from openai import OpenAI import tiktoken import re from get_articles import save_solr_articles_full from rerank import crossencoder_rerank_answer import logging from logging.handlers import RotatingFileHandler import os # Configure logging logger = logging.getLogger("TobaccoInfoAssistant") logger.setLevel(logging.INFO) handler = RotatingFileHandler( "tobacco_info_assistant.log", maxBytes=10 * 1024 * 1024, backupCount=3 ) formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) # Initialize OpenAI client client = OpenAI() def num_tokens_from_string(string: str, encoder) -> int: num_tokens = len(encoder.encode(string)) return num_tokens def feed_articles_to_gpt_with_links(information, question): prompt = """ You are a Question Answering system specializing in tobacco-related topics. You have access to several curated articles, each numbered (e.g., Article 1, Article 2). These articles cover various aspects of tobacco use, health effects, legislation, and quitting resources. When formulating your response, adhere to the following guidelines: 1. Use information from the provided articles to directly answer the question. Explicitly reference the article(s) used in your response by stating the article number(s) (e.g., "According to Article 1, ..." or "Articles 2 and 3 mention that..."). 2. If the answer is not covered by any of the articles, clearly state that the information is unavailable. Do not guess or fabricate information. 3. Avoid using ambiguous time references like 'recently' or 'last year.' Instead, use absolute terms based on the article's content (e.g., 'In 2021' or 'As per Article 2, published in 2020'). 4. Keep responses concise, accurate, and helpful while maintaining a professional tone. Below is a list of articles you can reference. Each article is identified by its number and content: """ end_prompt = "\n----------------\n" prompt += end_prompt content = "" separator = "<<<<>>>>" token_count = 0 # Encoder setup for token count tracking encoder = tiktoken.encoding_for_model("gpt-3.5-turbo") token_count += num_tokens_from_string(prompt, encoder) # Add articles to the prompt articles = [contents for score, contents, uuids, titles, domains, published_dates in information] uuids = [uuids for score, contents, uuids, titles, domains, published_dates in information] titles_list = [titles for score, contents, uuids, titles, domains, published_dates in information] domains_list = [domains for score, contents, uuids, titles, domains, published_dates in information] published_dates = [published_dates for score, contents, uuids, titles, domains, published_dates in information] logger.info(f"Article retrieved: {len(articles)}") logger.info(f"Article titles: {titles_list}") for i in range(len(articles)): addition = f"Article {i + 1}: {articles[i]} {separator}" token_count += num_tokens_from_string(addition, encoder) if token_count > 3500: break content += addition prompt += content logger.info(f"Prompt: {prompt}") messages = [ {"role": "system", "content": prompt}, {"role": "user", "content": question} ] completion = client.chat.completions.create( model="gpt-4o-mini", messages=messages, temperature=0 ) response_content = completion.choices[0].message.content logger.info(f"LLM Response Content: {response_content}") # Extract sources from the response content inline_matches = re.findall(r'Article \d+', response_content) parenthetical_matches = re.findall(r'\(Article \d+\)', response_content) if not (inline_matches or parenthetical_matches): return response_content, [], [], [], [] # Combine and get unique article numbers all_matches = inline_matches + [m.strip('()') for m in parenthetical_matches] unique_articles = list(set(all_matches)) used_article_nums = [int(re.findall(r'\d+', match)[0]) - 1 for match in unique_articles] # Create citation mapping citation_map = {} citations = [] for idx, article_num in enumerate(used_article_nums, start=1): original = f"Article {article_num + 1}" citation_map[original] = f"[{idx}]" publication_date = published_dates[article_num] if published_dates[article_num] else "Unknown Date" citation = f"[{idx}] {titles_list[article_num]} ({domains_list[article_num]}) {publication_date}" citations.append(citation) # Replace all article references with citation numbers modified_response = response_content for original, citation_num in citation_map.items(): # Replace both inline and parenthetical references modified_response = modified_response.replace(f"({original})", citation_num) modified_response = modified_response.replace(original, citation_num) # Format final response with citations response_with_citations = ( f"{modified_response}\n\n" f"References:\n" f"{chr(10).join(citations)}" ) # Prepare links only for cited articles cited_links = [] cited_titles = [] cited_domains = [] cited_published_dates = [] for article_num in used_article_nums: uuid = uuids[article_num] link = f"https://tobaccowatcher.globaltobactocontrol.org/articles/{uuid}/" cited_links.append(link) cited_titles.append(titles_list[article_num]) cited_domains.append(domains_list[article_num]) cited_published_dates.append(published_dates[article_num]) return response_with_citations, cited_links, cited_titles, cited_domains, cited_published_dates if __name__ == "__main__": question = "How is United States fighting against tobacco addiction?" rerank_type = "crossencoder" llm_type = "chat" from get_articles import save_solr_articles_full from rerank import crossencoder_rerank_answer csv_path = save_solr_articles_full(question, 15, keyword_type="rake") reranked_out = crossencoder_rerank_answer(csv_path, question) feed_articles_to_gpt_with_links(reranked_out, question)