import os import gradio as gr import numpy as np import tensorflow as tf from tensorflow.keras import models IMG_SIZE = 300 class_names = ['none','mild','severe'] cwd = os.getcwd() outpath= os.path.join(cwd,"model") model_name = 'cross_event_ecuador_efficientnet_1643984852.h5' loaded_model = models.load_model(os.path.join(outpath,model_name)) def _classifier(inp): img = np.asarray(tf.cast(inp, dtype=tf.float32)) * 1 / 255.0 img = img.reshape((-1, IMG_SIZE, IMG_SIZE, 3)) preds = loaded_model.predict(img).flatten() return {class_names[i]:float(preds[i]) for i in range(len(class_names))} iface = gr.Interface(fn=_classifier, inputs=gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE)), outputs=gr.outputs.Label() ) iface.launch()