import json import gradio as gr import tensorflow as tf import tensorflow.keras as keras from gradio import inputs, outputs SIZE = 256 DEVICE = "/cpu:0" with open("./tags.json", "rt", encoding="utf-8") as f: tags = json.load(f) with tf.device(DEVICE): base_model = keras.applications.resnet.ResNet50( include_top=False, weights=None, input_shape=(SIZE, SIZE, 3) ) model = keras.Sequential( [ base_model, keras.layers.Conv2D(filters=len(tags), kernel_size=(1, 1), padding="same"), keras.layers.BatchNormalization(epsilon=1.001e-5), keras.layers.GlobalAveragePooling2D(name="avg_pool"), keras.layers.Activation("sigmoid"), ] ) model.load_weights("tf_model.h5") def predict(img, hide: float): with tf.device(DEVICE): img = tf.image.resize_with_pad(img, SIZE, SIZE) img = tf.image.per_image_standardization(img) data = tf.expand_dims(img, 0) out, *_ = model(data) return { tag: confidence for i, tag in enumerate(tags) if (confidence := float(out[i].numpy())) >= hide } image = inputs.Image(label="Upload your image here!") hide_threshold = inputs.Slider( label="Hide confidence lower than", default=0.5, maximum=1, minimum=0 ) labels = outputs.Label(label="Tags", type="confidences") interface = gr.Interface(predict, inputs=[image, hide_threshold], outputs=[labels]) interface.launch()