Spaces:
Runtime error
Runtime error
Commit
·
22ca3fa
1
Parent(s):
ed6c2e2
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,9 @@ import torch
|
|
5 |
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona")
|
6 |
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
|
7 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
}
|
12 |
|
13 |
def translate(text):
|
14 |
"""
|
@@ -20,51 +19,47 @@ def translate(text):
|
|
20 |
|
21 |
tokenizer.src_lang = "en"
|
22 |
tokenizer.tgt_lang = "tl"
|
23 |
-
|
24 |
-
ins = tokenizer(text, return_tensors='pt').to(device)
|
25 |
|
26 |
gen_args = {
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
outs = model.generate(**{**ins, **gen_args})
|
38 |
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True)
|
39 |
-
text2 =
|
40 |
-
|
41 |
##################
|
42 |
|
43 |
tokenizer.src_lang = "tl"
|
44 |
tokenizer.tgt_lang = "en"
|
45 |
|
46 |
-
ins = tokenizer(text2, return_tensors=
|
47 |
|
48 |
gen_args = {
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
outs2 = model.generate(**{**ins, **gen_args})
|
60 |
output2 = tokenizer.batch_decode(outs2.sequences, skip_special_tokens=True)
|
61 |
|
|
|
62 |
|
63 |
|
64 |
-
return '\n'.join(output2)
|
65 |
-
|
66 |
with gr.Blocks() as app:
|
67 |
-
markdown="""
|
68 |
# An English / toki pona Neural Machine Translation App!
|
69 |
|
70 |
### toki a! 💬
|
@@ -101,12 +96,15 @@ with gr.Blocks() as app:
|
|
101 |
with gr.Row():
|
102 |
gr.Markdown(markdown)
|
103 |
with gr.Column():
|
104 |
-
input_text = gr.components.Textbox(
|
|
|
|
|
|
|
105 |
# source_lang = gr.components.Dropdown(label="Source Language", value="English", choices=list(LANG_CODES.keys()))
|
106 |
# target_lang = gr.components.Dropdown(label="Target Language", value="toki pona", choices=list(LANG_CODES.keys()))
|
107 |
# return_seqs = gr.Slider(label="Number of return sequences", value=3, minimum=1, maximum=12, step=1)
|
108 |
-
|
109 |
-
inputs=[input_text]
|
110 |
outputs = gr.Textbox()
|
111 |
|
112 |
translate_btn = gr.Button("Translate! | o ante toki!")
|
@@ -115,10 +113,10 @@ with gr.Blocks() as app:
|
|
115 |
gr.Examples(
|
116 |
[
|
117 |
["Hello! How are you?", "English", "toki pona", 3],
|
118 |
-
["toki a! ilo pi ante toki ni li pona!", "toki pona", "English",
|
119 |
["mi li toki e toki pona", "toki pona", "toki pona", 3],
|
120 |
],
|
121 |
-
inputs=inputs
|
122 |
)
|
123 |
|
124 |
-
app.launch()
|
|
|
5 |
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona")
|
6 |
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
|
7 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
+
model.to(device)
|
9 |
+
LANG_CODES = {"English": "en", "toki pona": "tl"}
|
10 |
+
|
|
|
11 |
|
12 |
def translate(text):
|
13 |
"""
|
|
|
19 |
|
20 |
tokenizer.src_lang = "en"
|
21 |
tokenizer.tgt_lang = "tl"
|
22 |
+
ins = tokenizer(text, return_tensors="pt").to(device)
|
|
|
23 |
|
24 |
gen_args = {
|
25 |
+
"return_dict_in_generate": True,
|
26 |
+
"output_scores": True,
|
27 |
+
"output_hidden_states": True,
|
28 |
+
"length_penalty": 0.0, # don't encourage longer or shorter output,
|
29 |
+
"num_return_sequences": 1,
|
30 |
+
"num_beams": 1,
|
31 |
+
"forced_bos_token_id": tokenizer.lang_code_to_id["tl"],
|
32 |
+
}
|
|
|
33 |
|
34 |
outs = model.generate(**{**ins, **gen_args})
|
35 |
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True)
|
36 |
+
text2 = "\n".join(output)
|
37 |
+
|
38 |
##################
|
39 |
|
40 |
tokenizer.src_lang = "tl"
|
41 |
tokenizer.tgt_lang = "en"
|
42 |
|
43 |
+
ins = tokenizer(text2, return_tensors="pt").to(device)
|
44 |
|
45 |
gen_args = {
|
46 |
+
"return_dict_in_generate": True,
|
47 |
+
"output_scores": True,
|
48 |
+
"output_hidden_states": True,
|
49 |
+
"length_penalty": 0.0, # don't encourage longer or shorter output,
|
50 |
+
"num_return_sequences": 1,
|
51 |
+
"num_beams": 1,
|
52 |
+
"forced_bos_token_id": tokenizer.lang_code_to_id["en"],
|
53 |
+
}
|
|
|
54 |
|
55 |
outs2 = model.generate(**{**ins, **gen_args})
|
56 |
output2 = tokenizer.batch_decode(outs2.sequences, skip_special_tokens=True)
|
57 |
|
58 |
+
return "\n".join(output2)
|
59 |
|
60 |
|
|
|
|
|
61 |
with gr.Blocks() as app:
|
62 |
+
markdown = """
|
63 |
# An English / toki pona Neural Machine Translation App!
|
64 |
|
65 |
### toki a! 💬
|
|
|
96 |
with gr.Row():
|
97 |
gr.Markdown(markdown)
|
98 |
with gr.Column():
|
99 |
+
input_text = gr.components.Textbox(
|
100 |
+
label="Input Text",
|
101 |
+
value="Raccoons are fascinating creatures, but I prefer opossums.",
|
102 |
+
)
|
103 |
# source_lang = gr.components.Dropdown(label="Source Language", value="English", choices=list(LANG_CODES.keys()))
|
104 |
# target_lang = gr.components.Dropdown(label="Target Language", value="toki pona", choices=list(LANG_CODES.keys()))
|
105 |
# return_seqs = gr.Slider(label="Number of return sequences", value=3, minimum=1, maximum=12, step=1)
|
106 |
+
|
107 |
+
inputs = [input_text]
|
108 |
outputs = gr.Textbox()
|
109 |
|
110 |
translate_btn = gr.Button("Translate! | o ante toki!")
|
|
|
113 |
gr.Examples(
|
114 |
[
|
115 |
["Hello! How are you?", "English", "toki pona", 3],
|
116 |
+
["toki a! ilo pi ante toki ni li pona!", "toki pona", "English", 3],
|
117 |
["mi li toki e toki pona", "toki pona", "toki pona", 3],
|
118 |
],
|
119 |
+
inputs=inputs,
|
120 |
)
|
121 |
|
122 |
+
app.launch()
|