File size: 9,477 Bytes
3bd5293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from tensorflow_addons.utils import types
from typeguard import typechecked
import tensorflow as tf
import numpy as np
import pickle

def splitListIntoChunks(data, numChunks):
    chunkSize = int(len(data) / numChunks)
    chunks = []
    for i in range(numChunks - 1):
        start, end = i * chunkSize, (i + 1) * chunkSize
        chunks.append(data[start:end])

    chunks.append(data[end:])
    return chunks


def splitIntoValueChunks(data, numChunks, getValueFunc):
    values = [getValueFunc(d) for d in data]
    minValue, maxValue = np.min(values), np.max(values)
    chunkSize = (maxValue - minValue) / float(numChunks)

    data.sort(key=lambda x: getValueFunc(x))
    sizeCeil = minValue + chunkSize
    chunks, currentChunkIndex = [[]], 0
    for d in data:
        v = getValueFunc(d)
        while (v > sizeCeil):
            chunks.append([])
            sizeCeil += chunkSize
            currentChunkIndex += 1
        chunks[currentChunkIndex].append(d)

    return chunks


def startGraphLogging():
    from datetime import datetime
    stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
    logdir = 'logs/func/%s' % stamp
    writer = tf.summary.create_file_writer(logdir)
    tf.summary.trace_on(graph=True, profiler=True)
    return writer, logdir


def finishGraphLogging(writer, logdir):
    with writer.as_default():
        tf.summary.trace_export(
            name="my_func_trace",
            step=0,
            profiler_outdir=logdir)


class CustomSaveCallBack(tf.keras.callbacks.Callback):

    def __init__(self, saveName, saveInterval=10, firstSavePoint=-1):
        super().__init__()
        self.saveName = saveName
        self.saveInterval = saveInterval
        self.firstSavePoint = saveInterval if firstSavePoint < 0 else firstSavePoint
        self.saveCounter = 0

    def on_epoch_end(self, epoch, logs=None):
        if (epoch + 1 >= self.firstSavePoint):
            if (self.saveCounter % self.saveInterval == 0):
                print("Saving model!")
                self.model.save_weights(self.saveName.format(epoch + 1))

            self.saveCounter += 1


def saveTokenizer(base='gpt2', dumpPath='GPT2-Tokenizer.pkl'):
    import transformers
    tokenizer = transformers.AutoTokenizer.from_pretrained(base)
    with open(dumpPath, 'wb') as fp:
        pickle.dump(tokenizer, fp)


def loadTokenizer(dumpPath='GPT2-Tokenizer.pkl'):
    with open(dumpPath, 'rb') as fp:
        return pickle.load(fp)


class GradientAccumulator(tf.keras.optimizers.Optimizer):
    """Optimizer wrapper for gradient accumulation."""

    @typechecked
    def __init__(
            self,
            inner_optimizer: types.Optimizer,
            accum_steps: types.TensorLike = 4,
            name: str = "GradientAccumulator",
            **kwargs,
    ):
        r"""Construct a new GradientAccumulator optimizer.
        Args:
            inner_optimizer: str or `tf.keras.optimizers.Optimizer` that will be
                used to compute and apply gradients.
            accum_steps: int > 0. Update gradient in every accumulation steps.
            name: Optional name for the operations created when applying
                gradients. Defaults to "GradientAccumulator".
            **kwargs: keyword arguments. Allowed to be {`clipnorm`,
                `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
                norm; `clipvalue` is clip gradients by value, `decay` is
                included for backward compatibility to allow time inverse
                decay of learning rate. `lr` is included for backward
                compatibility, recommended to use `learning_rate` instead.
        """
        super().__init__(name, **kwargs)
        self._optimizer = tf.keras.optimizers.get(inner_optimizer)
        self._gradients = []
        self._accum_steps = accum_steps
        self._step = None
        self._iterations = self._optimizer.iterations

    def _create_slots(self, var_list):
        self._optimizer._create_slots(var_list=var_list)
        for var in var_list:
            self.add_slot(var, "ga")

        self._gradients = [self.get_slot(var, "ga") for var in var_list]

    @property
    def step(self):
        """Variable. The number of training steps this Optimizer has run."""
        if self._step is None:
            with self._distribution_strategy_scope():
                self._step = self.add_weight(
                    "iter",
                    shape=[],
                    initializer="ones",
                    dtype=tf.int64,
                    trainable=False,
                    aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
                )
            self._weights.append(self._step)
        return self._step

    @step.setter
    def step(self, variable):
        if self._step is not None:
            raise RuntimeError(
                "Cannot set `step` to a new Variable after "
                "the Optimizer weights have been created"
            )
        self._step = variable
        self._weights.append(self._step)

    @property
    def gradients(self):
        """The accumulated gradients on the current replica."""
        if not self._gradients:
            raise ValueError(
                "The accumulator should be called first to initialize the gradients"
            )
        return list(
            gradient.read_value() if gradient is not None else gradient
            for gradient in self._gradients
        )

    def apply_gradients(self, grads_and_vars, name=None, **kwargs):
        train_op = super().apply_gradients(grads_and_vars, name, **kwargs)
        with tf.control_dependencies([train_op]):
            with tf.control_dependencies(
                    [
                        self._optimizer.iterations.assign_add(
                            tf.cast(
                                tf.where(self.step % self._accum_steps == 0, 1, 0), tf.int64
                            ),
                            read_value=False,
                        )
                    ]
            ):
                return self.step.assign_add(1, read_value=False)

    def _resource_apply_dense(self, grad, var, apply_state=None):
        accum_gradient = self.get_slot(var, "ga")
        if accum_gradient is not None and grad is not None:
            accum_gradient.assign_add(
                grad, use_locking=self._use_locking, read_value=False
            )

        return self._apply_grad(accum_gradient, var, apply_state)

    def _resource_apply_sparse(self, grad: types.TensorLike, var, indices, apply_state):
        accum_gradient = self.get_slot(var, "ga")
        if accum_gradient is not None and grad is not None:
            self._resource_scatter_add(accum_gradient, indices, grad)

        return self._apply_grad(accum_gradient, var, apply_state)

    def _apply_grad(self, accum_gradient, var, apply_state):
        grad = tf.where(
            self.step % self._accum_steps == 0,
            accum_gradient,
            tf.zeros_like(var),
        )
        if "apply_state" in self._optimizer._dense_apply_args:
            train_op = self._optimizer._resource_apply_dense(
                grad,
                var,
                apply_state=apply_state,
            )
        else:
            train_op = self._optimizer._resource_apply_dense(grad, var)
        reset_val = tf.where(
            grad == accum_gradient, tf.zeros_like(accum_gradient), accum_gradient
        )
        reset_op = accum_gradient.assign(
            reset_val,
            use_locking=self._use_locking,
            read_value=False,
        )

        return tf.group(train_op, reset_op)

    def reset(self):
        """Resets the accumulated gradients on the current replica."""
        assign_ops = []
        if not self._gradients:
            return assign_ops

        for gradient in self._gradients:
            if gradient is not None:
                assign_ops.append(
                    gradient.assign(
                        tf.zeros_like(gradient),
                        use_locking=self._use_locking,
                        read_value=False,
                    )
                )

        return tf.group(assign_ops)

    @property
    def inner_optimizer(self):
        """The optimizer that this LossScaleOptimizer is wrapping."""
        return self._optimizer

    @property
    def iterations(self):
        return self._optimizer.iterations

    @iterations.setter
    def iterations(self, variable):
        self._optimizer.iterations = variable

    @property
    def lr(self):
        return self._optimizer._get_hyper("learning_rate")

    @lr.setter
    def lr(self, lr):
        self._optimizer._set_hyper("learning_rate", lr)  #

    @property
    def learning_rate(self):
        return self._optimizer._get_hyper("learning_rate")

    @learning_rate.setter
    def learning_rate(self, learning_rate):
        self._optimizer._set_hyper("learning_rate", learning_rate)

    def get_config(self):
        config = {
            "accum_steps": self._accum_steps,
            "optimizer": tf.keras.optimizers.serialize(self._optimizer),
        }
        base_config = super().get_config()
        return {**base_config, **config}

    @classmethod
    def from_config(cls, config, custom_objects=None):
        optimizer = tf.keras.optimizers.deserialize(
            config.pop("optimizer"), custom_objects=custom_objects
        )
        return cls(optimizer, **config)