File size: 52,693 Bytes
04f6fe5 94831ce 04f6fe5 94831ce 04f6fe5 94831ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
from this import d
import gradio as gr
import numpy as np
import torch
import gc
import copy
import os
import random
import datetime
from PIL import ImageFont
from utils.gradio_utils import (
character_to_dict,
process_original_prompt,
get_ref_character,
cal_attn_mask_xl,
cal_attn_indice_xl_effcient_memory,
is_torch2_available,
)
if is_torch2_available():
from utils.gradio_utils import AttnProcessor2_0 as AttnProcessor
else:
from utils.gradio_utils import AttnProcessor
from huggingface_hub import hf_hub_download
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
StableDiffusionXLPipeline,
)
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
import torch.nn.functional as F
from diffusers.utils.loading_utils import load_image
from utils.utils import get_comic
from utils.style_template import styles
from utils.load_models_utils import get_models_dict, load_models
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
global models_dict
models_dict = get_models_dict()
# Automatically select the device
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"@@device:{device}")
# check if the file exists locally at a specified path before downloading it.
# if the file doesn't exist, it uses `hf_hub_download` to download the file
# and optionally move it to a specific directory. If the file already
# exists, it simply uses the local path.
local_dir = "data/"
photomaker_local_path = f"{local_dir}photomaker-v1.bin"
if not os.path.exists(photomaker_local_path):
photomaker_path = hf_hub_download(
repo_id="TencentARC/PhotoMaker",
filename="photomaker-v1.bin",
repo_type="model",
local_dir=local_dir,
)
else:
photomaker_path = photomaker_local_path
MAX_SEED = np.iinfo(np.int32).max
def setup_seed(seed):
torch.manual_seed(seed)
if device == "cuda":
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def set_text_unfinished():
return gr.update(
visible=True,
value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>",
)
def set_text_finished():
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
#################################################
def get_image_path_list(folder_name):
image_basename_list = os.listdir(folder_name)
image_path_list = sorted(
[os.path.join(folder_name, basename) for basename in image_basename_list]
)
return image_path_list
#################################################
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
id_length=4,
device=device,
dtype=torch.float16,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
# 生成一个0到1之间的随机数
global total_count, attn_count, cur_step, indices1024, indices4096
global sa32, sa64
global write
global height, width
global character_dict, character_index_dict, invert_character_index_dict, cur_character, ref_indexs_dict, ref_totals, cur_character
if attn_count == 0 and cur_step == 0:
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height,
width,
device=self.device,
dtype=self.dtype,
)
if write:
assert len(cur_character) == 1
if hidden_states.shape[1] == (height // 32) * (width // 32):
indices = indices1024
else:
indices = indices4096
# print(f"white:{cur_step}")
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(-1, img_nums, nums_token, channel)
# print(img_nums,len(indices),hidden_states.shape,self.total_length)
if cur_character[0] not in self.id_bank:
self.id_bank[cur_character[0]] = {}
self.id_bank[cur_character[0]][cur_step] = [
hidden_states[:, img_ind, indices[img_ind], :]
.reshape(2, -1, channel)
.clone()
for img_ind in range(img_nums)
]
hidden_states = hidden_states.reshape(-1, nums_token, channel)
# self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
else:
# encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),self.id_bank[cur_step][1].to(self.device)))
# TODO: ADD Multipersion Control
encoder_arr = []
for character in cur_character:
encoder_arr = encoder_arr + [
tensor.to(self.device)
for tensor in self.id_bank[character][cur_step]
]
# 判断随机数是否大于0.5
if cur_step < 1:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 20:
rand_num = 0.3
else:
rand_num = 0.1
# print(f"hidden state shape {hidden_states.shape[1]}")
if random_number > rand_num:
if hidden_states.shape[1] == (height // 32) * (width // 32):
indices = indices1024
else:
indices = indices4096
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
if write:
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(
-1, img_nums, nums_token, channel
)
encoder_arr = [
hidden_states[:, img_ind, indices[img_ind], :].reshape(
2, -1, channel
)
for img_ind in range(img_nums)
]
for img_ind in range(img_nums):
# print(img_nums)
# assert img_nums != 1
img_ind_list = [i for i in range(img_nums)]
# print(img_ind_list,img_ind)
img_ind_list.remove(img_ind)
# print(img_ind,invert_character_index_dict[img_ind])
# print(character_index_dict[invert_character_index_dict[img_ind]])
# print(img_ind_list)
# print(img_ind,img_ind_list)
encoder_hidden_states_tmp = torch.cat(
[encoder_arr[img_ind] for img_ind in img_ind_list]
+ [hidden_states[:, img_ind, :, :]],
dim=1,
)
hidden_states[:, img_ind, :, :] = self.__call2__(
attn,
hidden_states[:, img_ind, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
else:
_, nums_token, channel = hidden_states.shape
# img_nums = total_batch_size // 2
# encoder_hidden_states = encoder_hidden_states.reshape(-1,img_nums,nums_token,channel)
hidden_states = hidden_states.reshape(2, -1, nums_token, channel)
# print(len(indices))
# encoder_arr = [encoder_hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
encoder_hidden_states_tmp = torch.cat(
encoder_arr + [hidden_states[:, 0, :, :]], dim=1
)
# print(len(encoder_arr),encoder_hidden_states_tmp.shape)
hidden_states[:, 0, :, :] = self.__call2__(
attn,
hidden_states[:, 0, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
hidden_states = hidden_states.reshape(-1, nums_token, channel)
else:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height,
width,
device=self.device,
dtype=self.dtype,
)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, channel = hidden_states.shape
# print(hidden_states.shape)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
# else:
# encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def set_attention_processor(unet, id_length, is_ipadapter=False):
global attn_procs
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if name.startswith("up_blocks"):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
else:
attn_procs[name] = AttnProcessor()
else:
if is_ipadapter:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1,
num_tokens=4,
).to(unet.device, dtype=torch.float16)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = """
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
"""
def save_single_character_weights(unet, character, description, filepath):
"""
保存 attention_processor 类中的 id_bank GPU Tensor 列表到指定文件中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重要保存到的文件路径。
"""
weights_to_save = {}
weights_to_save["description"] = description
weights_to_save["character"] = character
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 将每个 Tensor 转到 CPU 并转为列表,以确保它可以被序列化
weights_to_save[attn_name] = {}
for step_key in attn_processor.id_bank[character].keys():
weights_to_save[attn_name][step_key] = [
tensor.cpu()
for tensor in attn_processor.id_bank[character][step_key]
]
# 使用torch.save保存权重
torch.save(weights_to_save, filepath)
def load_single_character_weights(unet, filepath):
"""
从指定文件中加载权重到 attention_processor 类的 id_bank 中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重文件的路径。
"""
# 使用torch.load来读取权重
weights_to_load = torch.load(filepath, map_location=torch.device("cpu"))
character = weights_to_load["character"]
description = weights_to_load["description"]
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 转移权重到GPU(如果GPU可用的话)并赋值给id_bank
attn_processor.id_bank[character] = {}
for step_key in weights_to_load[attn_name].keys():
attn_processor.id_bank[character][step_key] = [
tensor.to(unet.device)
for tensor in weights_to_load[attn_name][step_key]
]
def save_results(unet, img_list):
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
folder_name = f"results/{timestamp}"
weight_folder_name = f"{folder_name}/weights"
# 创建文件夹
if not os.path.exists(folder_name):
os.makedirs(folder_name)
os.makedirs(weight_folder_name)
for idx, img in enumerate(img_list):
file_path = os.path.join(folder_name, f"image_{idx}.png") # 图片文件名
img.save(file_path)
global character_dict
# for char in character_dict:
# description = character_dict[char]
# save_single_character_weights(unet,char,description,os.path.join(weight_folder_name, f'{char}.pt'))
#################################################
title = r"""
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ Click the <b>Submit</b> button to start customizing.
"""
article = r"""
If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{Zhou2024storydiffusion,
title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
year={2024}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE.
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
version = r"""
<h3 align="center">StoryDiffusion Version 0.02 (test version)</h3>
<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling.")</h5>
<h5 align="center">Tips: </h4>
"""
#################################################
global attn_count, total_count, id_length, total_length, cur_step, cur_model_type
global write
global sa32, sa64
global height, width
attn_count = 0
total_count = 0
cur_step = 0
id_length = 4
total_length = 5
cur_model_type = ""
global attn_procs, unet
attn_procs = {}
###
write = False
###
sa32 = 0.5
sa64 = 0.5
height = 768
width = 768
###
global pipe
global sd_model_path
pipe = None
sd_model_path = models_dict["Unstable"]["path"] # "SG161222/RealVisXL_V4.0"
single_files = models_dict["Unstable"]["single_files"]
### LOAD Stable Diffusion Pipeline
if single_files:
pipe = StableDiffusionXLPipeline.from_single_file(
sd_model_path, torch_dtype=torch.float16
)
else:
pipe = StableDiffusionXLPipeline.from_pretrained(
sd_model_path, torch_dtype=torch.float16, use_safetensors=False
)
pipe = pipe.to(device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
pipe.enable_vae_slicing()
if device != "mps":
pipe.enable_model_cpu_offload()
unet = pipe.unet
cur_model_type = "Unstable" + "-" + "original"
### Insert PairedAttention
for name in unet.attn_processors.keys():
cross_attention_dim = (
None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None and (name.startswith("up_blocks")):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
total_count += 1
else:
attn_procs[name] = AttnProcessor()
print("successsfully load paired self-attention")
print(f"number of the processor : {total_count}")
unet.set_attn_processor(copy.deepcopy(attn_procs))
global mask1024, mask4096
mask1024, mask4096 = cal_attn_mask_xl(
total_length,
id_length,
sa32,
sa64,
height,
width,
device=device,
dtype=torch.float16,
)
######### Gradio Fuction #############
def swap_to_gallery(images):
return (
gr.update(value=images, visible=True),
gr.update(visible=True),
gr.update(visible=False),
)
def upload_example_to_gallery(images, prompt, style, negative_prompt):
return (
gr.update(value=images, visible=True),
gr.update(visible=True),
gr.update(visible=False),
)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def remove_tips():
return gr.update(visible=False)
def apply_style_positive(style_name: str, positive: str):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
def apply_style(style_name: str, positives: list, negative: str = ""):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return [
p.replace("{prompt}", positive) for positive in positives
], n + " " + negative
def change_visiale_by_model_type(_model_type):
if _model_type == "Only Using Textual Description":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
elif _model_type == "Using Ref Images":
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
)
else:
raise ValueError("Invalid model type", _model_type)
def load_character_files(character_files: str):
if character_files == "":
raise gr.Error("Please set a character file!")
character_files_arr = character_files.splitlines()
primarytext = []
for character_file_name in character_files_arr:
character_file = torch.load(
character_file_name, map_location=torch.device("cpu")
)
primarytext.append(character_file["character"] + character_file["description"])
return array2string(primarytext)
def load_character_files_on_running(unet, character_files: str):
if character_files == "":
return False
character_files_arr = character_files.splitlines()
for character_file in character_files_arr:
load_single_character_weights(unet, character_file)
return True
######### Image Generation ##############
def process_generation(
_sd_type,
_model_type,
_upload_images,
_num_steps,
style_name,
_Ip_Adapter_Strength,
_style_strength_ratio,
guidance_scale,
seed_,
sa32_,
sa64_,
id_length_,
general_prompt,
negative_prompt,
prompt_array,
G_height,
G_width,
_comic_type,
font_choice,
_char_files,
): # Corrected font_choice usage
if len(general_prompt.splitlines()) >= 3:
raise gr.Error(
"Support for more than three characters is temporarily unavailable due to VRAM limitations, but this issue will be resolved soon."
)
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
if _model_type == "Photomaker" and "img" not in general_prompt:
raise gr.Error(
'Please add the triger word " img " behind the class word you want to customize, such as: man img or woman img'
)
if _upload_images is None and _model_type != "original":
raise gr.Error(f"Cannot find any input face image!")
global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type
global write
global cur_step, attn_count
global height, width
height = G_height
width = G_width
global pipe
global sd_model_path, models_dict
sd_model_path = models_dict[_sd_type]
use_safe_tensor = True
for attn_processor in pipe.unet.attn_processors.values():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
for values in attn_processor.id_bank.values():
del values
attn_processor.id_bank = {}
attn_processor.id_length = id_length
attn_processor.total_length = id_length + 1
gc.collect()
torch.cuda.empty_cache()
if cur_model_type != _sd_type + "-" + _model_type:
# apply the style template
##### load pipe
del pipe
gc.collect()
if device == "cuda":
torch.cuda.empty_cache()
model_info = models_dict[_sd_type]
model_info["model_type"] = _model_type
pipe = load_models(model_info, device=device, photomaker_path=photomaker_path)
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
##### ########################
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
cur_model_type = _sd_type + "-" + _model_type
pipe.enable_vae_slicing()
if device != "mps":
pipe.enable_model_cpu_offload()
else:
unet = pipe.unet
# unet.set_attn_processor(copy.deepcopy(attn_procs))
load_chars = load_character_files_on_running(unet, character_files=_char_files)
prompts = prompt_array.splitlines()
global character_dict, character_index_dict, invert_character_index_dict, ref_indexs_dict, ref_totals
character_dict, character_list = character_to_dict(general_prompt)
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(f"start_merge_step:{start_merge_step}")
generator = torch.Generator(device=device).manual_seed(seed_)
sa32, sa64 = sa32_, sa64_
id_length = id_length_
clipped_prompts = prompts[:]
nc_indexs = []
for ind, prompt in enumerate(clipped_prompts):
if "[NC]" in prompt:
nc_indexs.append(ind)
if ind < id_length:
raise gr.Error(
f"The first {id_length} row is id prompts, cannot use [NC]!"
)
prompts = [
prompt if "[NC]" not in prompt else prompt.replace("[NC]", "")
for prompt in clipped_prompts
]
prompts = [
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
]
print(prompts)
# id_prompts = prompts[:id_length]
(
character_index_dict,
invert_character_index_dict,
replace_prompts,
ref_indexs_dict,
ref_totals,
) = process_original_prompt(character_dict, prompts.copy(), id_length)
if _model_type != "original":
input_id_images_dict = {}
if len(_upload_images) != len(character_dict.keys()):
raise gr.Error(
f"You upload images({len(_upload_images)}) is not equal to the number of characters({len(character_dict.keys())})!"
)
for ind, img in enumerate(_upload_images):
input_id_images_dict[character_list[ind]] = [load_image(img)]
print(character_dict)
print(character_index_dict)
print(invert_character_index_dict)
# real_prompts = prompts[id_length:]
if device == "cuda":
torch.cuda.empty_cache()
write = True
cur_step = 0
attn_count = 0
# id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
# print(id_prompts)
setup_seed(seed_)
total_results = []
id_images = []
results_dict = {}
global cur_character
if not load_chars:
for character_key in character_dict.keys():
cur_character = [character_key]
ref_indexs = ref_indexs_dict[character_key]
print(character_key, ref_indexs)
current_prompts = [replace_prompts[ref_ind] for ref_ind in ref_indexs]
print(current_prompts)
setup_seed(seed_)
generator = torch.Generator(device=device).manual_seed(seed_)
cur_step = 0
cur_positive_prompts, negative_prompt = apply_style(
style_name, current_prompts, negative_prompt
)
if _model_type == "original":
id_images = pipe(
cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images
elif _model_type == "Photomaker":
id_images = pipe(
cur_positive_prompts,
input_id_images=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images
else:
raise NotImplementedError(
"You should choice between original and Photomaker!",
f"But you choice {_model_type}",
)
# total_results = id_images + total_results
# yield total_results
print(id_images)
for ind, img in enumerate(id_images):
print(ref_indexs[ind])
results_dict[ref_indexs[ind]] = img
# real_images = []
yield [results_dict[ind] for ind in results_dict.keys()]
write = False
if not load_chars:
real_prompts_inds = [
ind for ind in range(len(prompts)) if ind not in ref_totals
]
else:
real_prompts_inds = [ind for ind in range(len(prompts))]
print(real_prompts_inds)
for real_prompts_ind in real_prompts_inds:
real_prompt = replace_prompts[real_prompts_ind]
cur_character = get_ref_character(prompts[real_prompts_ind], character_dict)
print(cur_character, real_prompt)
setup_seed(seed_)
if len(cur_character) > 1 and _model_type == "Photomaker":
raise gr.Error(
"Temporarily Not Support Multiple character in Ref Image Mode!"
)
generator = torch.Generator(device=device).manual_seed(seed_)
cur_step = 0
real_prompt = apply_style_positive(style_name, real_prompt)
if _model_type == "original":
results_dict[real_prompts_ind] = pipe(
real_prompt,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images[0]
elif _model_type == "Photomaker":
results_dict[real_prompts_ind] = pipe(
real_prompt,
input_id_images=(
input_id_images_dict[cur_character[0]]
if real_prompts_ind not in nc_indexs
else input_id_images_dict[character_list[0]]
),
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
nc_flag=True if real_prompts_ind in nc_indexs else False,
).images[0]
else:
raise NotImplementedError(
"You should choice between original and Photomaker!",
f"But you choice {_model_type}",
)
yield [results_dict[ind] for ind in results_dict.keys()]
total_results = [results_dict[ind] for ind in range(len(prompts))]
if _comic_type != "No typesetting (default)":
captions = prompt_array.splitlines()
captions = [caption.replace("[NC]", "") for caption in captions]
captions = [
caption.split("#")[-1] if "#" in caption else caption
for caption in captions
]
font_path = os.path.join("fonts", font_choice)
font = ImageFont.truetype(font_path, int(45))
total_results = (
get_comic(total_results, _comic_type, captions=captions, font=font)
+ total_results
)
save_results(pipe.unet, total_results)
yield total_results
def array2string(arr):
stringtmp = ""
for i, part in enumerate(arr):
if i != len(arr) - 1:
stringtmp += part + "\n"
else:
stringtmp += part
return stringtmp
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
color_layout = gr.State([])
# gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Group(elem_id="main-image"):
prompts = []
colors = []
with gr.Column(visible=True) as gen_prompt_vis:
sd_type = gr.Dropdown(
choices=list(models_dict.keys()),
value="Unstable",
label="sd_type",
info="Select pretrained model",
)
model_type = gr.Radio(
["Only Using Textual Description", "Using Ref Images"],
label="model_type",
value="Only Using Textual Description",
info="Control type of the Character",
)
with gr.Group(visible=False) as control_image_input:
files = gr.Files(
label="Drag (Select) 1 or more photos of your face",
file_types=["image"],
)
uploaded_files = gr.Gallery(
label="Your images",
visible=False,
columns=5,
rows=1,
height=200,
)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(
value="Remove and upload new ones",
components=files,
size="sm",
)
general_prompt = gr.Textbox(
value="",
lines=2,
label="(1) Textual Description for Character",
interactive=True,
)
negative_prompt = gr.Textbox(
value="", label="(2) Negative_prompt", interactive=True
)
style = gr.Dropdown(
label="Style template",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
)
prompt_array = gr.Textbox(
lines=3,
value="",
label="(3) Comic Description (each line corresponds to a frame).",
interactive=True,
)
char_path = gr.Textbox(
lines=2,
value="",
visible=False,
label="(Optional) Character files",
interactive=True,
)
char_btn = gr.Button("Load Character files", visible=False)
with gr.Accordion("(4) Tune the hyperparameters", open=True):
font_choice = gr.Dropdown(
label="Select Font",
choices=[
f for f in os.listdir("./fonts") if f.endswith(".ttf")
],
value="Inkfree.ttf",
info="Select font for the final slide.",
interactive=True,
)
sa32_ = gr.Slider(
label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ",
minimum=0,
maximum=1.0,
value=0.5,
step=0.1,
)
sa64_ = gr.Slider(
label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ",
minimum=0,
maximum=1.0,
value=0.5,
step=0.1,
)
id_length_ = gr.Slider(
label="Number of id images in total images",
minimum=1,
maximum=4,
value=1,
step=1,
)
with gr.Row():
seed_ = gr.Slider(
label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1
)
randomize_seed_btn = gr.Button("🎲", size="sm")
num_steps = gr.Slider(
label="Number of sample steps",
minimum=20,
maximum=100,
step=1,
value=35,
)
G_height = gr.Slider(
label="height",
minimum=256,
maximum=1024,
step=32,
value=768,
)
G_width = gr.Slider(
label="width",
minimum=256,
maximum=1024,
step=32,
value=768,
)
comic_type = gr.Radio(
[
"No typesetting (default)",
"Four Pannel",
"Classic Comic Style",
],
value="Classic Comic Style",
label="Typesetting Style",
info="Select the typesetting style ",
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
style_strength_ratio = gr.Slider(
label="Style strength of Ref Image (%)",
minimum=15,
maximum=50,
step=1,
value=20,
visible=False,
)
Ip_Adapter_Strength = gr.Slider(
label="Ip_Adapter_Strength",
minimum=0,
maximum=1,
step=0.1,
value=0.5,
visible=False,
)
final_run_btn = gr.Button("Generate ! 😺")
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height="auto")
generated_information = gr.Markdown(
label="Generation Details", value="", visible=False
)
gr.Markdown(version)
model_type.change(
fn=change_visiale_by_model_type,
inputs=model_type,
outputs=[control_image_input, style_strength_ratio, Ip_Adapter_Strength],
)
files.upload(
fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]
)
remove_and_reupload.click(
fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]
)
char_btn.click(fn=load_character_files, inputs=char_path, outputs=[general_prompt])
randomize_seed_btn.click(
fn=lambda: random.randint(-1, MAX_SEED),
inputs=[],
outputs=seed_,
)
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information).then(
process_generation,
inputs=[
sd_type,
model_type,
files,
num_steps,
style,
Ip_Adapter_Strength,
style_strength_ratio,
guidance_scale,
seed_,
sa32_,
sa64_,
id_length_,
general_prompt,
negative_prompt,
prompt_array,
G_height,
G_width,
comic_type,
font_choice,
char_path,
],
outputs=out_image,
).then(fn=set_text_finished, outputs=generated_information)
gr.Examples(
examples=[
[
0,
0.5,
0.5,
2,
"[Bob] A man, wearing a black suit\n[Alice]a woman, wearing a white shirt",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string(
[
"[Bob] at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
"[Bob] on the road, near the forest",
"[Alice] is make a call at home # [Bob] invited [Alice] to join him on an adventure.",
"[NC]A tiger appeared in the forest, at night ",
"[NC] The car on the road, near the forest #They drives to the forest in search of treasure.",
"[Bob] very frightened, open mouth, in the forest, at night",
"[Alice] very frightened, open mouth, in the forest, at night",
"[Bob] and [Alice] running very fast, in the forest, at night",
"[NC] A house in the forest, at night #Suddenly, They discovers the treasure house!",
"[Bob] and [Alice] in the house filled with treasure, laughing, at night #He is overjoyed inside the house.",
]
),
"Comic book",
"Only Using Textual Description",
get_image_path_list("./examples/taylor"),
768,
768,
],
[
0,
0.5,
0.5,
2,
"[Bob] A man img, wearing a black suit\n[Alice]a woman img, wearing a white shirt",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string(
[
"[Bob] at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
"[Bob] on the road, near the forest",
"[Alice] is make a call at home # [Bob] invited [Alice] to join him on an adventure.",
"[NC] The car on the road, near the forest #They drives to the forest in search of treasure.",
"[NC]A tiger appeared in the forest, at night ",
"[Bob] very frightened, open mouth, in the forest, at night",
"[Alice] very frightened, open mouth, in the forest, at night",
"[Bob] running very fast, in the forest, at night",
"[NC] A house in the forest, at night #Suddenly, They discovers the treasure house!",
"[Bob] in the house filled with treasure, laughing, at night #They are overjoyed inside the house.",
]
),
"Comic book",
"Using Ref Images",
get_image_path_list("./examples/twoperson"),
1024,
1024,
],
[
1,
0.5,
0.5,
3,
"[Taylor]a woman img, wearing a white T-shirt, blue loose hair",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string(
[
"[Taylor]wake up in the bed",
"[Taylor]have breakfast",
"[Taylor]is on the road, go to company",
"[Taylor]work in the company",
"[Taylor]Take a walk next to the company at noon",
"[Taylor]lying in bed at night",
]
),
"Japanese Anime",
"Using Ref Images",
get_image_path_list("./examples/taylor"),
768,
768,
],
[
0,
0.5,
0.5,
3,
"[Bob]a man, wearing black jacket",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string(
[
"[Bob]wake up in the bed",
"[Bob]have breakfast",
"[Bob]is on the road, go to the company, close look",
"[Bob]work in the company",
"[Bob]laughing happily",
"[Bob]lying in bed at night",
]
),
"Japanese Anime",
"Only Using Textual Description",
get_image_path_list("./examples/taylor"),
768,
768,
],
[
0,
0.3,
0.5,
3,
"[Kitty]a girl, wearing white shirt, black skirt, black tie, yellow hair",
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
array2string(
[
"[Kitty]at home #at home, began to go to drawing",
"[Kitty]sitting alone on a park bench.",
"[Kitty]reading a book on a park bench.",
"[NC]A squirrel approaches, peeking over the bench. ",
"[Kitty]look around in the park. # She looks around and enjoys the beauty of nature.",
"[NC]leaf falls from the tree, landing on the sketchbook.",
"[Kitty]picks up the leaf, examining its details closely.",
"[NC]The brown squirrel appear.",
"[Kitty]is very happy # She is very happy to see the squirrel again",
"[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker",
]
),
"Japanese Anime",
"Only Using Textual Description",
get_image_path_list("./examples/taylor"),
768,
768,
],
],
inputs=[
seed_,
sa32_,
sa64_,
id_length_,
general_prompt,
negative_prompt,
prompt_array,
style,
model_type,
files,
G_height,
G_width,
],
# outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
# run_on_click=True,
label="😺 Examples 😺",
)
gr.Markdown(article)
demo.launch(server_name="0.0.0.0", share=True, show_error=True)
|