" (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)", max_lines=1000, label="negative prompt") alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold") thickness = gr.Number(value=5, label="Thickness of correction area (Odd numbers need to be entered)") reference_image = gr.Image(type="pil", image_mode="RGB", label="reference_image") reference_flg = gr.Checkbox(value=True, label="reference_flg") #gr.Slider(maximum = 21, value=3, step=2, label = "Thickness of correction area") submit = gr.Button(value="Start") with gr.Row(): with gr.Column(): with gr.Tab("output"): output_0 = gr.Gallery(format="png") output_file = gr.File() submit.click( self.undercoat, inputs=[input_image, pos_prompt, neg_prompt, alpha_th, thickness, reference_flg, reference_image], outputs=[output_0, output_file] ) self.demo.queue() self.demo.launch(share=share) if __name__ == "__main__": ui = webui() if len(sys.argv) > 1: if sys.argv[1] == "share": ui.launch(share=True) else: ui.launch(share=False) else: ui.launch(share=False)