Spaces:
Sleeping
Sleeping
File size: 10,674 Bytes
9fc6d1f e42f508 52e4886 e42f508 cdd8e95 e42f508 52e4886 637fb50 e42f508 d0caafa 52e4886 e42f508 7e2ac9b cdd8e95 e42f508 52e4886 e42f508 7e2ac9b 52e4886 cdd8e95 52e4886 619a226 52e4886 b9f8ea0 cdd8e95 b9f8ea0 e42f508 52e4886 e42f508 52e4886 7e2ac9b e42f508 b9f8ea0 e42f508 52e4886 a785f2a 4611bf9 e42f508 9fc6d1f e42f508 52e4886 9fc6d1f 52e4886 9fc6d1f 52e4886 619a226 52e4886 9fc6d1f 52e4886 9fc6d1f 52e4886 9fc6d1f 52e4886 7e2ac9b e42f508 52e4886 7e2ac9b 52e4886 9fc6d1f e42f508 52e4886 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import base64
import streamlit as st
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
import requests
from gradio_client import Client
import datetime as dt
import urllib.parse
st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
API_TOKEN = st.secrets['HF_TOKEN']
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
headers = {"Authorization": f"Bearer {str(API_TOKEN)}"}
def get_text():
input_text = st.text_input("You: ", "", key="input")
return input_text
soil_types = {
"Sais plain": "Brown limestone, vertisols, lithosols, and regosols",
"Chaouïa, Doukkala, and Abda plains": "Rendzines associated with lithosols in the Atlantic coast and isohumic and vertisols inland",
"Eastern High Plateaux and Moulouya Valley": "Sierozems and fluvisols",
"Rif": "Brown soils associated with lithosols and regosols or vertisols",
"Mamora and Zemmour plateau": "Sandy soil",
"Middle Atlas": "Brown soils and rendzinas",
"High Atlas": "Lithosols and regosols, in association with brown soils and sierozems",
"Loukkos": "Mostly gleysols and brunified",
"Rharb plain": "Gleysols and vertisols",
"Central plateau": "In forested areas, soils are brown associated with lithosols and regosols. Elsewhere (Zaer), vertisols and gleysols dominate",
"Plains and plateaux of north of the Atlas": "Lithosols (Rehamnas, Jebilete), sierozems associated with lithosols",
"Argan zone": "Soils are mostly lithosols and regosols, associated with fluvisols and saline soils on lowlands",
"Presaharan soils": "Lithosols and regosols in association with sierozems and regs",
"Saharan zone": "Yermosols, associated with sierozems, lithosols, and saline soils"
}
def get_weather_data(city):
base_url = "http://api.openweathermap.org/data/2.5/weather?"
api_key = "84f9ed7c3738f567e5f1cbf2068d96a6" # API key
encoded_api_key = urllib.parse.quote(api_key) # URL encoding the API key
url = base_url + "appid=" + encoded_api_key + "&q=" + city
try:
response = requests.get(url)
response.raise_for_status()
weather_data = response.json()
# Processing the weather data
temp_kelvin = weather_data['main']['temp']
humidity = weather_data['main']['humidity']
weather_condition = weather_data['weather'][0]['description']
# Converting temperature to Celsius
temp_celsius = temp_kelvin - 273.15
return {
"temperature": f"{temp_celsius:.2f}C",
"humidity": f"{humidity}%",
"weather_condition": weather_condition
}
except requests.exceptions.HTTPError as err:
print(f"HTTP error: {err}")
return None
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# Example usage
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def translate(text,source="English",target="Moroccan Arabic"):
client = Client("https://facebook-seamless-m4t-v2-large.hf.space/--replicas/2bmbx/")
result = client.predict(
text, # str in 'Input text' Textbox component
source, # Literal[Afrikaans, Amharic, Armenian, Assamese, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Burmese, Cantonese, Catalan, Cebuano, Central Kurdish, Croatian, Czech, Danish, Dutch, Egyptian Arabic, English, Estonian, Finnish, French, Galician, Ganda, Georgian, German, Greek, Gujarati, Halh Mongolian, Hebrew, Hindi, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kyrgyz, Lao, Lithuanian, Luo, Macedonian, Maithili, Malayalam, Maltese, Mandarin Chinese, Marathi, Meitei, Modern Standard Arabic, Moroccan Arabic, Nepali, North Azerbaijani, Northern Uzbek, Norwegian Bokmål, Norwegian Nynorsk, Nyanja, Odia, Polish, Portuguese, Punjabi, Romanian, Russian, Serbian, Shona, Sindhi, Slovak, Slovenian, Somali, Southern Pashto, Spanish, Standard Latvian, Standard Malay, Swahili, Swedish, Tagalog, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Vietnamese, Welsh, West Central Oromo, Western Persian, Yoruba, Zulu] in 'Source language' Dropdown component
target, # Literal[Afrikaans, Amharic, Armenian, Assamese, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Burmese, Cantonese, Catalan, Cebuano, Central Kurdish, Croatian, Czech, Danish, Dutch, Egyptian Arabic, English, Estonian, Finnish, French, Galician, Ganda, Georgian, German, Greek, Gujarati, Halh Mongolian, Hebrew, Hindi, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kyrgyz, Lao, Lithuanian, Luo, Macedonian, Maithili, Malayalam, Maltese, Mandarin Chinese, Marathi, Meitei, Modern Standard Arabic, Moroccan Arabic, Nepali, North Azerbaijani, Northern Uzbek, Norwegian Bokmål, Norwegian Nynorsk, Nyanja, Odia, Polish, Portuguese, Punjabi, Romanian, Russian, Serbian, Shona, Sindhi, Slovak, Slovenian, Somali, Southern Pashto, Spanish, Standard Latvian, Standard Malay, Swahili, Swedish, Tagalog, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Vietnamese, Welsh, West Central Oromo, Western Persian, Yoruba, Zulu] in 'Target language' Dropdown component
api_name="/t2tt"
)
print(result)
return result
# Function to generate a response from the chatbot
def generate_response(user_input,region):
city = "Fez"
weather_info = get_weather_data(city)
if weather_info:
print(weather_info)
user_input_translated = str(translate(user_input, "Moroccan Arabic", "English"))
name = 'Fellah(a)'
date = 'December'
location = 'Fes, Morocco'
soil_type = soil_types[region] # Use the selected region's soil type
humidity = weather_info["humidity"]
weather = weather_info["weather_condition"]
temp = weather_info["temperature"]
# agriculture = 'olives'
# Add your chatbot logic here
# For simplicity, the bot echoes the user's input in this example
instruction = f'''
<s> [INST] You are an agriculture expert, and my name is {name} Given the following informations, prevailing weather conditions, specific land type, chosen type of agriculture, and soil composition of a designated area, answer the question below
Location: {location},
Current Month : {date}
land type: {soil_types[region]}
humidity: {humidity}
weather: {weather}
temperature: {temp}
Question: {user_input_translated}[/INST]</s>
'''
prompt = f'''
You are an agriculture expert, Given the following informations, geographical coordinates (latitude and longitude), prevailing weather conditions, specific land type, chosen type of agriculture, and soil composition of a designated area, request the LLM to provide detailed insights and predictions on optimal agricultural practices, potential crop yields, and recommended soil management strategies, or answer the question below
Location: {location},
land type: {soil_type}
humidity: {humidity}
weather: {weather}
temperature: {temp}
'''
# output = query({"inputs": f'''
# PROMPT: {prompt}
# QUESTION: {user_input}
# ANSWER:
# ''',})
output = query({"inputs": instruction, "parameters":{"max_new_tokens":250, "temperature":1, "return_full_text":False}})
# print(headers)
print(instruction)
print(output)
return f"Bot: {translate(output[0]['generated_text'])}"
def sidebar_bg(side_bg):
side_bg_ext = 'png'
st.markdown(
f"""
<style>
[data-testid="stSidebar"] > div:first-child {{
background: url(data:image/{side_bg_ext};base64,{base64.b64encode(open(side_bg, "rb").read()).decode()});
}}
</style>
""",
unsafe_allow_html=True,
)
def main():
# Sidebar contents
with st.sidebar:
st.title('Smart فْلاّح 🌱👩🏻🌾')
st.markdown('''
## About
Smart فلاح , an innovative AI-based platform developed in Morocco, uses machine learning, image processing, and harnesses the power of Large Language Models to offer real-time crop insights to farmers in a customized and friendly way. This solution is tailored to the unique agricultural landscape and challenges of Morocco or Africa.
💡 Note: No API key required!
''')
add_vertical_space(5)
st.write('Made with ❤️ by [llama-crew](https://huggingface.co/llama-crew)')
#st.write('Made with ❤️ by [llama-crew](https://hf.co/medmac01)')
# Generate empty lists for generated and past.
## generated stores AI generated responses
if 'generated' not in st.session_state:
st.session_state['generated'] = ["واحد السلام عليكم 👋🏻، كيفاش نقدر نعاونك؟"]
## past stores User's questions
if 'past' not in st.session_state:
st.session_state['past'] = ['سلام!']
# sidebar_bg('bg.jpg')
# Layout of input/response containers
input_container = st.container()
selected_region = st.selectbox("Choose a region:", list(soil_types.keys()))
if st.button("Clear Chat"):
st.session_state['past'] = []
st.session_state['generated'] = []
colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
# User input
## Function for taking user provided prompt as input
## Applying the user input box
with input_container:
user_input = get_text()
# Response output
## Function for taking user prompt as input followed by producing AI generated responses
## Conditional display of AI generated responses as a function of user provided prompts
with response_container:
if user_input:
response = generate_response(user_input,str(selected_region))
st.session_state.past.append(user_input)
st.session_state.generated.append(response)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])):
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user', logo="https://i.pinimg.com/originals/d5/b2/13/d5b21384ccaaa6f9ef32986f17c50638.png")
message(st.session_state["generated"][i], key=str(i), logo= "https://emojiisland.com/cdn/shop/products/Robot_Emoji_Icon_7070a254-26f7-4a54-8131-560e38e34c2e_large.png?v=1571606114")
if __name__ == "__main__":
main() |