|
|
|
|
|
|
|
import gradio as gr |
|
import tensorflow |
|
from transformers import TFGPT2LMHeadModel, GPT2Tokenizer |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
model = TFGPT2LMHeadModel.from_pretrained("gpt2",pad_token_id=tokenizer.eos_token_id) |
|
|
|
def generate_text(inp): |
|
input_ids = tokenizer.encode(inp, return_tensors='tf') |
|
beam_output = model.generate(input_ids, max_length=109, num_beams=5, no_repeat_ngram_size=2, early_stopping=True) |
|
|
|
output = tokenizer.decode(beam_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|
|
return ".".join(output.split(".")[:-1]) + "." |
|
output_text = gr.outputs.Textbox() |
|
gr.Interface(generate_text,"textbox",output_text, title="MAX-GPT",description = "Chat and ask about anything, leave unfinished sentences for autocomplete or just ask questions revolving any topic").launch(share=True) |