Spaces:
Runtime error
Runtime error
import torch | |
import torchvision | |
from torchvision.models import efficientnet_b2, EfficientNet_B2_Weights | |
from torchvision.models._api import WeightsEnum | |
from torch.hub import load_state_dict_from_url | |
from torch import nn | |
def get_state_dict(self, *args, **kwargs): | |
kwargs.pop("check_hash") | |
return load_state_dict_from_url(self.url, *args, **kwargs) | |
def create_effnetb2_model(num_classes:int=3, | |
seed:int=42): | |
"""Creates an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): number of classes in the classifier head. | |
Defaults to 3. | |
seed (int, optional): random seed value. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): EffNetB2 feature extractor model. | |
transforms (torchvision.transforms): EffNetB2 image transforms. | |
""" | |
# Create EffNetB2 pretrained weights, transforms and model | |
WeightsEnum.get_state_dict = get_state_dict | |
efficientnet_b2(weights=EfficientNet_B2_Weights.DEFAULT) | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = efficientnet_b2(weights=weights) | |
# Freeze all layers in base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Change classifier head with random seed for reproducibility | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes), | |
) | |
return model, transforms | |