Spaces:
Sleeping
Sleeping
File size: 6,370 Bytes
443c139 cda261e 52ac0d1 cda261e 52ac0d1 07b841e 52ac0d1 5d9c9c6 c327aef acc345c c327aef 443c139 52ac0d1 041f247 443c139 52ac0d1 b69875b 52ac0d1 c327aef 52ac0d1 bce2b48 a445939 b6a8d3b 52ac0d1 a445939 52ac0d1 d8d70b6 c327aef d8d70b6 49c6131 d8d70b6 49c6131 c327aef 17b9a96 a445939 e3cd3bd 49c6131 1508448 c327aef 1508448 c327aef 49c6131 52ac0d1 b69875b 52ac0d1 443c139 b69875b 52ac0d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# credits : https://huggingface.co/spaces/black-forest-labs/FLUX.1-dev
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
hf_token = os.getenv("HF_TOKEN")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=75)
def infer(name, pet, background, style, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if pet == "Kaatz":
intro = "please generate an image of a cat sitting "
elif pet == "Mupp":
intro = "please generate an image of a dog sitting "
elif pet == "Hues":
intro = "please generate an image of a bunny sitting "
else:
intro = "please generate an image of an hamster sitting "
if background == "Wunnzëmmer":
place = intro + "in a living space "
elif background == "Grafitti Mauer":
place = intro + "in front of a wall with graffiti "
elif background == "Strooss":
place = intro + "in a street in the city "
elif background == "Plage":
place = intro + "at the beach "
else:
place = intro + " in the forest "
if style == "Photo":
prompt = place + "holding a signal that says " + name + "in a photorealistic style"
elif style == "Cartoon":
prompt = place + "holding a signal that says " + name + "in a cartoon style"
elif style == "Woll":
prompt = place + "holding a signal that says " + name + "in a knitted with wool style"
elif style == "Aquarell":
prompt = place + "holding a signal that says " + name + "in a watercolorl style"
else:
prompt = place + "holding a signal that says " + name + "in a 3D style"
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=4,
num_inference_steps=28,
width=1024,
height=1024,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Mäin éischt KI-Bild
Mol mer e Bild mat mengem Hausdéier a mengem Numm op engem Schëld !
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Schreif däin Text mat dengem Numm",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
pet = gr.Radio(
choices=["Kaatz", "Mupp", "Hues", "Hamster"],
label="Hausdéier",
value="Kaatz"
)
with gr.Row():
background = gr.Radio(
choices=["Wunnzëmmer", "Grafitti Mauer", "Strooss", "Plage", "Bësch"],
label="Hannergrond",
value="Strooss"
)
with gr.Row():
style = gr.Radio(
choices=["Photo", "Cartoon", "Woll", "Aquarell", "3D"],
label="Style",
value="Photo"
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, pet, background, style],
outputs = [result, seed]
)
demo.launch() |