import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names foodvision101_class_names_path = "class_names.txt" with open(foodvision101_class_names_path, "r") as f: class_names = [food.strip() for food in f.readlines()] # Model and transforms effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=101) # Load save weights effnetb2.load_state_dict( torch.load( f="09_pretrained_effnetb2_feature_extractor_food101.pth", map_location=torch.device("cpu") ) ) # Predict function def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(0) # Put model into eval mode, make prediction effnetb2.eval() with torch.inference_mode(): # Pass transformed image through the model pred_probs = torch.softmax(effnetb2(img), dim=1) # Create prediction label and prediction probability dictionary pred_labels_and_probs ={class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time # Gradio app # Create title, description and article title = "FoodVision 101 Learning Practice" description = "An EfficientNetB2 feature extractor computer vision model to classify images" article = "Created at PyTorch Model Deployment" # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo= gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=3, label="Predicitons"), gr.Number(label="Prediction Time (s)")], examples=example_list, title=title, description=description, article=article) # Launching the demo demo.launch()