diff --git a/.DS_Store b/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..6ccbdf13744b1496732289c35825e511486f7046
Binary files /dev/null and b/.DS_Store differ
diff --git a/Multilingual_CLIP/HISTORY.md b/Multilingual_CLIP/HISTORY.md
new file mode 100644
index 0000000000000000000000000000000000000000..eb89ba679e75e4cf86a206160fc9df7d4b224187
--- /dev/null
+++ b/Multilingual_CLIP/HISTORY.md
@@ -0,0 +1,39 @@
+## 1.0.10
+
+* it works
+
+## 1.0.8
+
+* small fix
+
+## 1.0.7
+
+* small fix
+
+## 1.0.6
+
+* small fix
+
+## 1.0.5
+
+* small fix
+
+## 1.0.4
+
+* small fix
+
+## 1.0.3
+
+* rename all mentions to multilingual_clip
+
+## 1.0.2
+
+* Multilingual-clip
+
+## 1.0.1
+
+* name it m-clip
+
+## 1.0.0
+
+* first pypi release of multilingual_clip
diff --git a/Multilingual_CLIP/Images/Multilingual-CLIP.png b/Multilingual_CLIP/Images/Multilingual-CLIP.png
new file mode 100644
index 0000000000000000000000000000000000000000..42ac4bd627c6223ada303e3b5aec35b62418bd89
Binary files /dev/null and b/Multilingual_CLIP/Images/Multilingual-CLIP.png differ
diff --git a/Multilingual_CLIP/Images/Orange Apple.png b/Multilingual_CLIP/Images/Orange Apple.png
new file mode 100644
index 0000000000000000000000000000000000000000..69440ee768f20581408039db5c68a6a2cb4eaba2
Binary files /dev/null and b/Multilingual_CLIP/Images/Orange Apple.png differ
diff --git a/Multilingual_CLIP/Images/Smile.jpg b/Multilingual_CLIP/Images/Smile.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4a861606030540cb9e91fa6191a1cbd7490cbf67
Binary files /dev/null and b/Multilingual_CLIP/Images/Smile.jpg differ
diff --git a/Multilingual_CLIP/Images/bananas.jpg b/Multilingual_CLIP/Images/bananas.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5985e790280304360bb4038bbaff824840bf27b5
Binary files /dev/null and b/Multilingual_CLIP/Images/bananas.jpg differ
diff --git a/Multilingual_CLIP/Images/fruit bowl.jpg b/Multilingual_CLIP/Images/fruit bowl.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e4a2f5470a84c175b84485a6f9debba4078ae33d
Binary files /dev/null and b/Multilingual_CLIP/Images/fruit bowl.jpg differ
diff --git a/Multilingual_CLIP/Images/green apple.jpg b/Multilingual_CLIP/Images/green apple.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..128029c3474be072c0862faba605b7293db32ddc
Binary files /dev/null and b/Multilingual_CLIP/Images/green apple.jpg differ
diff --git a/Multilingual_CLIP/Images/happy person.jpg b/Multilingual_CLIP/Images/happy person.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92a3a3768b944db52b42355ddc0c76a27aa5a055
Binary files /dev/null and b/Multilingual_CLIP/Images/happy person.jpg differ
diff --git a/Multilingual_CLIP/Images/man on bike.jpg b/Multilingual_CLIP/Images/man on bike.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6e1df1b63d3634b6bfb8a70465bddbca06852e64
Binary files /dev/null and b/Multilingual_CLIP/Images/man on bike.jpg differ
diff --git a/Multilingual_CLIP/Images/purple apple.png b/Multilingual_CLIP/Images/purple apple.png
new file mode 100644
index 0000000000000000000000000000000000000000..5af8ec888b33f4f509fca165e499b3a41607b278
Binary files /dev/null and b/Multilingual_CLIP/Images/purple apple.png differ
diff --git a/Multilingual_CLIP/Images/red apple.jpg b/Multilingual_CLIP/Images/red apple.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fc56191210d91507ac53c29b342d86701ad951a1
Binary files /dev/null and b/Multilingual_CLIP/Images/red apple.jpg differ
diff --git a/Multilingual_CLIP/Images/sad.jpg b/Multilingual_CLIP/Images/sad.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0546cb407173ad429843a7fab5603addbc30c1c3
Binary files /dev/null and b/Multilingual_CLIP/Images/sad.jpg differ
diff --git a/Multilingual_CLIP/LICENSE b/Multilingual_CLIP/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..1fff6a0157b950db4dc6729c9f2c50a10a9d3e82
--- /dev/null
+++ b/Multilingual_CLIP/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 Fredrik Carlsson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/Multilingual_CLIP/Makefile b/Multilingual_CLIP/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..fdc6d91fd5eaf10f98a4e7c3522df0f3f28cd44d
--- /dev/null
+++ b/Multilingual_CLIP/Makefile
@@ -0,0 +1,3 @@
+install: ## [Local development] Upgrade pip, install requirements, install package.
+ python -m pip install -U pip
+ python -m pip install -e .
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Fine-Tune-Languages.md b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Fine-Tune-Languages.md
new file mode 100644
index 0000000000000000000000000000000000000000..a14482e1b50c4ee52baf5197e6819885b344f208
--- /dev/null
+++ b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Fine-Tune-Languages.md
@@ -0,0 +1,42 @@
+### List of languages included during CLIP fine-tuning
+
+* Albanian
+* Amharic
+* Arabic
+* Azerbaijani
+* Bengali
+* Bulgarian
+* Catalan
+* Chinese (Simplified)
+* Chinese (Traditional)
+* Dutch
+* English
+* Estonian
+* Farsi
+* French
+* Georgian
+* German
+* Greek
+* Hindi
+* Hungarian
+* Icelandic
+* Indonesian
+* Italian
+* Japanese
+* Kazakh
+* Korean
+* Latvian
+* Macedonian
+* Malay
+* Pashto
+* Polish
+* Romanian
+* Russian
+* Slovenian
+* Spanish
+* Swedish
+* Tagalog
+* Thai
+* Turkish
+* Urdu
+* Vietnamese
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/French-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/French-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..df4c13fb815c56776b4dcc7268eddbed2a9cb1ff
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/French-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/German-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/German-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..f9fdde75a8a4353f34df28af300c7727a7af762b
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/German-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Greek-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Greek-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c6f1293ed355a68ba67af01c6f096cd1ad53bf2
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Greek-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Kannada-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Kannada-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..10900f23bc023282c7cea9b0c168ba56e8dd7cae
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Kannada-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/M-Swedish-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/M-Swedish-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..bb98158666146caea9266e685cdd91ddf17731dc
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/M-Swedish-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Russian-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Russian-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..a3ddaf6d91c658cef3fbdd331dadac2b5060f397
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Russian-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Spanish-Both.png b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Spanish-Both.png
new file mode 100644
index 0000000000000000000000000000000000000000..ab705fb2970001ee1ca05851f0631b8a500f62b9
Binary files /dev/null and b/Multilingual_CLIP/Model Cards/M-BERT Base 69/Images/Spanish-Both.png differ
diff --git a/Multilingual_CLIP/Model Cards/M-BERT Base 69/README.md b/Multilingual_CLIP/Model Cards/M-BERT Base 69/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9ad3080d571fa1b9e789255e7eb0bdcbc7c94b81
--- /dev/null
+++ b/Multilingual_CLIP/Model Cards/M-BERT Base 69/README.md
@@ -0,0 +1,74 @@
+
+
+
M-BERT Base 69
+
+
+ Huggingface Model
+ ·
+ Huggingface Base Model
+
+
+
+## Usage
+To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
+Once this is done, you can load and use the model with the following code
+```python
+from multilingual_clip import multilingual_clip
+
+model = multilingual_clip.load_model('M-BERT-Base-69')
+embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
+print(embeddings.shape)
+# Yields: torch.Size([3, 640])
+```
+
+
+## About
+A [bert-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for 69 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder.
+A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 69 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
+
+Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
+All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
+
+
+## About
+A [bert-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for 69 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder.
+A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 69 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
+
+Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
+All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
+
+
+## About
+A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for 40 languages, to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder.
+A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 40 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md).
+
+Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
+All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages.
+
+
+## Evaluation
+A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons.
+When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
+
+The qualitative test was organized into two sets of images and their corresponding text descriptions. The texts were manually translated into each different test languages, where the two sets include the following images:
+#### Set Nr 1
+* A man on a motorcycle
+* A green apple
+* A bowl of fruits
+* A bunch of bananas hanging from a tree
+* A happy person laughing/smiling
+* A sad person crying
+#### Set Nr 2
+The second set included only images of fruits, and non-realistic photoshopped images, in an attempt to increase the difficulty.
+* A green apple
+* A red apple
+* A purple apple (photoshopped)
+* A orange apple (photoshopped)
+* A bowl of fruits
+* A bunch of bananas hanging from a tree
+
+### Results
+The results depicted below are formatted so that each column represents the Softmax prediction over all the texts given the corresponding image. The images and matchings texts are ordered identically, hence a perfect solution would have 100 across the diagonal.
+
+#### French
+![Alt](Images/French-Both.png)
+#### German
+![Alt](Images/German-Both.png)
+#### Spanish
+![Alt](Images/Spanish-Both.png)
+#### Russian
+![Alt](Images/Russian-Both.png)
+#### Swedish
+![Alt](Images/M-Swedish-Both.png)
+#### Greek
+![Alt](Images/Greek-Both.png)
+#### Kannada
+Kannada was not included in the 40 fine-tuning languages, but included during language modelling pre-training
+![Alt](Images/Kannada-Both.png)
+
diff --git a/Multilingual_CLIP/Model Cards/Swe-CLIP 2M/README.md b/Multilingual_CLIP/Model Cards/Swe-CLIP 2M/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a479887e8936d25467dde7dcfac0972c6252570d
--- /dev/null
+++ b/Multilingual_CLIP/Model Cards/Swe-CLIP 2M/README.md
@@ -0,0 +1,29 @@
+
+
+
Swe-CLIP 2M
+
+
+ Huggingface Model
+ ·
+ Huggingface Base Model
+
+
+
+## Usage
+To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
+Once this is done, you can load and use the model with the following code
+```python
+from multilingual_clip import multilingual_clip
+
+model = multilingual_clip.load_model('Swe-CLIP-2M')
+embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta'])
+print(embeddings.shape)
+# Yields: torch.Size([2, 640])
+```
+
+
+## About
+A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder.
+
+Training data pairs was generated by sampling 2 Million sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish.
+All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
diff --git a/Multilingual_CLIP/Model Cards/Swe-CLIP 500k/README.md b/Multilingual_CLIP/Model Cards/Swe-CLIP 500k/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e04cf47e3da9b7ecf97bdea2a85c4683d96df5e7
--- /dev/null
+++ b/Multilingual_CLIP/Model Cards/Swe-CLIP 500k/README.md
@@ -0,0 +1,29 @@
+
+
+
Swe-CLIP 500k
+
+
+ Huggingface Model
+ ·
+ Huggingface Base Model
+
+
+
+## Usage
+To use this model along with the original CLIP vision encoder follow the [main page usage instructions](https://github.com/FreddeFrallan/Multilingual-CLIP) to download the additional linear weights.
+Once this is done, you can load and use the model with the following code
+```python
+from multilingual_clip import multilingual_clip
+
+model = multilingual_clip.load_model('Swe-CLIP-500k')
+embeddings = model(['Älgen är skogens konung!', 'Alla isbjörnar är vänsterhänta'])
+print(embeddings.shape)
+# Yields: torch.Size([2, 640])
+```
+
+
+## About
+A [KB/Bert-Swedish-Cased](https://huggingface.co/KB/bert-base-swedish-cased) tuned to match the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder.
+
+Training data pairs was generated by sampling 500k sentences from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into Swedish.
+All translation was done using the [Huggingface Opus Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-sv), which seemingly procudes higher quality translations than relying on the [AWS translate service](https://aws.amazon.com/translate/).
diff --git a/Multilingual_CLIP/Multilingual_CLIP.ipynb b/Multilingual_CLIP/Multilingual_CLIP.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e8646cdef94bb7d77a0e9c9c4836da5dba2b9acc
--- /dev/null
+++ b/Multilingual_CLIP/Multilingual_CLIP.ipynb
@@ -0,0 +1,537 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ },
+ "colab": {
+ "name": "Copy of Multilingual_CLIP.ipynb",
+ "provenance": [],
+ "toc_visible": true,
+ "include_colab_link": true
+ },
+ "accelerator": "GPU"
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2bmfoDXVoAh3"
+ },
+ "source": [
+ "# Multilingual CLIP\n",
+ "\n",
+ "## Install Requirements and Download OpenAI CLIP Model\n",
+ "This section might take some minutes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "v5JU97PayTvv"
+ },
+ "source": [
+ "import subprocess\n",
+ "CUDA_version = [s for s in subprocess.check_output([\"nvcc\", \"--version\"]).decode(\"UTF-8\").split(\", \") if s.startswith(\"release\")][0].split(\" \")[-1]\n",
+ "print(\"CUDA version:\", CUDA_version)\n",
+ "\n",
+ "if CUDA_version == \"10.0\":\n",
+ " torch_version_suffix = \"+cu100\"\n",
+ "elif CUDA_version == \"10.1\":\n",
+ " torch_version_suffix = \"+cu101\"\n",
+ "elif CUDA_version == \"10.2\":\n",
+ " torch_version_suffix = \"\"\n",
+ "else:\n",
+ " torch_version_suffix = \"+cu110\"\n",
+ "\n",
+ "!pip install torch==1.7.1{torch_version_suffix} torchvision==0.8.2{torch_version_suffix} -f https://download.pytorch.org/whl/torch_stable.html ftfy regex\n",
+ "!pip install ftfy==5.8\n",
+ "!pip install transformers\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "from PIL import Image\n",
+ "import numpy as np\n",
+ "import os, random\n",
+ "import torch\n",
+ "\n",
+ "import warnings\n",
+ "warnings.filterwarnings(\"ignore\")\n",
+ "\n",
+ "!pip install git+https://github.com/openai/CLIP.git\n",
+ "import clip\n",
+ "\n",
+ "!git clone https://github.com/FreddeFrallan/Multilingual-CLIP\n",
+ "%cd Multilingual-CLIP\n",
+ "!bash get-weights.sh"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8ssQbLEFoksN"
+ },
+ "source": [
+ "### Load The Multilingual Text Encoder"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "4QMUva872Fr7"
+ },
+ "source": [
+ "from multilingual_clip import multilingual_clip\n",
+ "text_model = multilingual_clip.load_model('M-BERT-Distil-40')"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "56aiJ7CspXWd"
+ },
+ "source": [
+ "### Load The Matching CLIP Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "FymFpSD48OFB"
+ },
+ "source": [
+ "clip_model, compose = clip.load('RN50x4')\n",
+ "\n",
+ "input_resolution = clip_model.input_resolution.item()\n",
+ "context_length = clip_model.context_length.item()\n",
+ "vocab_size = clip_model.vocab_size.item()\n",
+ "\n",
+ "print(\"Model parameters:\", f\"{np.sum([int(np.prod(p.shape)) for p in clip_model.parameters()]):,}\")\n",
+ "print(\"Input resolution:\", input_resolution)\n",
+ "print(\"Context length:\", context_length)\n",
+ "print(\"Vocab size:\", vocab_size)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Q_ronntW8Z1F"
+ },
+ "source": [
+ "### Read in the Images"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 241
+ },
+ "id": "w4CyQ2tl8dKd",
+ "outputId": "b2f75ba8-13e0-49db-e4f0-7ac7af6017a4"
+ },
+ "source": [
+ "main_path = '/content/Multilingual-CLIP/Images/'\n",
+ "demo_images = {\n",
+ " 'Green Apple': 'green apple.jpg',\n",
+ " 'Red Apple': 'red apple.jpg',\n",
+ " 'Purple Apple': 'purple apple.png',\n",
+ " 'Orange Apple': 'Orange Apple.png',\n",
+ " 'Fruit Bowl': 'fruit bowl.jpg',\n",
+ " 'Bananas on Tree': 'bananas.jpg',\n",
+ "}\n",
+ "images = {name: Image.open(main_path + p) for name, p in demo_images.items()}\n",
+ "\n",
+ "fig = plt.figure()\n",
+ "fig.set_size_inches(30,5)\n",
+ "for i, img in enumerate(images.values()):\n",
+ " a=fig.add_subplot(1,len(images), i+1)\n",
+ " plt.imshow(img, )\n",
+ " plt.axis('off')"
+ ],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABpgAAAEUCAYAAAA/cjV1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9y681S5Yf9FsrMvfe55zvcd/3VnV1V7ur3G1bdFfbEsgylJB5WICQZTHmITFggMSQAVMmSAwR/wASAwaMmdiGgcEw6IYGGbXcpu2qlqvq1n19j/PaOzMjFoMVr3zts89371f3O1+vX9V3z96ZkRErIiPXzvitR5CIwGAwGAwGg8FgMBgMBoPBYDAYDAaDwWA4FfxtC2AwGAwGg8FgMBgMBoPBYDAYDAaDwWB4WDADk8FgMBgMBoPBYDAYDAaDwWAwGAwGg+FeMAOTwWAwGAwGg8FgMBgMBoPBYDAYDAaD4V4wA5PBYDAYDAaDwWAwGAwGg8FgMBgMBoPhXjADk8FgMBgMBoPBYDAYDAaDwWAwGAwGg+FeMAOTwWAwGAwGg8FgMBgMBoPBYDAYDAaD4V5ovm0BDAaDwWAwGN4E/Jf/6X8o86MCAkDToyKL34kIzAwiAhHlY9Nr6vJEBEjVSLqeCeS1bAhhXD8TiObnEP9N2wYktsVRPv2n5QUCQCjW7xzYNSBqcl8K5qMhEq+Pp+u+QwQIHhAZyVr3PbURQoD3HhLL34XcDgFCBEqy+FDa1oJ6fDLmdb/GfZz0TUTHlGl2fDoP7oQUuZauJSYQ67iDCALO/QNQ+lj1ZUnmtaZzOwAcMxg6j0LwCCFAQtD6Q4AEAUhGtzuNW7rXo7ZEtGur47I0b0r99TV1v0KUKV+T/oV0D/Xff/Ff/zfLN/EBwHSP6Z4pTPeY7jEYDAaDwWB4KDADk8FgMBgMBsMbAgEgISih6Ankx8TXlJwEoIQgCsm7SK+NyNeqHiIIBHpYCdf0L7FvY8JOUAfAr5GjdcPMnIm/JWI0hABmrs7PSfVvAnPi+/Rr1gQ6VtciiUvjyk4hiccl6JUHh1BsCfcZA2BBzkk/TqhgTtynG30HUT1tu9yTMclr+How3WO6Z1bPuAbTPaZ7DAaDwWAwGBZhBiaDwWAwGAyGVdCiRztBydH6ez5eRQRouaqu+I0yKUVjFi+1FaDe/RJJLgKYXPaaz5dVxCVVBOCclCMgRg1oBEKMQiACgTNhpgSvi3Vp36fe58CUhZXqq8rBZQBAMpEzevWnqkBQj3WRKaN5GmT0J0cN5D4gEYPa2JRoHXvJ87hvAr0Psfb6v6WDde/Hp5ZA6Z7G2IscEQAgEegzYjePJ8URlqqOStw4+UoXy0yTmh+ezWkZNTPnTakuqbWWUII8q1MkwVL10wOydK4mdyf9KsS0dkSjOuK/e5LWDwOme0z3mO4x3WMwGAwGg8Hw5sMMTAaDwWAwGAwAFj2rE1m4VH7KBiYCkxLtSZBJuZr8HF1byZBPhXJWREk6ISCkaIKx8GPSedYXBqWUU1HGQhY3JWUUOTA4cm2JPa08/4lAFEqfJBK8Uog/IslRC5Akv16fogWQm4+0cSR4l0Z6zeM9p/9CzQ0mwk8iqbly93gejVH6Nz5OAIIEHV8RiETmmgiQEm1RR3gk/nOGfDOn/0prAoIEAI7ATCCJxG4tFxGECsk7is4QgaBcU6InEHnYKTE8ah4SdOyEARIu16K6F4m4TxaN3H5FBs+8/8ejOh3+mpTPKazytWWM9aiLFHl65h42yWu6x3SP6R7TPQaDwWAwGAwPFWZgMhgMBoPBYDiCMXW1AqoINcIiWfiqUPKVQDF9FPEadblEIBf5aoyI1jXCcwFre1WslUse+4tFFyIGStqh+6GWRURy6q60RwugBHMqdd9gBSKOhKaM+1LJOxuPlVtEofqaIioi+Zv6PyU4l9KT1dEQ0z1mUBG8o7FZ63kOaqD1vi5158R5Uxe7994xq5WikN9vKclrumd+XZLrrnKme6YVme4x3WMwGAwGg8HwemAGJoPBYDAYDIY7sEZLZWopEU0V0TtKx1SVXSS5SEaN1ORZTdZl0m5NIE4pimjETk9J0LrddOYub/0a8z6kCIJyPqUW0uxYC3Wv7W9xxBN9UT69eFbXnBSt02Pdj2gsHu5LMlNFatee/gsVyZyPzHKF+JkmF9O47FpF4/7OSd4qmdTC9KnTdwmIYlRAnTZqNG/G8zP/lVUa+SjRO/u+UkeOVKDxff+mDCpvIkz3jGG6p5bZdE/+a7rHYDAYDAaD4VuDGZgMBoPBYDAY1kBjj25gQuymjzEF1BK5WFI8ocr8JGPybck7P3vgR/IYNVG5njxL6miGeA1T8eRP8ogIgg8g8WiaJu6BUtIS3UWDjiMK0jFkb/Y6pdGxjdNT2TImK6Rpde00ZRMtkX0LxB9hPPZLcix9TvuTTMdwLPe46aXxq3nifP+nfRLoHh+p7iT4rCdjedZI3uX+oEotlfpB2VaRiwQPQBbvmVR1cpr/8Zz3Ht77Sd/G/TxO4K+fKym18gT/5iIT3iSY7lmF6R7TPaZ7DAaDwWAwGN4cmIHJYDAYDAaDAad7Iic6iYC8/0IiYJdI3nLh/T3X02bieQ+TSs5FmpcZoHFZJXmBtIPEaM8MTMnJRDzPCc1puVOJtemG8EuRFaO2ZfleTInMadTB4rkpSbzQ7hRL9dS0+ikkcT1+k04cabhq44h8d4Lme6BonQtkdCXWkrzEDJEwImZT6q+l7tWk7zhtlozqWI1quScqzvxBw3SP6Z61ekz3mO4xGAwGg8FgeNNhBiaDwWAwGAyGKSryVmqv6tobHpE4JUJkUcu/SNeJXlRdUzYQX0/ok2QAKBG2VBG9USiKckrF0BG5KqIhykEEpqotCZAQidfE1lEkbuveSSV/FQlBICB6t9dkX+4PjccIEio2TkZE6yq/Fysena681Eefcwqp5UGcn5rS42N5s3zVeEzlmApb+lGXXKRBx8xq1RZVn7WmuVf/FPPxmxO8dX9GIsVpI1Uhqf5LgO6RI5zvcwghRr1M+lSR03pfZXKPqnpPIXin9adoBNBo/ryVMN1jusd0j+keg8FgMBgMhgcEMzAZDAaDwWAwAADFzdnT18iwMcJoX4+yl4b+YWbdxkREmSfWvT/0WkKgeE4ACZHknDBUNOG6tC2GMI1SYOlJAsEhEbgCATFru+RG0Qz5Ohp78oOCenlTlD9ePxYiYJrKqGZ1C7VHAAKExgTnlDAuV6U+hkUXcBJCtTvLiOy9Kw3VQm2jvyPSdGHPjvreHKPgZ3OBxgQxQOCY2mp0HSVCXolzCQKO37N3PTNIJ5D+/xgRXiouveRCuIpSxZnER+LrRQcjlQFXd6u6VwRG2isnhKGMT235GFs3Ypk0SaTw2nL8fq0RvjofAEhKFSb6rMbnlUB3Vf3mw3TPRAjTPWsw3WO6x2AwGAwGg+FNgxmYDAaDwWAwGIBCTN2RNkfJsooUC0E9pgt7iJrMrFMmMXFO21SnZZq2WacCqgleJRYzRwdASVpEMhjJo35C8o5IsEgmpj1PuEqBlQnOGDkwTmlV+j5O5ZR6PGfa6j1XUtlMjh4d5kLKJm/0EYU8Gu+7ML4XhZil+b0eccjj66be73lsqoiTxYomcmfiNRWTOHok2bAwIpppeWznvSzXlbm8LEo9DkqSlrk/T2W1lpJsSaZyp7Sv4+8Jp6SmGj9NFYF8oiQPCqZ7TPeY7jHdYzAYDAaDwfBAYQYmg8FgMBgMhgon7fGRPcE1dU+9/wMTj0inmqCtyUqqyMF6jw0RGe0hMd3UvWLyVI4UaVB5n49ISapbHcs1SmdU91nG36dE7/LG7hiXrwneili9a2zHZ8fkKp9M7I5lWewjFsjilepHRHisJ933GQme5J7SvpHgjRVkor5KUJWJUa2nELXjDevn/Rt9j/XfRYLXRolyeyYy383FHpVFq6PZfDrl2nqu58+iQmnAjiDE42Fa2QOF6R6Y7pnAdM9pMN1jMBgMBoPB8O3BDEwGg8FgMBgMwIgIXCIFZ6SZAEGUXgohZOKPxcEBcM7l6xNJqMQeT8i9irYVwAevEQHFQX0iBzK5C+bEEhcOLHqhp79a/5xwrD8f88o/yWN/FhUQv4tolEU6Gvzd9UXPfKIYGZG56tKLU7zQa7JzTkqPyfcEpiOe6pM5kSIx0r0flcV8vqj8hIAQyclyvKRBq4jRcU+O97XuX2UHGBPT41pHUSyrKAYCyUStAMQzserIChE/bjSsP0fTSJXVc/FZ0wibgCCRPIY8+DRVpntM95jumcJ0j8FgMBgMBsNDgRmYDAaDwWAwGDAm/cakU+25H49I2UOjTsUkIggQBFHiL6WCSl7Qkva3QGbzSvtQworYKTkqkomtuh0tnIhGKDMZ2cE6ckCoJtRkRPROSbXkEZ/krcfjGI6lHhqlcpocv4tYnraR7sDSPTpO+M7v3bE+TIsuee+vkcVL5+aNASS0EBGyWjxeNG5vOueO1lGTvysyrkWSAMv3UHnoZbJ2fF9kfA3mz8t9IPG6EOtO++XcM9jhjYPpHtM9pntM9xgMBoPBYDA8VJiByWAwGAwGg2GKmsBaYJCUoASEnaYeSiSu6J4oIgLvfSzLOMrnJdJr2sasmGTCM4lYk5+FNF0gT6O3dS3/2rljkBzZkEIXirRZskiAk8RxCSH5oReimQhwc0/00nNBjn1YGZ+6LxJWzlK6snjDpxOjiItEFtL6bZq2Of084TRXK0rRBGmeTHnV6WVLXvfpbx19MJ5jZXKISFXneu9qwjVdI0IVGZtnXpF2cdgFIiH2S8tQfR2dSvDq3jDTYtrP+p7SHZEQDwyme1ZFNd1juidLa7rHYDAYDAaD4Y2BGZgMBoPBYDAYgNFm4yOQmx8DICTFwVsETAIBV0UJIQBESpARBKAA59xC69OdHEKqokQrUCRjBeAgCBTAAECciuI0irL2LI9e8pEYpkp2UJFTRtEMyGTySOLIueW0UPE4oyYjY8SDCChAIyAmUE9xRmk9kb2YkKgr96v0INdImWCmImsUJVRVzepYiZLI0QwgMCnRL1gnLuvyAEBC0JEJCIhEZtw/h+JcGpGpi1Esmq4pedYn8lgEmhZqElVy4tQY9zdFxuRUY2kM635KdSZAJIz28Unn8jWJ9D1meABl4pooFJKZAIBz+TLHHjZM95jumdVhusd0j8FgMBgMBsMDgRmYDAaDwWAwGGqMPOwjgXUktU8pOk3RU46HEEAAeJHgndJ48drsrY8Jeaj0HsnUQ3xZrlTXdC+UdKLKZJVJtzqFVJ1OqXCG5bwStwIGZx4uhJAJwlE/U2QBAPB8M3og0du1a73Uf+ouLX4eYzyyKfJi6ex9UyaVOmnx81q5tfRd8/JYD50YYVKXAIsjshSikIoutDMvXpPO6bL5fZqW1lMLRpIYbaJk+5JgDEBTvXnvq3LjWXNKqrMHA9M9pnvuAdM96bDpHoPBYDAYDIZvE2ZgMhgMBoPBYMCciFpLD5TP1eeTR3NFYkpOzxTJWJHs7bxGTB3zQh+TiQxyXFIeLdQxKl+RuTPCOHHKNN3/Zdz+UXmiS34iJpkox0Ws8ZSiwszr1gYWZF0NGFiU8T44bU+VhTZHBPIRqnnBAHBXW+U8rRgbFgj0iVSyML7zho6fvlu+1Cwdv0GTa6VMvIXzKtgo+kQLv5Wkruke0z2me06H6R6DwWAwGAyGNwtmYDIYDAaDwWBYwJKH/gxEc3I0Er7kXEnxM/W6vyfGpGohdtM+HmnzcaVW7ybCsryCkbf/NHogfWcuqYEW60nnIjkHOkGGEADmWTlmRt5AvSL47sO/5muWRKiiJaZ9OBV5vEAgmo/Nmtd8CGE0D9baHvU7rMi6yp6X3tVtnDrvMgErYwPAKKpEQp53NZgYEi0Z01RV98WS3ILSp5MI7AcK0z2me9Zgusd0j8FgMBgMBsObBjMwGQwGg8FgMGA5imAtsw+Asil7/s+CR7wQiAupl8jSu7BGXhUidbEDmr4qkmBjEnGcyqiQlBOP7iMyTEnq2XUiSkhWJGFuY1HcUnZEIq70n8pgn4YU1fCKWIsqmR9fanpO+NZ/lwh/WYkKOIWDHrentS2du6uONdI5zds10p1iBMG0D18HS+NNKVpnFFHz8Ile0z3HZTDdY7rHdI/BYDAYDAbDmwszMBkMBoPBYDBg3Zt8jaQEKi/1ioCkFQJKN2UnADSqL5XIdOxCY3MeqyK+qk+J4JsSdoIwqnjcpow8z5dkT2Wp+quyVm2kvU9CJG7vYCdV1ELyygqjPkq/RGPiMxG/azTfMgG40FAOqpiQ1nU9UcBxneMRGW0cvyLVNIpAv8vovisBnsVY6dzK4TQm9yE/J5EVqaI8vUd1LY1fiUpZMxosC3tCEUL1AOjz87bRuqZ7pm2a7jHdM5Y5FzbdYzAYDAaDwfDGwQxMBoPBYDAYDKg861fIzWlZCfEoTa4hBjEjk1FEhTBb4sdo6j3uKxK1JgVdbk8rChAhMLGmSiKGtiqRbKuJ3dS3cdtFpkjKCuXUS0JInFoRW8MORnSgjpuAxE/I3Xh8lWxMhDfBSyTAab6vS9XSci0EjPJRUYzwOMIEOgQArOOTOwpNj0Vx/ECFjpcoba5zNiMWPOjHZZbGgZnj+DFYBOIDhMYE7TFCcy3iojY4nBK5kmQfpStbaJuomhQQAF6vThEhWCF55xWBqvs/k56kkqqcjyM1i8x46DDdY7rHdI/pHoPBYDAYDIaHCjMwGQwGg8FgMExw5x4e6T+x2JhsUpIwOZ7X+5esM3aZ1o3k4rTOQtrl9lF5WGfP8UhNihSCOde14qYfabYcUZD7UEUIkIxOLUIK9bfm+j7zwKdCJdZ9SkTvOolXIgvSf3NJGpOCC/xiOStLZSnehVL/6PoJ6Xgfl/Zj8+rY2C0ZHo7XV+bLffY/GbUXB2TJwBGZdS0wSVW2Ks+Yh9fiGI/nuJr4HFB9EYGqexbeQpLXdI/pHtM9MN1jMBgMBoPB8IBgBiaDwWAwGAyGCV5lE+96zxGKHtWva48GSh73qf41/vZVIdC0U3UExJRozEx3+ncaxqR3/a9qG3IvgnK9H2Pf/pwOa6Fc3b9je4LML10gZSNRfKzsGnF7rNyorVGaK4yOY8S7zuu6q2/ZSIAjvO29UNJwnXJPs5yxaCJ7dSYy0px7TY/XtwrTPaZ7TPekz0eLngjTPQaDwWAwGAyvG2ZgMhgMBoPBYMDdxO6UGEue9dP0VilNz6sSlJzCD9bOp03PExEZCcp6d5V528uy1NzwmEwMMYMTgTl5lPNoDCT3PbF3iNETlMdAycLltkdEde4TMOVG1zZcH3Xijr6tn1XyMSfHokLOru1ncwpOIYjrVEua9iyMjjHzUaK7ePPPcR95l8hoPQ7UGdTG915iGrRQvoeAEMLJ7QKJDF86QZAYYcJEGi2QCV9G2g8npfl66LEEpntM95juqY+b7jEYDAaDwWB4SDADk8FgMBgMBkPEvcjZilyaeYRH8vXreMHXG7JP6yGqyLHozS9reYWQuMBlD/IlGZWcDUp+pr1RpLSSWlySORGUeT+MsD4OiehNQiYxaUGu1bFcYvgSMYzjRK8IzQodlRXrBO7o+EKRen+QqUEAEwJ12mYa1xER/w1Rm4lonUYr5Cmz0EzaD0WqNFXHiW0a8dE0uj8L8y9fM4kwAUFQ7etCSNaGo318CDDdU+Q33bMgK0z3FLlM9xgMBoPBYDC8STADk8FgMBgMBkON4mA+OgRMPKmx7HGePeuzF31hEReJsGVe9jhBmQjRJEMiemcX0MKneTt1mSW6TOUOmhyIJhdMKiGiMclLJaKg9vhekycRvPdJFTUXeCZU6kjVp1eocuFz3dYxonfWlyMCpP6P9r2hCR06qy9dvFrtjGTO7WFC8Ma2aGUSFsJ5fo+W2tCi9zF4EIi4InhpcSbXEStvBUz3zMuY7jHdM6nHdI/BYDAYDAbDmwUzMBkMBoPBYDAA4OSdHDnahBG5V+VREpLirT6LGAiatkcYBAY7p97aiwwq4h4PAHLankTuhcghCpgo7wBRX0w5TZX2QurNI0a1zaH8GY3LpJRAkr4KQgglbdIS8UeASjcm4ABAWLKnt3ififFUDSdCNzdfSMJTid4pUT07MUnpJMLxXkwIybVAhdoDnseEcere6OZKibdIY5zuKEXiUgCgSusUEFMzxQEWIoRKpnRLSHSMOJ04kd+ckq8p3RkgQHClHBJpWhsNxuOHEPsrFCVLhO9amqpURj9TNedSVEBJeaap0UJFcldxA1GmCUn9NaJ13gSY7smdNN0zrd90j+keg8FgMBgMhjccZmAyGAwGg8FgwNhPeQmFw1NCckoSTvcI0b++KsPqGT2vObO8WkcdVkDTkpn0rdvUUqEQvEtXJ7LwxPRPU8/y7F2+SqgtnStjklMOZW/3cf2jq+7jGb7QJNGCk34VwZBJ9Iq7TF7xi9OgEjtXvtBIunTGg09STxHp3h6pnKA2EtDo86ziUS9W7sWRVFuzCIUJfzsa96V5KLq3jSClnkp7lqzPLalI3ml0xHielfswikKou7/Qp4cO0z1jmO4Zt2G6p/TFdI/BYDAYDAbDmwczMBkMBoPBYDBgTjQeJ4+iJ3zlaX+s3hACnKPZcW2nfJ+3uS7DdONzAHHPkSJi5lO5yPqqJO+rot7zwzmX65Lq+BLq8VhLr3QKlutfI0GxTJC+Ao+41q8Qwjw6gnRD+ekVGl0ximO5u61IPi/d5ynBW5+bg1bI30Lulu+Uydmvg1zPwlhM8TalpjLdM23ZdM8dxV+hXdM9x/DnVfcYDAaDwWAwfBMwA5PBYDAYDAbDfVG5iR/3rEdO8QSsp1xKDuljT/2ZL/qyKLWH+oQSLDJoG+O9Kap0QZPjQEmDtLQ5/Klka13/LFIAUE/6hQiCab9OaGnWj2md9d4da/cuRWgs1TUdoxDWUjIdJ65rebIMAMBcvOUnnvzHvOgXGslE9dr9rlHf17U9TEb3nAASgISBoInUmBhgRgjL0R918MgaRnNx7ZmS5fn954rwNd1zp1z1NaZ7xsdN98xhusdgMBgMBoPh68EMTAaDwWAwGAwnYOrRvna+RgghRxEQBUzTVIlI3F/kOFm8RrTOIh+AksqoPsUYeccfI/tGda2UPRVT+creG0rwLpGar9re0vgtRVpkrrIqn/Z4WaPJE/FY16XjD6SBvmt+1GUWTuhYxHta0jhpSijNZXXqGBWy9BSS96iMtEB4C3JqrSxaZUBYakMWU5gtt00xgmD5Xh5/Pt5WvP26Z1xTikeRE+bMGkz3LNSzfMJ0TyWj6R6DwWAwGAyG+8MMTAaDwWAwGAyvESIC7z2IGMxjolDJKYFITTSu1zP2hl9GzQeWfVLuR5wSVsi6VyTTau/54o1+XKpM+H1DBF4imIk4e6nPoieUaS3fy8kZyfsmYSwrFvv3ynVF/Cr6PIo6ee2tvf14M3WPGi7SHabqv+lTElWNCfkylJ2DTofpntcL0z0Gg8FgMBgMBjMwGQwGg8FgMEA9oUff5yWy13hNjSL728fvEiryVEAIkCDwgwDOaUofAhCU4A1+TCAue2MTiJRcFSElYCsv/OKNHyZ1peMy61Dygk9/lWheuXZ0zTr9tnROJGQy2/tQkY+FWqYJgXo/go9A4PwZiF1lAoUoE0n20tf2uRQn3SheagIeAIhBzHW1kT3XuiT4VHBRpvG4lTMhN6CEs8QeJOp8NMbpYGqnnn/1LSXkaAOidWPBUrRGnZ5qfK6Q+aOzuWqO9zamWAMA4lIX1SMziQiojpfnjhBS/yuCujZuiMTHporceNMI91fB26x7kOcXldgkAkQo6x4IQJz0wXj/o2p6jAZmOkame4pMpntM9xgMBoPBYDD8KmEGJoPBYDAYDAagEHpYIysRiVFkb/MxYZlIy+IdT4JCQAZBkABhySXKpWOSs5B0Vbn6s4yJw1Je6suqdEfzlE2J7ExGJkp9Q+rnMnm2HNm0WLSSqURMlLFaJiNl0sYpnvAcicHqovh3HEVRe9bX6ZCElWxkQAlGgYZRJMKUCpMpkeRVnl0ycTySh5VAn/ZBENtI0SA8TltWlx+P/+zmII1mGTRUM++bQFWXyLjuan4IqCJ5V/ZaqWVdOpvsIxSNLSRxjtOM5K1lq889ZLyduqc6Wtks1nRPLnOH7qmeglzpemST6R7TPaZ7DAaDwWAwGF43zMBkMBgMBoPBgLFX9SnlxiRvwSjCgMbkmJKtkQ4lAGBw9FZ/lZRCp6KmjCW5fRPF/StS+qaaWBRMffnvku8Uom3sxb5GCn9zmKa6WorQUBI33ks9kon3fC4ezh9yNMK8vfgpR2QgX6bfQ5Wy6+ugjrZIKc5eNTXVN4X7t72SjioZG6qxyv0VGpPMbwHJ+/bonlqCsclhrntEI17A6WRVx8SMNLYv5E/FyJH01Xo/TPeY7plcYbrHYDAYDAaD4RuCGZgMBoPBYDAYKsxI2wlBWD7z7HjeDDx773PkBCuv51QHxzRIs+uPyyQCSOVlPUUt71J9xfNfNM0QKUm41M9XwbgeiWmMxt7eS4T6tN1T5ahLjWjp6FW/tG9MiaKYtkHFGz9Fdc1kIqTEXTnF17TvMQKheNqX/nB1X5ajVSbHRqEglUc+TQj8JYPDJGrtWNm1647VudaHpeuW6om2hlkEgsROzgjcFK2wmFbr4ePh655I2xNlY9aormSAEoGIGriFARKeRQ+lXqQr51ADWl0i9TE/MqZ7TPes1GO6x2AwGAwGg+GbgxmYDAaDwWAwGCaoScgpIVmnppoTvPHzJC1SnaYISE7qc0/05f0opqRkiQI4hhG5WXll1x7tWZhJecLcQ/4YKLKqS4TqWt/uqCx+PEWI0QDOxuUuknJNhhF5LAKKMRJT4nFpfoCobJESef8UM5HuYwjhTllSXSXyhDLBOb2PdxGzS3P5VEyNlbm+dH4iy6IcE1nzueov0UpUwQjj6JO3jeB9eLpn2VCRi0i8W3fqnlq+SYFp/SM5tdyozQV5ToLpnnHdpnsmeLt1j8FgMBgMBsOrwgxMBoPBYDAYDK8NkaQj3R1lxpsSJZ+uiXkAACAASURBVPY1X3GqV/YrSDL7fD+q7476E0k3I0G1xbWIqm8apQ0C8zIJOpLvhFRZUv0npfkqXvCF0M9/STeNhyBlVarqOb53x4ygvVO6eZ/uc+5rgSoi+pVTjt3PmGk4Fa9f94x1yvIzRbO/dRtStb/UxpI8U+MWjXRPHTllusd0z12VmO4xGAwGg8Fg+Po4amAiotf/Jm4wGF4LpN7h12AwGAwnYOzpv+StnNJQ5fQ6C+QZRZfxqRf5lAPLkQgAoJSgJkBKpK8AIVbPzFUF9abyySs8GnhOpASLx7u2lRMvpf4BSD8jOXIhncaciMzpm2bjUSIfcltESPs+LZPbBFDd37q2xd4ACJPMRYlcL/vLSDhCoE/NbwKNGZCgZyUgR2+I7veifVhPl0SVt78kOaWkDFxDijTIvZOS9qu+TOuV0ff0NdTRaHQ8suxVUEengAkC1jmY5BiHxiDo4OvXNFcg+f7kXsj4Hs/nWRkDyQ/Z24CHqnu0bIl8TDLV8su4+axD9AtXafPWdQ+NdM/IfBWNSGPDTbwqPqOme0z3AKZ7DAaDwWAwGF4XLILJYDAYDAaDAYjEIiomrbh/EzAjypaIs5xGKPKrStARWBhLIJpRyUqIjUtN/mXKEBNKrAQlnAwBE8A1Q5iJ7JKOqyaLS1un7qWhZZhdkTQTx0ve9NP+FlnXghzyviLKkNa3rhCOVMmeZMj/Ihlax3rk0AE1wCXvf031Fa9bYxlFMslbRgAl8mByfIrxcakI83GL8+ulmAtmadXWcW8CuB4iEMCAhDRyNCKYQwiA+PxYBZRHhAkYRdcstFHLJ5Fgl1jBfJefB4oHpnuyHOWOQ/0S63s5vTcTQxMBTAKu/RmP6p5y4XROT3VhSqGWpDPdY7oHMN1jMBgMBoPB8LpgBiaDwfDG4X/8b/9zYXIgODAYRKwL97ScpAYuEhO6xCMADEccvRcFoBAX+Zy9Y0GMABe3xg5x3c9xeSl6HWs7zKxnoicrEecFJzuOVwStnxJxwRAisJDWJSGSLgRwTawkEqaJ/IIH0IDAk0Wth3Dc+BqcyRYmbRdgMMcFb04Pk/iMEOtKpE+rdUgAI3rDUrWpdlpxA7Gvqd2gdcUea1kHJA9iQvSyldz+GLX3MAOiERZCFFO3BEACBAyG7gkguW0AaOJCfgDBR9IibUxOem0mdxKJFjIhl8ZOyMXjIXsFBzhtQ6J8QhDxAAWldEIDIo/k3xoSqVARcCUdWD6idYvoRuiI1wtBQvKK1utFQvbUFhBIoie3CLz46GHrQOTyPfLeQ4JXskk7GXkohmCAIKjnt6hXNYLKAko0VfKKrjxxJc7dSGClvRkk3RsJkEAQCQgh/RsQQo/BC/quw//zxz/DH/7jP8W75zv8D//z/3FPtujh4FQiTIAZ+yZ3cILpAqlm/9E2agLxG/IOP6Wemrybkod1erx6j4/R/iCjemRBZ9wl1/yCOZVaji2OZiIWI8F79LbcA1Oyem1Pm1ep66FDdV3cRwbAKXN8CePolbdvnNbwZuie9DyHXI4omUxmJp6q9ur9Z1R9sXbQpMCSFJTfaY7pHlrQPfOypntOr+uhw3SPwWAwvHn4V/7dvyRhCPBeo4D9IAhBuRi3Cbh4D2DXQQLFiGoHccCH7/4mPv7k93AIhBA8Dtcvsd+/ALm4Rh167C8v4dEBMui7Qx/gveCdj74D3pxB4NBsWzACDt0NGqf8zqZt0XcHuIbRNDs02w323S3YEXabHTZw6A7XONs2uLh4D599eYvb/R59EAy+R0MN2DX49e99gL/w5BH+4E/+CFdDh/3tDULwGAYP5zbYtBe4vnkGCDAMPZpGIB4IA/RYT+j2PSAeJIL+ENB1AUFYeQOv63MKArCDRP4KIKXBCCARCBOobfA3/q2/g3/1b/77kGuHL774GZ6//BRfPftT3HY/xW8+fYRtc42D+xzb9gq3l7cIEGzO90DYoLvdoLsK2J0/AmODru+wdWe47q4AL/DBIQzAYegAEty8YPy/f7qHc1t4AG1zhvPzDb7zvQHN4xv0weH6+S1++O4TPGn3+Mktodl+jP/kX//PsLnq8bN/9A/RbX+Jr9ov8It9QCceA2/wsuswyAaDF+z3L8DKeqBpHmPoBQiCTQv0QwfHjE3osOUdrpstuiCg26/wvc4BB8Lt43N81t3i6nCFDQNnrcAL8PLmEr++9/jRh1v8X9eCn/Vn2B86BO/RNA7UtAAxhkOHHgHEylOGQUDcgJkxdAcMA+DaBg0EQRzcZoMQOnT7Hk3bgJjh+x5d77HdtIAI9vsbrYN0XhMp57O/6nB73ePJ0w/xN/6Nv40PP/4+Li4egYTROoftZgfmBrTdwEHghx777habzQ5EhMuXz7DdPsLubIerF88AIlxcPEHwAf1wwNn2HPvDDS6vLnF2cYbtZoPD/hbeA+cX55ChR+8H7DY7OGLsDweAHP7jf/PfWXyZMgOTwWB448AgOIqe+AIQJbI+EQXROEQCglOjRTQqCRhMBMCBQGDl9tUAA8CRxPJN9CgNIBKQNLE+AXFyLC0ESvR3VEIgyqQmnuQB67LBRD0iBcTR8zQbsJL7Z/YnTfaIWE6iMSj10wEieSxA0TCQ5OK87XM0TBBKyn9RQxAcCF7HMMqUPGGTR2o2AGWmI41LSbfFktKQ6E0pcgKovY9nbInWJVWdEsunBC9C0VCUDEPRyAKKBqFoXKHo0Ryi56jKV4xKxXc25PtGsV1OhpgkHlEcsziP0kfmOGFEDX/k9RpB9hpe4hRKthodW6Y4znDx+nqD6/HogAScjD7ZmzZtYi3V+IY47nGsRKAGOAFRD0DUsIVQRiLddxSST5ggQeejhHg++GxsY6r3aGAIMUIch0Tw6d1zcOQRSCNg2obR9Yf54DwgrKcwmnynE/bzyJ7rlPXJkjf37DvT+Blamm/EurDITRSjT0qhtFb/vK75+VrW2nt7Vea6/UkdU0/2cRQGZYNtekb0fNS1M9mSohofojiXtR0AzKP26udvlrJpocpvAkvzY2yMvrt8dXZSx/oeKkDsY/V5qR1mvhdBemrZTJ7Ha7LBWurfNnXaUJVJR+fW9Ng0NVVt1HzIeBi6J76LSImUTKT7VPeknwrK8sxlLhFKpad6iLMBBpjqHozKo3quk9Cpz/m6agxy10z3HC1fnZ3UYbqnPvc26B6DwWD4NhCCwHs1KunnAHKMZkM4e8IAB4TQxN9YfbvYNI/w8Xd+E74XDH4AfEB32Mf1OYGJ0fedOmNCYoQrMPgOZ4+f4PzRU+xvB7gNwznG0HUAPMAE51r4oUMIvqzpgzrUMDcQOAw+QIYel/1zbM9aPLo4Rz94sAeYHEgCgu+xowHnuER7+xmeXLwH37c47AcELzjf7cBoQcLwwQNgdF10gFWSAwECagJk0HERxHTFQlqMCfDpN1e5kvTrS8zx9YLBDGyfnOP7v/XbaPkct/4WvXh0ww283GK7IZyddeCLL+F4wNnjG5w/fYahv8XFOxsweTz76W/geefgpceuvcDhcMDgeggI3dBh07ZgbhEgcLzBZ7fXEAj64QByLcACNOd49myDd/0Vnrz3DPSU8PmW8UI26LeEH374F/En//APsMM1/vk/+j9xe/3P8PRHwMuhwTUDt16w98DQtSBu0YcDBB5EW7QMHPZ7CASbjTp6nxEA8TjwAE89BhbQcMClB9qzM3zRX+Pq9hLe9yAHNZx0Hu7Q452W8eJ5j6uww37ocNvv1eU9OHjfgQAMPiAwKxfjBzhisBOE0MN7jyAECj0Og4AcQNJjGA4QEQx9gHMOfujRNhs4dri9vYLaVgOCV64HAjUs7ns4avDbf/n38f4HH2O32USneoZzDZq2jffaAfAY+kHrdYyrqxdw7Q673Rn6wy364PH44imYCfv9HpvNFgEe17c32Jydo91sIcGjHwTnF+doGsah87jY7iAg9MHDC+Fsu1t9rs3AZDAY3jhwZCYYTo0/FCLHzgDHxT8TgBCjkwQMUjMGJ2o9GXkQI1u0PFEAEI1JTNAoKckRRsTJWCVIefgpsiQkIRMi6W8gKZEn8TqNAIrGqrQ4Fa4MYcUwQ9HIlIwXRMkIBKRXBeJCXhCgng2RXA6ikVApmiuzOhKQDFJU/YstZcNSdO4dEx6ZIgrFFJbcYUqhKHMY15METYY3IiT3aZZ0FxoQfPQ8IQBO65EUqaZmI0rGrnhMKqMWCRdaKkc8DckSFMcAWjdQoqWi5PlVNRn9OFmYqh0kSI1aNZGl90PFkHTvIuGWdj0TpBdTjq2kuRSJkjjGgMQ+Ri/mfFznC2FQg6XocyCk0z+AgaCe2mWmSzSkipJmOSIt3Qs9xslIiBCNalEGKaZQklQfIxkwiSUapaDPUJzHQgKmFpt2g0dnO4T9JQwYk55M+W/WJ7lYTWgVcmy2OXxFgDJzJOgwqidHIlZc7szgU9WZSVCm6IE1J59175XTCb6l66fRSzXxqipiTvIxMyQbj0dDVDPMFSmcxlc/EicvgTgWkQQcyZAeNcla8XiHJuM9OnXH+CyfP5VZXiZ4p+Na31Op5tKSHGsGh9Pkjm0uXMqsEcHqfVfI+xACihrV+VYqoLHV/S7I3NhpBG+F16h7HFOle6QYmNJzRtXrTXV7U+taZ3o0legnmuoenT90p+6Rqtb0q55+xgnMtYGpvLeZ7kmdOQWme8ZCme4xGAyGbwphCPCDRwjAMASAGK1jbC40gmnwXklzUrLdkcPHH34MHxxu9ntABMNwQN/fFD4CHn13QMpUIyAE7yEMvPf+B9jwBqElYKPvHj70+uLiNAqo73owkRq7mgB/6OAYYNoAYCB4MDm8vLmCu/o5Pn7v+xiGLS6vBTsH+LBHd9jjxfPn2LqAv/Zehz8LA4bzFv2+A8mAm+uXuDgPkSVggNPvavxNDcpvBYLyTMzK+YSAIB4hxPcISi9dguKQC13zE4EdwzUNfu37v4N33/l1XD67wsvnX6A73GLwewhd473HWzz98Eu0H/wJ/P4CbXuFR59cYTi8RLvRaKybn22xaQi3/QGhEWzbHa4PV+gGQdNs0LgNEBp48iDZ4NmLL+NejFHEpoHbbAHa4asvPW5f3OCTjwL27Q36ZgdyW3z65c9weftzvHfmcPUo4KY/x+bmGoMc0DHQDR5+IAx7j84fAOfjT7igR4APA8BA3ws2boOD9Ag0gOSApnmEIAPYdbgRQXh5wG27Rd/vQUIYRPDSD9gPgsfM2IQBl3uHQyuQMICiA3vnB7jGwfcdQC2YAQkDQh/AzQbBD+i7DkOv3FQYBCEQWgeEocPQHSDCYG7g+wHilV/xvscwDCBiMAAfgvI93mM49GABPvrub+G3fud30bZbtM0GFAB2Dq7ZIIDQNo2+dgZB27YgR+i7HsETzh5dwDHh5fUNznYXaDcapbfd7NBuNri6fgnXNNhsN+CGcHO1x253jt1mg/7QYdOcgdgBBPT9Ae12B7j1d5/XaGA65eXVXsoMBsMcxBohQ9nAEfLiPhloSNQApaSBKmiORLv+3go0+qLk9ydK5VOESzQ0kKbD45gGj8lH8tyDqIllAcpGomR0opx6RsVTQj4ZWYp3bmVEgotcRzIulXLJYzfJoWU4cxr1upriS4XyGqGQK1k2l9tWQ1fcLBrjDbpJCOl/uTyFyj4Rj6cNt6WKjajDsWtSqz4mBInkS2qBOe40ICkCSf9KkkkbKsYYiVQWITIyMboIqf1GRSFNa6cvVsmQp0bBII0KLCmaJ1S/QIkkCNngk/tdz5VsG0zp/eI4RsaMkAx/aQNpivcmjrsgs281QYc4V7WhuFl4NG6m+SRRdkQCLBBBwgBIALGDhAaI6QyZG/UGkxSdV93z1IlkZErzJmVnzIRc2hg7joeop4xGw/n4HDKI9dlst4Tziw1u+un+HW8B6jmPOcG3hKQDRgRves4X3o/q+rky7KT287mRd/zKvirpWZnIWrc8Ivmqz1Mj0KjeBXJ1iexcIiCn143rXKt3YZyJkJ6VRAYngjuvzSKJGHSVtThGqGs/kWtNkZVrffu2MRu7Bfnq+8vMcM5NvPyP1z8+UD4mgpmjN1+KJBjVGW8QM2eSN6pByNdQG2/q/fhG8EbpnlpPcP7twOiXtPrpzEqo/PYn0co7VIlUygYuGs9dQnlXS2Mw1iM6r3KEjqQ9iiajYrrntcF0z5t1PwwGg+EhoO8CQgD63iMEgWsI3Ao250q6O3bxfcaBBbjYXeDDd97D8+se/UE5kMPhCsF3COLBTBj6A4b+oGn3oU4Ggx/QnLfgs8e4uRmARt9j/NDrdS6mOfNeHTidAOIQ+gH9cAt2ooR/30JCgHiPYQi4vrnB7eMv8MF7v4FDd4u+DxhkgDjBvuvx5NEj/Es/+DV8jkf4u3/8HJeXW/RDhzAEXF29BLPANayGBujLhGYi0choEsCxi6nudY0fQtoHULmI9PrBTMmnBUBKVQ40rsUPfvv30PBjjY4iHdtDf4Pu0MM9cnj09AYXH32B/mbA4eYWT9/tMOwP8PseXbdF6D3ONk8w+AM6f0DbnMF1Dg0FNNyCqYWwA7HD8+cHXB8CeOPg4MBNg2azAYQRPIH4DNfD+/jJz5/jO9+5xTsf97gJDqF5gctNC9o+wX73BPjtM/zi9iUo9ODuGi7cwg8DmgHo+x60ceh70vsS9iASeNL3gR4ergnYkeC634NahxAGoAWue4EPwP5wCwma++Y2IPKGARc7guwDtudbcPCQ3ud3PRCA4OEHj43bwAfRgLPElXiP0A9gagEAfvC6VheP/tAj+JTdCBgGNVSqkdSDQHDMkJC2gyB4PyB4j83ZY/yVv/bXsbt4jLbdajq8ADRNg6ZpNaMRA44JfS9oNjsgDLi6eYnd7gy7tsXN1Qu4ptHIIx9AgbG9uID3Bwz9gPPdBdq2wW13C+IWTdPqszMAZ2dnAAUMQw9HDrttC9/drj7Xr8nAZC9aBoPh1UFyFgmCIXrTpvR10UAUjSAMDyGHnO4CFNPj+WjcYJBw3MhXDU91hIykhTCn5abX9HiZsGiQo5EoGSYIKRpF+QQXq9CIEi0/qJFIeLzOJhcXv0DyrMnRN4SqfY5eoMmzN0ZFIe2ik/aNghqDoOHVAIOjwSYZMgrJk95CUtq+LFT+qz+eeWQqWQvhklIN5rqzQSmNKoqRDcjkUUjVSPVBLRqoU9ppyhLEaByu5NAag5CmcIuRNWlfJ41A4yx/uYvab4bWp8ZJH6N3CvOlET5cW1riWDco+xb5KPqYppM4dxD3C9M6PNTgw7lUGrPauCRVRcnYJhyNQsJlyPJ4pYFiEDfREEgxoi8Xjvwi69wgAqSBwMd/cd4FFw2GaR+nNG2iNxSVKKlk6yNCfjnSSKcGxAGbbYvHjx9B+vUXjoeKRepLZP0cyrwfE5bJ6LpSd7xGqDYCj9+oxp7wXB2PLBkxklFzWkF+AY5/iLiQ0FTI3uQhPlJdM0PRdDjmI5FIvkIOx/5l0jwlbUwRn4X0rY2xSeA0jMm4SxwjWpNGGz0flKYxUiLRo32ouGpau6uCRTJ0jSAlFANxPUZ5LGpinkYijMjp6fcibqyjIrfTv6Kbx21nySgZKNN4y6zcImlaH0uEuiRDOaLhQOLnnDcU5V5ru8yumCeCpJ9U1Wci+bol3jlFXea/Usb4bcOboHsolU6hR5D4nqX3OqSfpvRcjpRHknU8b9I+j6lNOqJ7QFTJgcnJ9BtVxiRH0GTdk6JqUBxnTPeMZDHdY7rHYDAYftXI6fF8gGsb8Cbg7ClBpFOnFiROQdPXfed7n2DfH3B9PSAE/VHvDtcAqcOl94LhsAdCyKndvR8QJODpe++BeAdxHs55EBO6QwdigJsWjhjd/gaQAAkMx4Dv9vDDDQYawOxBfQMKhOA7TTHvBdf7GzzeXuH9dzf4559ewnuPhgl/8ZNP8Pt//RrN+Rd4xL/Ev/bRC/zZZx/CY4Pbmx6CgBB/Mx0IgdRJVSS9q8SXlqBvMc4x2OmeSyFIXvenVzN9FylOQrqsIzx5/xP8xm/+C9i4DZ4//wrXNy9w6PY4dDfo0YMaRvPkMyAM2G2fw3eMrie45gKebvH5L3a47g5oWI0LCAcQ77Btz8DUA+T0PUwAkQ3+7Ge/QD8ECMU9iNoWzjVwzgHSI4QBQgyPd/Dp5+f4Hu/x/sd7nD/2ONAT+ABgIPiBcDh7B0F6YPcYgzxD4wjibnEeOvghgLxG1IcwgAloiDEAaB3QisD3Ag4O3PQIMsD3DW5uBdw6eH+Aj07B6nxCCIPHwQ149KHg5rLD4eDUYYg0us05gu96iCd46jRrTBjQbFoQDZBBHZ0ap/cgGZRSZJO+XnI2Urmtg7BHvz/kfoQQQOQQgmAYBrBr8L0f/hW8/9EncOzQtjsIBJt2g81mA0B0fKnB0HswN2Awrl9eoWWHs7MzBN/hcLjF+cVTsHPY72/QtmcgBNxevcSm3WLb7hDCAN957LZbbBqH25tbtJst2BF8EHSHDtvNBoDH1cuXq8/1azIwrS17DAaD4W6Q6+DkTPkHHgDRsOQc6SPJmFAWokpwTAgVprJgj+tZjgYdIQ+KBgGmEDO0JYadNI9uIhaiQSetoROJoNFRKWKFMpHKKbUeASViST1Pank5kiucZR73R6NEoAaLmC4Q8NWCNnkSx92gJBmP0mI65dx3cXzU65i4WjzHt5JkfNMXOoaE2EoMOU99y+MMVIRTRGRaMtlUnXKZuKEob4BQjFCLRp3kBUyRMVDjkBrpGAFxH0sQHCQ4COJOmASVOZIDzK548CAXqcZNDXgpwknEpeGEJCNR3ucoveBGMiqGnY9Ik8zQqEFTX4a5ajDTGQgBMfVcpD2EIDRAaACkjcX0PjlqYhRXiPtUaeoejXxLRkbNMS2i5sVkFgOCpv0LhWwMQfvHGECiG2MGQt4DC9CUd4j5piW4Mq/i3AMEJC56mQedNI6x3ThcnJ1BHr+Ltx0ynfdLZaYfpBi4w8q1ieQsiwPKz9iUcE33tBCM1TV1+yOZKgIPBHbqGZiN2Tm1U6EbadWzXI4OQe2tXkhNUi+8qjdSPyeFl81k6zRKQYuJ6uf4HOXEl1n/Y0TqTknWWRSDyKhcaW/a47KnR13HlOCl0fitlZNJg6pDssqvyx8jeLNmi/Ohun/Tfpb2OU6r+PvH0agvHlNQqSDWr19DPAaozAz1tiyhHPVYp9/CJv5EOCTjqKjiKuMkMRUnaDauqXwmdRPB++doyfGr1j2peO2okp+zfC/G8y3rGcr/GRsPQDHlTXKGWdY9PDV05Ounz076Nc0ijj7kmOXJPDHdk68y3RP7arrHYDAYfnVgdvB+gGsaEAvOnzKAAX4QjXJNa3kSPP3wAmcXwGe/HLAf+riEDxDpdeUrAWEY4Lse4Lh/cggY+gHNjnH++F14rw4ixEGdTREA58BwkBDgg4djig4EAf2wz3v0XDzqcHh5hatLB1AHt9F1eX8b8Dk+x4fvfownT1o8++qA880FfvTd93B48RXc43Pc+n+KJ+9+jr/5L3f4n/7+d9Fv1ICCAIj3GtUb1+PEibsh6D7O1V5STvfE1v0yq9/ZbGyqHIQBuKbB7/7gh/gL7z8Ctg1urnqEq1schpcYcANuGJ988gjt9gsM+xbufI+mfYJD9wwXTwXYb3C4fgeDP2DbEHabCxyGSwQZoBl+Ok3p5gPCAHz6i2t8dXmA12yH8CGoIwcxXNui3WzgwBi6Hv2whwwtfv7pBv0e+MH3r/HkyRUu3RbD/oCBPEJzhq4bdFuE5jG2u6fg3QsQ99hfXSFc7UFeIL0DBcB7gqMAR8q33HbAZsNoEBBE0A8DCA40BMigaeiI1SASvBrF+sFhu2P80xcetwPiaHq9F/qCBCJk45QI0LCgbRnXXRedXQJ6r0ZEJs6GI3WM8RiGHhIYEgRD18MPatQMpCkQnebegwTCkycf4Ie/87tomhauUdMNE4ObBkK6j1jrmvisBDQNwfe36HyHR48fwxFwfXOF3dkOm80G3nsQOzjH6A57DDLg8fYR2oZxeb3HZrPDdruF7zoADpvNDo4FfefRthvsthtcHy5x08/f2xK+toHp4uIcH330UQzfQ/Ginbwurxudji+UXh2nvvWdKtdSufUlwevq1TeJ6UJlsUz1+VfZp5NkW1iwva1Ii9cQPD777DNcX9982yK9VjhpAQ4QahHQKu8gySNRgBjJlLwIiZKxBnHh6SIJkdLDFcMTRY9VUP0TjOhMm1LoAURpDkZDE0u+XqIRisiBUiRS3g8HSN6ZlI0VQL0SzUQEIe8zkOQpC+JqbhNQImRi3/K/ODfij5iOk4aF0ywCKBEqyfhU6ieKBrm8KI/l0z5ClKkiddwVqd5tYhRRtUcSMtdQGJyy9PeZzSAdhEhyR4IgPdsiuZzkaLCY6o/rNgvpJFIMRsWTWrLsQOWhnYxn0GihnL6uDDpS3meidMPUU4fynle6t5EafjjWHar2tZxIyPNBuxeNfZJHZERjpfnNHHVdIKihKWhiu2hMI3JxOgeIqNFUUJ6VmkxRPms8D9UbF9FGxpozOVljEQCKL+BA9FCKxoj4gss0gMDYbXY4aw+g8y0Mc+JPRMappyZ4ld+xu9LRnYL6eZ+mnkoaaaHle7czbu+UgvE/2XhbWqWqzGo6q0k9D+ItIXO6p24aX5G56b5V9+/Oq+t7XdTutFAcwhJdklsefSZEv4FRRakNAeBI9TY7d6dcS89P+rv02VDwenRPev+pCHgJ2ZhU5sbC/Vi8RekFYV33jH+Jk4zLa7ElM8is1OzwSr9N95xwgemet0n3/Ef/3t8SYQLHtRSB4r5imjmiJQBMCJF4ddEwCNaN0ZHXWQyEoC55juCIdOUSXzTTGzegBBklqy/re22IZx051VtC0AwNiHvgaoantExIT6D3Abdffor25kv4XvfREAkAb0HckDVnEAAAIABJREFUApsdvHegj36M3b/4H2D48gr7P/7vcPPTv4eLjcM77zzFF5cv0T76EO58h+H6GdqzHd79+LtwOctEyj6Q5lVQUjeIRhREIjjJqO/3XOkmATDAR+MvhTi+pJkORIAh6Du+rikIjVQGe5CmxsqWYF3/+rgOzusxUVKdidXjHoAXyfe1nruBEDeKj8R25F4YFNO/61qHmRCCHicGnOMcycfO5WfZUVq7QMcmriuS7Tmn1g6AMKMl3YlXh5WV2A+6bgpC1bbL2neCErAc5yNnB0CGDzpuxLpXIDwDHFnuuBYK4vNn8bqfjRLRShT7oc/8kwSBl5DTr1McHx3i5HwoMeIkOoBSGDllhaD7DDNQSOkwQCTNEeV1iAiDH4C0b2BIkf4ECQGQlOo9/fam1aIS1v/Vf/93H8TPzDLi3CSgvRC4RvfQ4aYBPMVA4YDdboNPPrrA4RbY7xGN/AHe97oOJwAhwHcdgqT9ufUeDyHgnXeeYLN9B1eXHuI7xBUvGm4AR2AwvO+g63WAiDEMvd4XcmiY8PRiwMurDi89IbiAhnYAHA6HDh4BZ7vn+OSDj9DdHnC+JXx4EUCbHXR/6Gu0FPB7f/krXF05/L1/8AFuSPdX8gC8V15E073V40OR9WAEr7xNiPwUp/U9ouMw9HlP/hoCwnZzgb/6ox/h1z54H8++usTH7Q02TwX72xuE4YDztsWjs8/A9BU679B6oGlf4nAN7Ak4vHAI/bsgafR5cFuId2o48oJhCHBxD+tPP73ET372EgIHdoRms0G7OUfbnIF4Ax8I7BnELcgBLQCwpup/9nKHf/xPXuLDjy9x8c4LPNpfwm0IVxsPYEDvHYQEB39AHwhuc46w6dC3B2weneN8s8Hts2twF8C+h5DH0KtO8r3gcq9GvBAEDXE0/ogaaoQQvMCTj47PDf7JzwSfHRg+Op4E0t+94L0+uw6qp4IA4tB1jL4f0Md0eh4DhtBH5ykPHyTqEQbDYQjRCZgE3X5ACOo0PITIOSEgeA/X7PCDv/RX8eTpe2haTVvHCNg0G7TbDYJHTsfX9x02LaNxwPNnl9icnQOtw767gQDYbC9ADAxdj027BTPhen+N8905XOPQDxpFtd1sQQx0XYft9hGIHETU6Ls920FkwP7mgM12ne/52gamDz/8EL//ox/hq2cv0fcDvO9Rb1JWcLeB5ptH9bOeCMLFMlPZErlWo1jpSv/q1EfpTSe+MFdVHt2odHa+XrAsybaOY15tS2WPkVL5eqpIz2/gXXq5z8tlpuWWXvxfpf6vU/5XD92o2DmHtm3w7rvv4I/+6P/G9fVPv23BXi+4AdEAzmnxuFq8xmgKii/wo0Vt2rOp/Dfl809kQHo5Z3IoGyO6fJ45vQzHZzEaOZSoj5sIR/IhVI+reqNWm1Xn9XBqj/IiJRE1+gIupV/QF/BCq8QFW3VOz/C4DSo7GOmxJpYPen3cKIoqUkeQ0tyErLD0lADCeVPwtGpxCPmlRhuJcpVmq1zASTcWA57EdqIJLqfaE648j4WjoS6mj+M4fvElmrIxSJDSIArSoqnS2rUxL3YsEOcXf6p0q7akOXIlX+u1lBAopx6rUsYRIUX8AK6MBXTxHYijs4W+KOi4xMWW6OIoLVRVx7r4cpyS2qR7EtMuJqNojKCSuBRX45K+vKiBK46/ru4g0dAq8ZlR75kQZ59oOiSBLnzginduNCC6aLSS/CuQ5pAOgeYOZgh67LYb7NoGwbd4G7BGMgHz36JTnCE0F3aYEb31b9B9DETHf7PSTLi7jtTuEskLoHaQG7dQEW3A8TGYSjMtu1gHAXXKvjzm8UHPct5F8i60P5Xj2LtFfbyWcyTTkWuoOjaqKwo1Hgtd2J5KXo6Gq/zsnIT5/Tpy/6jS0UA2SBcB4tyVkrhUolBBBIh7o3BF8MrK/FybG+nz20zyJrwZuqeew/XvZvrxklJsdOnkaZOl4+VZPq57onPLZG4W3VNVPWq/bnGsH5aet9lx0z1H+6RyzD+b7nm4UG/4uCtnEDQNx7RMALsADwanrXABfRZEV0QhqGOTazR6Py8bgqCL6wxxcXEAKesA0f0ymNLbM9CEFEFZUhGCKpctUT1Ucyy6bAmabkjU+5vjiihFRooEsATI/jno059g+PInOHz2xxDpEMIWLISWgOB7bNqn8AT43sP3AW7LWfY6DbhOyDgfWMeNUhcpL4biEjDOHyp9K05x9fMtZRKTps8qYZJKRgsIFHT9EYhS0o1srNMIP3XaC36ImTwoLkficyKAUIgrBB/f7JXkD0FTzzPrupiA3LcA0cQIQceWhKKToMS1QNJpgHjRjBPk4zDFexvzpevT6NMSORLNKZtF0EwUFH+fmNXJUwJYRNN7pztR6WcGNCtE0CWsrnZCdOcLUYWXdSmxlnDs4IPP40cgZJ/Dat9lXfrlVVo8po6mAgGFyDHEW6g2MgKFmEhdYjp7IQj6YqQKOm4hG7BE18ygnPXdxzqyI21IU/Bh6yHx2ldqBO0Zofc9WtciOQIHCLY7xocfX6BpgRfPoUY9pHEadDhE05ANQ6eZZVgdb/3g0W4Yj975AKHfYOgu4zVqQHIs6tQMQd8fkIy7QQKGwUNC3DOQAm4vPS6fewxe4JoWQTTqhSjAi+Bmf4Pz7S2+89E7uLy+xOOPCU+/06I/XGHTB7RM6NyAH//+F+hfbvD3//ARbuK9HyRmBCECHHSfJ4q6RqJ+ST9RIRlANW0/MetvXJwropZnEAHvffIJ8PjX8PlzQHxAwwPO+QofXlzjixd7nG9bNM0vQehBzqM/bLHb3eKmO8enP9/h+nILf/sUBI/O92h5q4Yb6P7mfhCgIRxuBD/9xQtcd7r3s2tbOHeGs90jnD16D5vdI3g4+H2H69tLeL8HMaNtN9i2O8DtcOW3uP3lU7x/c4PvnN+g7Z4Dmw6bZguBAzctuq7DAFFDT8dwco7N43dx8fQx3PlLHK5eYug69FedJnIhr7pRWgyDPr8dDRiC8jwhAM4pH8eO0TQ9zg6Elz3hCl6fTXFANCoPQzEAlQhsATvCMAyqIwEMQ+Rokr6REHWlpuGDqN6REBAGgUg0MPs4733AMAz47q//AN/9/g/hnAM7zR7DjuFazezkGuXrej+gYcJ52+Lq9hriOKbtI9zc3mC3u4BzDoduD24cNpsW+6tbNNxi2+4gTNhfH9C0GzSOcLi9QeOc6l4C9vsD3KZB0zAOtwPAjPbIu9vXNjAxOzx79hL/6z/433IY48KKYwWvUynKyrf4A3dUjmNyLfVLkD3fZb3UqmwzcoVn5coiqHzXz/XC6fgPTX2qXDtdoY3bTO9I41N6j8cv4/Merxv1xv05Vu5VMe/r+Nj03Nq1p5R/VRyTZy6/LpB+/OMfH/VEfVvQUAcAkfRPL4Px5T2+fBI5JdCrNX5679IX2uilRMXooxEXaWEPaMq6KtqIqfwYRCI9G5eo0R8U0h+PICmSp8kv4RRTroEo37fUjxJ5FGXNZArFBQlAaW+ltGJA8QzTkpWBJx1EjFQSjlFG5fkk9Q/RlzeuaZrymbiqL1U63eRb6rFFkiQfQ17w1X1KMkpur0TTjPVNGSsqkVJSZJRouMsyQ+LCY7xYkEyahLEupKhVk8pL+woB0D2sdOEyNm7HhVJaiOSLA4iGiqRInmzRhZYkegEWQ2Ha8UuisRK5bgAUvfdi9FPaA0lQyQwfF14UjXDaVpY263OHslRPKYaSYQxgiUuW6kKCvtQSUO1FoLIyabRe8qTTeyW6gCdAzY4OYGC72WDbOvjwmjLvfotYInxPMQYtkYL3aWcJa3XUx0+RjeOChKhsVr9c8cKhNavTKqIReEW2mmytBIwEB0/eE3Q+p+dhSj7P6oGSS6c6pwDL9yE/E8yjexlCWL0mIYSQy2kPlqGP/n3fiwv5AaLVuuvygN7/saGijMGdxsvpkFfFp++zdcq15GSRnLQo/V5Ve+jU107rnJK89flTnq+HiG9D99S/s/UxnWe1PFJNh/q+Uz5d/YjnLykd5126p7xrVMekfl+ZrjWn9eQ3uQXdU78Hmu4x3YPRtdM633bdM3hdz6RIAhl8Nsip43V8d5QYZZQyNoiOq4eAfHrfRHloKEUlUdkvK+oRycElBM7vvWqQCoKYpkrbdfEdNVBOcK3Xx/r6IPDDgD5olEdyCU5prpwA5Afsf/EHGJ7/FN3hBfztZ9p3BPVOdw08EejsfcjlV/BDr43kFIpRwrjuEFAkE1VJJAdAtf0k80PIz4ZGZMUliCok6N6vyM+e7poa9apIziigBqkQ154oTmTeZ90U0m+DEKpRT3ZxCKLxLRKG2i/dtZepioRPabhDZKijDtSXfu2xRtmo7EEP6/0RAnjIqyaI3ktiRggBDRNAHiK6D5oPMRMJxYzecY4IoJE7hLgPc5xPPuizzBrd5pNYkDyGSZ9INuZIdlZgQXTP0/GI7nc69wQIMY0Wo34vTc3rFfk7JAX56f0KIZrq0rVRvyTDoujzk8bZpYwi5MBB1AwWgqbeh4OIRncBQaMk4jYBKXVsyqTyWqnUXxGEA7aPGV56OFZeR43DgqYh7M4aPH3vAoeecH2jEX8Egh88JBoGBYDvB3jxYBY4cvCdoB88nr5/gd3uPdxedyAKcEQIwwF9dwA7QSuabt8PQ8VTdBDf6/MhgPQen//C4+pSAEdw8aaG0MNFR9Nu8PjyxTN88M77ODvb4We/+Gfonv0h/pf/nXB5+xs4v7jBB+cDvvO0xb/9gx1++f85/MHnPhraVXeFyEW4RjOKCGWzMEAExwwhnw2rEnWcDIL/n703a7Ikue78fsc9lntzqa27utFYCYIEhxhK4pjGNDJJJht9bT3qSQ8yaUxGURRnCBIkgUZ3V9eSmXeLCPejh3PcI27mzarqRjeAAsrLsvLmjQh3D1+On/V/YjT44RiDRdiEwF/+2Z+zPnvILz97zs31lzTNhvN44Exe8PRix6pdszlk+twROZCmzGEHmxc9n//yQ3Zjy1mXie2KUXekPDAME33Tk9Wg1sZD5P/7+y94fj2ABNp+RdN2BGkYhoxud+RJiLEnD3vGYUvoIqvzS/puheZsOYgOE7Qtn109ZRouedr/gvN0jZ4PtFHYk9iPozkQaEcMLf3FOeerB0iKKIK2kbC65PyiJ497DptrYsqwHdFDJtIwpNGhdTHHXtehNY3wgcBqn/kiGH2RYMaeQCSqeoSRokEt6oxAiA1g8Ixl/RQ4PCRANjpkkZdKngBPRZHySNKBILbnCx3LSVn1F/z4z/6KbrVGYktszWAUQ0dsOlRtzmOAYcx0bYMi7HYHzs8uaduG7c0VoWlpuo6UJ3KGrm/RnNiPg0UkhUgaBrogxK4xuj5lVqsziIGcE1mVddcQBKZppGk7UjoKtTsqv7EmSNXwDLPeonGnNPzHT/6mTb+hY8dM48yUGkH+Sq3rUQWLj4s2lKPfb1N/8fIoT8yM6/1PL4f1tmEm52Pm+s3GpluC4hvau33v3frvznNV0t7bl/lgf115fR2vL6977KtW+W07ipyqX3395ayM4/it9+H3oQjdIhoGKnPJrOgIFC9SPLeAs8paIM2CRwiZgj8UIdaVBkLJlQQ1n41AjSjyzzAbMMwrzD3I5iAdr68YEgRKbiG/VvbbLIQWA5QcCdd3BdXZY6V0qSo5KtSae5kJaM3Dcsxsl94tDQsUppzSvn+n9Q2P2p/7ejxTc+1lnsq9xd+5GFCkHrylj7POaX7vasqoAzePDX7OiCf+NO7AvMEKP4+PCXUMsglxRTFU392EKyVXwbDStqP2w9EVi7zK8+dKSyeHxxMKrKA9Yv0ow1Y8Mcs7SY4ETACxyCZLTGpGpOLBbSK8aLKoIYSSp6mOLbjHnY2TaPHeA/OWE883kMm4kidrpdEwR4ZZ30KRGCnQhZlMFoMbCO4qFUlkEk0rdH1k5A8jgumbKLeVu69TQt1WZH0VhdXrjDb3fff29Z841+XYg/hNfSu3Csft337P4yiCUL3yrNGy0m/xTnJc79v053V/3+YzbvfvdgTBqbmtddxSSt43r19VOXlbiV37Yxff4rn71+M3oiidD6v5bCiK6MW5ZNQ11BOilPt4vfsU8W9rRPljKt8U7Zl37+xqcdzOibaPPszt1y37lvN0yoBjtKfG5Xoz99R3JLadoj3H/ZtveE973u4d3tOePxTaY9B4blANxk+POdOGSM6JJhbYaXWNvskfyQ0rkpXkys+syblgry+XKHrjItFgRgkUSaDO0pZ1lLPlHC1Oy3V9ueGmoFBkkUpicsqQJsuhkb1NFZBsUWwIgybG6Qbd7JimiZQt8mFKFqkgEiEr/cPvsf/yM6bhC6Zpou37o/VjTTp3rc6ha0EdEFSSA2YXd79iRMJ56tnhBo7XkxZdmma0wr85QkG2sQgFPSGXKK+y9qyRIoUIZgMySLmCzGNKTOf4KY6YSS2SKLhDZsAU3TWaJytC8pzB1OdK33NWoqjbcwwRASyqwwxkSlRFs8F7BWbHtYwQEVJKRAt5svcuUWzJx5AF7fbrpW27xjxHmt0u6EZ4MqJurFpYxIqz1Ew3/VkX3ovMqOL1qRyNNgWpggBEN3a5/F9ALIKteUONmFE8hGjQfOS6PGxsxdaSWyNzFoqOwvq5WC9Vnn13S8oT7Xkgk4jSGJ1weMW2CzQNrM8aQkzsrjqm1FQyn6aRAiCnWZmm0cYtuuF7TIQoPP7wKW244HrcEIIQJDNMByjRT9mi/UKRtRFSGtCcHY5f0RE2NwNjSjSxNWOGJtvWsSVKw3gYyWPmVSt89OC7/G9/s+H6l5/w8+uRQ4bMI9I00Af4i0cdjy8uODt/yc3ugEnpHvHpGHchCpoEgpCSWn+qvkqRaJNf1PwpmTEyBIObPOt7vtsozc//hkfpgscXDf8yXvH54TMeyJaPHwgxnBHiNfvNOZfnB8bdyItnPS9etExTAxic3Lo7Y79N7A4v6dtLUoY8DQSN/PO/vuJXn72ka87o+ob1xSXd+Tltf442nb3ZmBnGLeM0kIOw6s7o23O6piOEyGqVGYYdw2HHftzx6xGe777H4/iMD9MVj58MXMvEoC1ZI0PKTFnpQ6SflDHtSeOAEmi0p409oyaa84e0LXRPlDxmxqsb2GWaQc2Im42OBYfcVFV2rbBP7ryNOppOJI2jZ0VQQmM6FMKsfxL8GNACaxmd1ifLi5Qha5pzMYWGaRyR4jZRnYGUrPDRD37Ck+98H2kbYtvRxJYmtLRtXx0dQgxMaSQ0kRwDr7Y3ECIxtmRNTGqGohAjw25H353RxJbdzQ1t29I0HSEGxt0ND87XjCFyfb1zo5lBVA6HgVW/pm8axmHLqhEsyda3amDKpOSJ1n1QgBOM5usMDN9CqREAp8qbDSOnL5+6T+7++UYLQDnQjh56wzOny31Cw30QGt9MKO2p/n69eXzb/rzrIcC/WSnjbQzYH8NYiIwgLealkhDJjm8NlZ/yEOhZxPfPQZxdbfweEI0EyZbXyb2GqgAghZGUGR2zRqQs95F7IyBzcI4UpYMZMmZDzXxDdq+FEI4NLOWeWR6e93Jwxr0qQKQAMxQjkc7CQBkQUaTCmfm+d6Gt/Jv3qVkgzLhQaKWJhGaIyVX8KZFRFOEQjNmdkzLNglNxYyvvY2+zIKEy37p4N4rQFIpCpEAILMa59qHQTsGi2EoHmC+WHEm5gLvNuSKW/WM5Ji5sCOaNWXpePIdMhllYFTlWsi/VXfXQLe/gApm1ERzWQg1+r6w3LXROXEjxtkX8elnrYt6G9a21Dows3kVhFgCXuN1qHouaIyLJgtVycAWA4ax7kx6SvwQUtEi8EIrpKvjaFNqorLr2tR4t70KZPZxnp4b62ZUJs5B7v3BXvLpF5OiWOwrJ5bJUdVgEV1gtlYUcn+X10VNn/XGDd9s8quEe/uFIyXz6DecovtNOO3LP93f6O3+xoGcznyQy32uG8hnOqbzFa/uqc39fN2f39LK2cEqZOI+5/76tLPIIBnWPZpyuqxvFCzkvLWW0/n2vofFoTmdHi6USv1RTuzXffY9CtJxPWts+viyVfi+fKcqeo76V+VNvuZ5BVNqk3oa6omle6/P3J9d2fa7UXQfknS+/L7THzqn5Hova4ei4VFeGHB3SR/zF3OKsUjtWjX1V2rNUpM5+7vfTnvmZu+3cNpS8pz3vac8fM+0RMJ40254JUEJDzBkJ32lS9N6uuM8OeCAG02MRUBGlQKmZeURyJoeyBgpcdS4a9crT15S0izkLavkvZpHDlNG2s43HndJkhq1qWDXooxCl5uYSTUgaGXMygxTG4+aULX9P0zBNAt1DQnfBdPMZh8OB1XpVx6Lsn6Ra5QVb+8H4eQVTrdk6ybbYZtTxsn4c4qtQqexyjx0BRlul1KIeYSQe3aSLlA1VSvFoHLUooOi5oeYWtEpi1RDjaz1nN7wI3o8SqVOinxQJ6vB4DukkgM6RgWURqZ9TWRJRhJgtD1TWTFabOavRxipgkE+UXFxZIRaDHRSEEdQQFXJ9AWz9FOc58X765wIkbssp2hrS7PMgdVx9cHxcPOYrg7RCXOxrGztDjjC5rNCIJSpHkfu0bCgjXTrLcoE5z5hqQboo5+O8D4x2F0fV+f4ygeWcLDLau1xyzEhj50KQAFEgCN06068yMTY8eLwmTYHtNlJyGac82F4QH69c1o1FRk/DREoTq8drLs4/Iu2NTEkM5DQatGeg6pFySsTo1D1nUso+jZb77bAbGIZMaGbuwnDoGlRgnLIp3Ts4jCM3w4b24oJf5IbrtAeFpJByJInwtzeR1TRydvkhu+kZaTggDhma1Yz3qtY/+3GdhFq0aUozbxDrPpS5/wiPnnzIT378Mz77l7/henPN957+hI8/6Pl0uGGrBx6Ec84v1kzNyLDr4UyY9pFhuOT88Uhsb9hcPWU8JGJoUc8TtG7W7EfloBPbG/j0n7ZcdOf89N/8kA+eXPDxD7/PYTfy6+dXXG8i4w6mXshtJp+fE2JjBowM4ziCDpY7LbZcPFghQUhpQqeRL4eO61+veLp7zsOnGx6fD1wNDYfJood22yuLHhQ1uDgihExOB3JyWikNEiKhUWIIrJ40TNuR/dUVedwjSVg3LTlnrgfIBFLKNCGQyJV2ZxHQZPq84gQgQhsiw2CRmQA6lVhGI1c5ZXKJ8syKGZ+M58mF78fu0yAEDTx89JQ//9lfs+rXtE1L1/Y0saVtVsQYLIVIjCTJRpsFJk3shz19t0aisN8dWK3WhKYlDSMhNMSm8b5nmranaRrGaU/Tr8gxMgwjqpn1+sxyTmkia6ZpetBMTBOrtmWfRvbD5t59/Q0YmIo31202+1gsOF1OCTvOUL+WXhYW8XZdtwSGk8+9TSlM/e37bwtTHDGhM8994tpbtfn1ym1YgFMh/LWVheD6jZQqdc6/jw7CE/35wy9vsz6/ynPz9VMQDX+IRTDLueUPihaizFQFOwnF10Mqs1zzNUk0JYkqQSyhZ5BAFAs3RtQ866oyAWdOK+DyLARXxq1EcRTQAfNwrRw15VYXnsTD+N3oVMwcpW6gvkMRJOz7GdJj6Z06C+hWQs2ZpC5cBKBxhrbkBmLRL+p3R1u2flOUK/aOWgV0qoCuRQGDQskZtAAHL4LfXPft9a5umCsVm6ecJVQsfS5zXuqZFnWV6/PnUkx+1MUc+DOC11WE1WOhwKRpXwDqnnkslRbqAhEUZblNd4HOcbG7vsMsgNrnmSZX2uvdMqFqHqeqLBHmdY1j2rNoExfMfb347JgnjY9MURIGLaa1jJBcqC+edC6wq6LiuOaKYwr7xZCr0FyyfJmhdPbiLt6DTRT6tmMYZ+H3XSyzfvOWoteVT7gAXRRrS2Xo7SILHZRPLEsacOd+74AWRwKZ+3DbW716cZ44D8xYfleRV+qnCrLWn+V7HNMa77Mcj8VCvfTaY23epfNNp5SLtilc+Rjmz7WepbJTikJBPfnxkgc73U6q14qv4/IdT5VTfcT3R1EoFEWz1126V2ihGtyKud8u+ikLerv8ijo1tf6jEhYjuRxDOX6bJbmvEZWL24sy484bn6Dblb75HBXKWE4SzWVNOGSEljdbnB/ziFRAmqLYrfxMnunXqXKfk1RRZjkLwKLRd7L8PtAeUqLkGRRX3IApNyrtce5raWSppqQglCjxUvO8JpdzVS7LW9KeWknlOt6G9ixP89O0J7ynPbynPfeVPxraU3aMQiNKSlh+GsGjWUBchhJMwSmu4AYzDKlHrASvKitoMCgpBTQXRajRGHE+t/LubuDK7qAVnP5kdeMnbjQKNvKh0gVl3A9oSqTJnMGmZMaSVnGIIyUlZVQzdlX+CVDNTGlCpGOaDpAh9heAJTk3dtvWW3bUhMqjF7mwoOaoRfoX6a7sR1sweR7n8n9Ze2L9ULTm/fHliYjU24JU035tQdVpYqXxEdS4fjxvbEFeKLl6jXQIc4rZYnQxWm8GDigw8oLJZUWR6RNqoH2OcjDliSiNL6NMTnKU7606P6qgJeeXAA65bWiExSAOQYOLakW2KwY8O2MKioP4WskuX2UMAs3OG3PIw/e7+FpSn5MgFYTODEsu3/lh60iHxZCVCgn15yvhtTVZYFdwmQzI4mPq56j6enFA9erIV3IvIT4G2fqeS94l9YhLKeYpP92+aZ3e76C0fSA2EGOo0G7tWlmd2VpcrRv6VWB31bGbWouwRMmTGSUKmss47AEMQi4racoQlcvH5yRZsT0cyEygkDR7zh1BohkTZjrgjpmiNK3ClMmjst3tLToIsdxitrCJMaAZskdEag6kKfPi+jlPHgo//vF3+b//n59zGA4GISkQmg5CZLNP0ExcnD/gVfrSHDQrD2jrNk8ZknpOsoTlJzPDsKpFfIqI02SPuENoYuRHP/trHv/sP/Dkwx/z7NO/YxyERFvoAAAgAElEQVT2tE3DReh5uZ8gr5DVK2gP6NhxffWU0G5YnR/oVoGLR8/p/vUpL5/3qA503SWtKMM0kRR2m4lf/QKm/cDTH1zw6d//A3z3I/70z37EeZtoG+H5lfDFL0d++Y+f8vSnH9N2K4YBxinRti2h7yAEcp6YxoE8TBYPGCIaGkJ3wUEavtg+4PpfPufh41esVxMhZoYcud6O3Gw3SFS6rre51Qyhn/d5NnoWm4DGSGxW6GXPWdvQtnvOtxtePcvkkCFEVDJdbBAC45CZBJKOBJQmCBKN/jbNnNIm14hSJcbIlJMjxWRycvqAWj428fMrWXSj+EERgqVKePD4A3721/8DTx5/xLptCU1PEyNRLLI+5wQRmjZwOGzpQk/XtFxfv6TvOrp+TcojgtDEHg0Ga9efXdB2DbvrK7qmI3YdbRPZ70ba9ZokgWHcGmweAUJkf3NDt1qBwDAOrJs1Q9ozpoFnzz6/d19/c8kSyoFTGcTbBO81ksBXuudU3W9b3rb++9oT7rY9/32bdT7ZSykn0/19qwrlr2gYeptD5ls9iBbCJiyE0Xf88Pvq5Zt835kZ/WMq5kFnHmeEmZE2vso95Shsvhs7imHFveOCmP+SGWtc4MYEHAdDdiHBahIpURxFZp8NWBa9ZNUHSs4A9z46gn1z45PDi4lzqOLCEKFEYRV/KOsvePUSnJmHAttmxjYLRQ1F6A6xrgozBh17gB4ZTsqIyvHe1KoEKK+Wa9+lMvRaf7R6kvl7lQersFNVIVUJUNoqN5fr4kLPUplTUr7Oj5Yalwqm8vfcP/X+1GgfF1RVsbxTShXIqocbMhtXjtq0a2UkVcQkILUknoWhn6E7XIhDQOOi/kILzeBnXQp1jYoLQgTw9MnWTrY+ZSnjXFRSAS0RdApQ4EqCr+PkAmR5g/m9IuJwI+pYzrOSprytEBy6wce9CPsqWI4xF3wXgk35kRDJGhFV+q5he+j4QyqzYVCOXr3kYvW7Xl+JLu+9yyvc+1g5U48UW8d8wanvi4GwwJ0sO1K9tp2WihuiXgdZdOr63dxtd/txX33Hn70eMa/DU4axt2YhZg398TjNFGvR5n2VCieG4s2l7s2iCEvutfbmHCxvwyNJaWPZ3onPpznwW++0uDgrW4//tmpPDMRbDM59Tk3q+Q1UPVpm2faiTyXyRhf9vjNGRcOuuqB2f1jlt097FrKOT0r1sl7kjjD+ZDFlOp/6msUjGWbaM5+GPtdfkfaUFyj/LwPBj3r/tWgP72nPm6ovbSzbO/H5Pe15h4saCyoAqaykaApMMirBnImWm18z2fMnacpVRsti+XE0zNGWgkGu1Ugfl+BMOaoWOR/MNFMU96oJLblls8sobhAI2YHFJCMJxmEgJ4NBc79CLIpJaKLRopSWES9C0lwhp3LK9H1DThvS5gVx/RDRwHDYkzRVKLWifA4o5EB2G0iJnKAYFFDj33U2AhQDhPoQslzvFYyOavAsHFbQhbFBqOMjjjZRo1jqOs2UXHGqyaJC1Dj4LKHaaUI9UBzqsCyFMs/UjtZzKIiQshlwNLmcLeIQ36WdIkVBygkRsRw1GDZGcCOSSUYlf47JwqpiUICIIVo4nJ1El7vUlw4lAsAQJ+YzBiQrhGCyT5Vf1aPrzGjptdr96j+WBMpogM9TMXbNcqtFXRXjwuxkaXJzFnUjoB90S8NRmafFGkqLOqSuAGy/aYkUC0RhPovd6ESllfcciO9IiZ0p/i23EHTrxOrcjZNEzs4vQTsOux7JBn+fp8Q0JJN/JaOaLAoxBCQo02R/ry46Hjx6TNbIlPcEEiQlp4kYArE1NXgat1RYsxjMiCOZs4vA/pWw3YyMQya2xt8UnkzoyNqgyQ3WwfKQHfZ7YhO4agMfPfqEP/nR9/jPP/9ndMqzUYxIzspuN/HwUcdqvWK/25OnESqvpIRohv2ckusi3FCiZtQ4Pp5sr4bQ0K7P+eQHP+M//c2njJuXPLl4ygdPAlO4ZrX5krPYITRMeUvT3ICsGLYPePidA2HXkVPD5aMNw7OJKGeoHAicMSbYjRuGUfjnf9rx6tdKCgObwws2Nzv+5NF3OOyeo+zJaUOQkcuPz1m9mPi3/81jnjx+SBrgi2cvefbFht1hhHBG016YM3iIQGJKIze7Pelmz357w3bYM+5H4i8zj54qTz8KhHbg0GXGEYdnhWGYkDwhIRFii6SRVaPssjBNgSnv3eieaELiwarlJ49afjFkPmvO2L7akvOAzZAQupZGlZQDUzrYORgKy2fr9jClGiUpfg6YsdEj4VRoiGRVi8xSpYlOi0o0kxp8aN/1fP8nf8nT7/yAvu1omwbahhgjEoJBboaA9D3DcEBwmLz9DlHo2p4uBK42e9qup+k6hsNA169pmx6dJqaUiV1PbFoO+x0xNARp0Glg3bSE2DCpouNI10SapqVEWI5dy3ba8PLlc66vv8UIpsWa/s3LHVD/hbBzfOM30NhvWBZM8Ckl0Clh5l6R4pbx6BTD/y4aad7FPv++l/uE8T+4ElpUJ2P4/J2l8HMC4MxiEQVFMPxjEzjclcMEEQlukMg1cskwvIthKVK4zFJ/GeJ5pIvRp3jduXeJLA072a/NUHkFOiGIKVz0VsWyIMGmR7HGiwxXbrWDbG57CRMwe9emIgtQIQPqCywwexfPLNnSEkFVh7j8514XkWkxOIUV9gibUNRHbmBDb9HIZRvz+84jO3sJz9E+1HGclRSnFFHUsabMRNXhSE0sbGJGYx6BuOFJ4kL944IIxQvW58Il7oKHDsVzMoEkYvFMKx1SS8SL4N6ObpwRMe7T5wFK7Nmx0WsJP6iqHlVVZUpfqlXK8tfMLrSUniyUWFJyVBUDnoHeK2X9q48TnvdM5/aqoGlG3IAnVM2zUFMSEQO0XUts3u0IplOleF/OJtIizh6vyNcqx07ct7x3oZ+8c8/y76Pv7yhDyz0uMMsijwiuoCnKgqLl8D32Ov7ldvSUfT4t1B4llL+nzmWpe3zW5p3klZaRBK+L5L3zvb9juKP8XeyRW7fP199Q9+3+1Wqtf1nvUfAqM014Q73Wp0qV7237+N7bz1NfbLlml2tKFwaF+j5Hivj7aC93hvH2XC2/L7BdeaHkRe9bT7eF59vXFuN7z7p518tvk/bM62KOTF7OwTKCcWnl0aI1LXUpFAMSlUvTe2jP62SnsOBz5v58s7RnbuM97blb3tOek2/9B0d7Jk1ENXSqKbnxNzssWjC4cdVMI4bMoFg0EWLGCbLQRo9IQi2HaIWqdg97KWr3wvybw1V1y1KQoBTk6IzMjlUZqo4oLxzGJDMiHIYDTbZI/QRMCuJ7OyGVLgURRhWjFYXwpcAwZVbuGT4NG7rzh4TYMRxGpinRxsboXLZ2k0BBtdAa/WPVFcNNcWBLbkAo0kZWpWILCm4QETf8uHyqxUlQmUQJHkVlENbqqAlCKsLOAtZdweQVNYOUqpt7sqLBBqLE2GQx176yH4oMqmmGhLfUVBkJSije9qo+Lfb+IYtFngk0OaDBs1SFxV5UG78U3RiDIBqxyCA/JYJFwBUKabJQmOUvsSi3ss5UbFxFZ2D3GArChItxVb6xVWNRWMXQKfU4MsNaMYApmpOtTVXE83ihZewdcFAByTM4BsxyvsLsYCCz6McCJq9GTzoMu/jaxHI+ze6nBQLRDa6afU++28YlgKa3NRai0J0pZ4/Ucg+p0K86zi860q5nOrQVWnOa9ihucAFymqjGIbLBroly+WTN+dlTrl8lVAczYqcDkgdCbIm5I+lgkdt4eoKc0TwR15mHjzL755ntZgQJxAhdF4lRiI3JxVkVkuUljtKR1PI3daHlcDjw4uZLPv7oKZubj/jlrz63PaEwTZPTB9AcOe8v0TFxSJNFvhVoRBPV3dnV5Pxy9sRYopqdTDoPlCXx6Mljnjz4gMMuM/Y9n+4O/HK746zb87A50Celax8ypM+5pCERIH0M0wPOO9jtlIZfMw2KveoEBA6j0cRpuqTrPuTlq/+Ti+9MEDMf/LAnrne8fPUPxMairXIaOQxf8G//+z/lo49XrNqIXGT6s8jDx/Dpv/4Ln//yiqSX9N2HEB6QY0+/6njUregvhZd54OX2FSkrwyRsPlVevRr4zieR9ZkBTyItTQiMKpCsXcmQdWS7HxkIaNOgOSFxpAnKqHue7ybOdcvl+pLPJ4jrNU18SGRCNxv2w8SYRpog9E1rZ1lozdiSRiQoh8H0IlEiOKxccN2+ZCVIg0ggTaPlmovBZz579Kbx1ILw/Z/8jD/5yb/l4uycNhiUYAwNIUZCiAjR8iYpTCR7ToTd/sD64oLYNOx3GyQEYtOaRi4l2nbFqu25vtrS9itC7NCsDMNEt+rNSLWb6FcdY4a+a5Hdlm7VM0XLL4Y0jCmx2d7w7ItnNZ3EyX39LdGLb6AoM+d4m7l8vQD1rZbfgXL/NwmB/TbCZ8vB/b789svrhNs/pCI1l09AiC6oFM8AKAz1bAAovPDsFTt/V8SZiEgkEFEZsYqMIZfghqYSYbIwSVAUrG5MKkwute58bDzAhSpw5Wwx7kTMtc6/x6D06jOuZJ1/a/27evGK906KMF/6SK13FuBKlM9cf1V0LGT3IrPN9dm4zNH/ZUzc45Di6WZB/rLA4pkhGzw/llk8FhTbFQh3cuTJTO5DYfjD7L3mxrziRaf1eAg+LIs9oWoCk0e++YeqnhPK/UXImpUSZeyWvStziQtkRRKe12g0ps+ZhTrmLuBqjYcSCrZ6WSsq4oK4CcqW8TjXnhrMos83xnBT57TAPeBCRjnOF0o2WeylXATQWWGjBGfQ3YtTS4Jfp/GS0eDRYEWQMXnP+2kee9GZo67t6ZuRd73cVtbOXvS+ZmzR8Dq10uu88t/U7u3vltBIRYA4ZfSZHyq0p9BCv7cK00rRCZvMr5U2nOrHXccGYZkHYHkthHDvGXUnCkqKgf7tytc6/1RvnQmFJ1rA2tzt6Z0+36dgLgYASk2mQZoV6dxdT7qgMPe90515vXfp3Kalp0ulby6I3jYizkaF+9sv62D2t50van35Ez1cKJFRjyDIefFMuHP/st3b/RKZcz/cVVS/2+V3RXtOKcmVTFzCsuWCZ+8nrsx05XZb894u92hV5JW2XN9YENgW71++0BM04qvRHplvPNHHwNvsndKv97Tnzgu+7uKtfr6nPb/PRaJ4bgg1lAcguWFIc7IICrH9GsWSyRc0h6wJkVgVrQSTE6KqK9ADxaiBTBV1QTNkH/6ozp9UpyapOZcka4VUs87qHHWigZQm0jDQ5gxJSA45ViD0Cvxb1wqP1z2/fnlgzB7RJhYhlFIiikVsjYc9F5/8OU3/iN31r9kfBtquNQ5bigFsjvrPDuBnmTugGIYSQsm1pMz3Iu67lR3dQDBHLWb6QJVr5mgaXLa0aCkzSJix2A2muCwDJj+p4XYEPBImLAy3as9LtKiy+TnLLxWCu+irGZuCy3NZ7UxQtXxQwbwLTY4ILm/5eZVRQhZiE8yIBkyaCZMa1HaMpvzMMANYVFcETHqx95UcHY3BhmdJubXKmcbhJjUYs1gUvLHk5xGSw5kXuim6RKWQ+i7lXW0plpaKQ95U11R1/HBIweNT1Gdei6zmuoYC4YWNaTXsuVwZfI3heo4ZMnDm2a1PLtvecc5/t0roAm0T6M6E8w8yTaMICULDwwfnoLDfNKTJUG1UYZoGRIpslBmHyf4mk3KCnOnOAmeX5+TpnOFwU9uTwmNEUEmkcah5j4JE8jSiCquzwLqf2F6PTGkitsLZuqftGibP6e2iuK09d+ZMw4iIWq634UBOA11s+eEPP+Lq5oab7ZaUJ0QjoY2IwHZ74MHlitg2SHLdSfJITy1RSa69MKEfWzK+NkKsugclQIQffPghf/rhihdDw5B6rq53XF/Br198waYd+P5a6JtMXm0Z939CExOxC+yv1/Qf7unGls2z77G/7m18xsaixhTSCC8/fw6a6R9k2tVE28H68sB2/ILnVw1dA9LAmCfGKdKvPmEanjPkvedGH1i1icePEy+efcF28xnT9ldst2t++IO/5AcffcQ//b//zLP/8pyRxDRcISthfXHORGLI8OvPJy7OMw8eNyQdyXmkbWGaoAmGZjQlYTdmkkxGh3KmbUbO1sqLYc92GvmXnPikPTBsJ3IKhKZhRBlT5GqfkNDRi9AFozJ5sj3cxRYhkZtITBZLmXJikkxoInnMSDCHXkVIKRm8cjB9TE4+nyKIZr77o5/yl3/1H3h08ZgmdkgIhAKN10RiCDTS0MaWcRqREOmanmG3IYSAhBZUGcaBtj+jb3sOuw0alMZzTIlE2qahaVv2uw1N2xGbiKQDqy54rqoGyQdC23CQxijylOnWLfvDjldfPkMl0Lf3m5F+Tw1MfsD+Vpv09qqS9e3uf92db+sh9puWN7XzOiPT1+nj8a0LDvy95el9+YZKDT836QKAGoeiBcYuEKRlzpvkyghmT66iUDfGuaz3dKxYEPxZZ2mdka7CPQJiximrIzsza5UWw02hCLYFYu0LzniIzsaQYkSa4fH8virrLvpeOl/NH+ahUzo/y+Iy94tZGK6kjbmepdKqXmOp0FAQj62Zwb2BQJAZMsA4KxMHRJeQONGvFYDv4/nVBZrfPA/LvhhjPRvqikGmzNdCQZFnln45Z7nIUZTktrLQh8RF/6kCXIG1qIYcV+Qpx21S1qe62k8EAy0MC2OVG2YQCEWAm5U8FoKPz2VROtkYl8S9rjFaDNbCQ7QKn9auCarzvTUKC1206gPvhk40ECQaM19bMEMZnqxSRKjQ4ipm9KuQSVRhL4sQGqHtjpVF71q57UVdfxaQcEce6a7Qe5Oi7m0jDF7Xp2UJHqV5e+/6H97XQn/qrqJugiWteEPbS6/wIgifUtgee55z5/q93902Xn1L5c58CMi97d3fjzuGPlnMUUk07FWc5LHuKCJe3+fT4/TtlLv8oiz+n+8BsAS3drXQwdetAXy/4FjlpeZCK+/Uf28vdfHjip0/ACXv74r2zKMtM3+CHj0L83yE4s1dWajj/auvpT0c063X9MY1dszL/6vRntt8we1n7nbgPe253ef3tOdORfwh0p6QA9GNReqw3qYEc8W4G5MSBvdTYJdLVJAEzwWCQ7oVecp53KIUzy5PBMHqzNbWHNFh4SnRFedFJjKjjkf9i8+c89XDYTRYKTcsKeaMlUVMR4tAzpxF4fGDji+vD0yTfe8x3YzjaGsiKWkcufjuj3n+i++RXv6KzXbH5cW5O1uJGdZUjXdXQ6jwJmxdZsd2kFnGgAVdd4y628bhGpelC/rnbZR7lOx5inze/F21rMlFxI96zJSIGUtCgR50uSoGi4BSsYT0ptN2Q5hmYqiSae1TLLKzWIfUJydpCcKyHCayeJ9U1gW2VkpOL4tsS2aIKsNUA9Ys70wMwRHJlAI3X8TX5Y4LIkyaHPAbJAuTO/yFrCTvT6x547EOuwFHHR5N1fAVzUhvhjyRxmXB5Aap4sigVAO1mDGgGD7niZ0dKIIRa8psFdhy8c+hvD8zYKKCy1ugYnMdJVepUGTOg/uuliY29OeRy6cT7ZkSiWQVYuw5W0cON7DZqBtnAzmZE6NFc6j5mxi5IkRl3CdygLMnDd36Cfv9RNYD6vEWOSdTqIfoRugJkUwMRhFytuixhw8C2xeJzWY0EI82kkIkqvizJqmLGk8UiGiajKZFIadsxvm+5Wa35clFx49/8Al/91/+icPBEGEkR4tmUeFmM3B+8YhhGBwGbSJny7Vksrft7xAwqEtfBaoGu2ZFCFFp1xf89N/9j7B6yONOIQycraGNE9dXOz5/NfJB+4iz5tes1lfstyv6yx0icNhnUj4Q28z2JjJNLRAYB2UcdxzGxOZ6w4sXL3n54lPohgqjekgJdtfkLLSNEBoYFJKugR2bm8+Z2rXDEWfyODFsXyE6oQSaszP+4//0P/OD7zxlGq55eHbGr/7+7/j5333JoBOXH/f84C8fMxzWhNUajcqkysuXI2f9SLfe0IXIIC0145wrnAw+VZnGiRQmduPIOA4kYEPk0JjThBnvDXJVBdq+I+fAKIEpJUQa2ii0IaNM5MMeyZl134GaA0XKgUlh1ESelCkLU86EAI1EurZFVEz/0ljfnnz0A/7bf/8fefzwI/PJiJGmbYlNSwwNEiNIoO9W5CnThA7IBLUIvv7skq5vuX75JaFtCG1D0swwDqxWPed9y8urVwRNdBjkXc6Jpuvpm0jY7VivzgwqV2AaB8awIktgHAZi2wKZ7e4Vu+HA+vwC0v2INb+xgWnm5Vxp8Y2Vb5+ZfX357RLs1xmBfpN731S+Xj2Luake9e/LXH6TAXk/mIAnlz32vp9/hyqYa0jziFWFTFF+lCvOtIMr2ItnXIkOwoWYwtIVSD2p7QDmVVSEdimM9yyQFmHX+lAfmvsqIESH53PhHWdw0AUtFWdqZ2xnajulrRJJNSspqgGu9gOW0TdSDtvSX8UNN7k+Uy6L42WDC3iqs5BT4RXMU6bieBfxT2dhVBcjeKQ2EK9/UWfpQQluUnKt1aBy3FDiRpNqZLs1T6aEKgoyH1c3iBSjmroALG6xWhpsTKHlioc6HepJV32UxQSLY5ORoBqo5hxJiKSl9EjFlveuiCvLjmm6RWyZ4qI8I1BzOVH7WQwJ4mtGmduoq8U96+qw5PKu87qYI7rKkwVYHkq0lUhGsqDFU1WKmJQgeIJclFW74l0uyzMxqwm4tl+PE9cfSY8LyJ0jBdd9jihSfs0e6Iuv52dPKQhhVjzbH29xavhOOqKnc//ufF60K36tGk519nSdH50VbEul5uuMaUvl5Z3x0ZPf3v9qtdLl68yG9FBothRvUK3vfLqVeX7rvFqnHVM72Xeh0Ll5rEwBrHU87xuD4/E61YuFgUFkjjp9w6vr4gtZXj0mwIXQn3znO4r6293TuZr5c6FTi/V668EylktDSqnu3tmW44+Vcqn6D6YIeseVLPC7oz1LkxDlKV8ede1jJ4QseKBa3WuND6+jPf4uupjXslTL/viatOd1dPEu7Vn2a/72jeU97Tl69fe0590tqsqYMk0MhGD5kgxN2dadgwlADA7RrT61zuOmXB3tsipRlKxmtCp8uxlejKaZjaVEGXn0iytMS/SR5ZtxBS7qcG+Z7GYEMwYE9vvBoZszOVNzbYm2TFnRlIjAkBPj4IY0b62IEWNKjpYpjIc9XfeA9ZMfI//4n9huDhZx4IaGXHKeuhOcgPPVTlMFsloEkdGzOW7wOLoQ8GseR1QNDC5y+b0W1WJ16izeYIYjvI2KIJhnJAXNDucX5rZzMXJkc15QnQ0cWhwwnZYUZ8NCvashq5wevg9iDJ5jCDuTxPMdu0GyDIAIbvzKFijkeZbMLiZuPLxFy5EKNyg5ozF41L2NW/T+BphzZUWLJiv1hCprQZGOqoynEDSY8TQWJ8GMJtcRKCaP13lz6HI1ubQYTxWjveV1g0BQMeOWUGVWO5/8vSisvlSe3wy1Be5w4bCnS77a5bjFWfaulq6PPPxopDtPSGM5rBppuGhW5DEx7HvGqehBLHrJInYMznAcB1s7TSSnkTRmuvPI+eWaJjzgZr8n6+Tj5DmM3Oo3DjvydHAjk63hrEpolbZJ/OsvJwZVpIG2jxZQFJTQCJEGUMQdkMmQkzmOBjy/XBchNqQx8fLqJY8ePuEH3/uIf/jHT0kpITQEt6pqjkxj5Hz9iKvpOUgmxEzT2Lwn10NU9i8YXF7hCWA+5z549Jj1wx/w7MuWtol0rRDzhserxO7xxC/GgYM84ezRFXJ+xbAVpjyxapU0CfurM84eXKH5EaJry3OFMAw79vsDz188Y7cf2I1K0wkqmZRhTIoeJlIyOEFCZsiBs3O4uX5JnnpW/ZYYA6ERpnHi+tWGcWzIBP7yZ/+G737nkhAGVK+Q5lN+8jPh82eB/XDGfntD0zT8w9/+C2cXa55+subi8iGjCpt9ZjoIl6uBdT8ysofQo7knabS5B1pRziQwDQ3DsLeIR42k2NCKRTmO0wFCS9MIIcKUJ8YhkfKE5kBoAm20SKIYLuiajOqEThZhF0ODjAabKI0gsWE3jkSf6xgjw5CRnOm6lqdPf8B//R/+Fx49+o5B1aF0bUPsLMozRGEde0Lb07Qdw3QgSiA2kZur58SmIzY9w34DOtE255yvVkxXr1i3gQdnZwzDwJgzqwa6ruFqs6GRQCuBMI6EDINazsLpcCDTMEhjxtJDoulXpHRgs9nQnz8i60g8fHbvvv7GIpi+Wfbqd00sb7/NLEi9rUFmed+bDEJvqvP29Tf9/cZr5SA7+upYYHtzORbI7lMUfZ0IqXe/fN31+7te979HxbTvxjSLgAslxugZc2tetCV02BQwQUzIKU5rBqXgYe0iECBLtBiRokAh2LEjJRxeKcanIhtbsIAaTARQImCqAUfEBQ7P+VSVN8WYZSHfZigJSCjgf8boWn8NpswMIUfB97NSh4UCBn/JamSYBeblSqrwMlrY2bzYl0XQt36V0dBFTp9MtPH1kH7RgDBA3pnT1jRBGknJEgdqMgiSEIQQIoQWaRpCE9GmgRAdDsO8MbIEVAKis9ebMeCRCoUhVIGuzEl0hkGheqIVIOx8n3JJi1GxAK2EOmrV6FIUQWWteZsSQhUgTNiYlUa6xHhwQ6TV3lDhJyTVyYuAZl9DCMgExTglZRaLp1z5SmxMVMxT2aOVDMnChSg88XGht1K+tVURfHFYnNbCkFXbCbYOczZD0lGtJuxUZZPDRwjmYZiDCUWr7t02MBWwk3JmBZlNqGXOi3iHmOH5pEKvTtxiP2oRy33/VSPnsVBdBM3ba3ip9CtGH79w1HYxcms1Li4V1HOfCh05UnxSPi7aIlfP4mI4vq989bP+nrp+Q5ah9L2cE1bnrIQ5VX8V0lxgW0+EJ1sAACAASURBVEaSIELIypST1QOmSPEzKuos3Nn2d8M4Mis2q4ayqhZqv6zMkKmVtpez5QSPVmsoStul0trbXyrTa7+CeG7CouBQij/k7TGsyg+YkWFZ9rcMptY9If5OtS+qdb2e4l8Vqld1HSCK0mV5L+CJ2XOhW07PzLv83eYzfze0ZzbayGKww2Jf2vXyI1XRVXmPr0V7ZtlgEYPs+2dhyHoL2jPTMT36+82l7LVlTfJVKjhd63va8572vGNFC2kQ6h5Uv2DwaGV9ZDSbwguwPE1uGDBYspItxvhbxVKHRFXnOZ0bdd5end/NTuhMaVwiy5QGi6phgSxRDESikDSz2e4gWTL1CVPolwiTaoTNmTEphyl5jH5xCrOFNWXrc8rKYfOKcRxZPf0+KXTsNzvGIdOsFaTk5QkUVls9kiFjMGaWP2feY2ZYs+/BjB0FpG2mQGWPykzTc8E3UEpOJlny92pjK2oRQHOdJcJpRk5QLWOmFQND0bm/GRK2PyW425nD8QmmdC97QoLVGWJDkZdTsnUSvD/ZZpsiC5multilingual_clipI90slxOZV9K8LtyghDJYmss1hx+trE1z1Fu4tBo9WxSk/WTtxoL7dAZgaE40llk0lIupjqAiiqETM6KSlzcqzZ/MkPGFuNiRhzZYQbwLH6ZSYtzhK39rPM8BxE0BwqiRPY+SsBhPGe5VKTUZed28DmhGLbe4fLke5n+IqHB9DchQEPPqlmz22cO2xVReyQnRDItQmw7VJUx70GUvmvJOTGMkEW5fBzp+0dM+4akB0I02Van0YwlqkjO5GmP5rHmZgaj6W0jXH0x8vxLk5O7tqXpAiFkJBpUmXgEpUUKRsvtg9oaNhQ0GmkQFQ6HLamJbIaeT77/hFc3A59/8Rx8r6asxJAZhoGua1mtz0l5NIcRsciXnIXszrIivkay1rOyGmNj4MnTT5B4xhdffkk6DHRtoO8SpB3n3YEPLiNJEkkDl+cDu+uRzb5lvd7RdSt228jZZcO469DcsjvckHJkPIw8/+JLrjc7DoMZ0ULbWHSdKDkpkwamMdXxPKC068zzqxfsxhV939A3LV3bMR4mNruJm8PEww8+4oMP1kzDSxKZYfg1h/HXPHi847/6qwtefdny5VbYvBoZ02jrpb1h0k/JCBfnHet1x/nqkt2mRabEWdwjjLwazwjB883FBpKyblYE3TlcYeB5mhiSun4lGH5rzha5NZkBsgmRpJmgFjl3yJkQMgcRYuxo2hUNkPMBzTsQpWkiOWfO2pY+BAjClJNF4sWO7/3wT/iLv/7vePTwKU0TOOSR1fqctu0ApYktXWxZtytit2Y37MzAGQOHcU+IQtt0NEHYbTY8WnXQrYjDgTzs4ewhxDWbq+e0jRDbhjGPpPFA16yIIbDfbohtTx4TXRvZjiPSdYSmQcfB89pNHHZblMCqb2HcsE9/e+++/v2CyNM7H6z8nljnX8dAvs6I9C4wnkvvx68aIXVbuPwqBrD35X05VbIIgUjJbWiQAlqF2eLpVATQWRAvIefBBWw1Rl+oWPhmTvLkjA6QEHyJCg73ILfyFclCsL2lMKl5baSEwls/oxSYPmEWqopJqTCO2etbMO8u1Jf+UJUtHoJPLHqdKhzNvljiUTFF+RPKjRXAuYwLXmfB/xYPH6+5l3SkYSKkBFNCh4G0uyZt9xxuDuyudwybPdNuII/JhLtkeZMkT6yC0gelC0rsOug6wnpNXPWwDsSzFWG9Iq572q4n9D00LTm2qERTUGDJYtWVM7KQBnIAtKFAE+ACnUpG1CHw1JgzU8SYNFsg5dQNUeY9ZIJB9gSaLJOLV+W7VIHIcMZL0lUBaVzJkue5VQGaxdzNAqdSDEOu4PA5E2JRldTZpyjwNAHJ4UkMRq94t81eennxbYGBnCPURMyjsQBWFKVPUSSY8bAoASJlZbkmyD0qi+euLyMXmEqkmTQVTP2dLMs8HksFWdUG+MfbntDVw/4EvzKfgcuYvrt15hPK4td5Jy4ef+O99Z433rGo/56zWxa09952Tigl3+be+sxb9O9k64t5uKPgpKoij4TyZf+Wnu53FL2Flh4pMJfK8BPvIwsl76IEV6BpzvP+O/XuJ/irO+O1UEQv7q5K3lP3luTby8aKIud083JnrIpyR5n3jap5jNcV/zX4vzfx0u+6x+595XdDe+YzSKtzjV8+qm8+j0qNsujXV6M98w6cq1g+7+dq7eiijqJ//cZoz93v3p726NFfhTy8pz3vac+7VoytFqasLnepR7fMc6Y5Ww6LEEmqRA2Vk1RVNGQyES18tGZyiZBBqx+YunVIRNCEw1mXKEpBNREkGMQdSpalMd08+YvcNY6J682WfhpJKh69ZLVloBG7c8pKyOppdn0nel6eorDNYyKKMB5ecbh6xeryY2J3wc3NFdv9gbO+IbuxreZxEXMsTODoFOpKXze8FB4Z45NVCjaDFXXjUNmHld9msW9VKZACerxpEIflm5nyEiVT8NZLrh88kkgpxjuRQHFlLMtawPIVlT5kkyWDo0igCXOG05keFQOtuv7H0zLlXPJ5KUnNwTIucs9ZP9xQF21cC43J4jmiitzhMGiL4wzEczsF3OBrUH+SrR9Z85y/FCzFrWDypTvqFZlSXYYpEISEgObRZa/szh6zA4TR1lTXWQjVba/OUZkRP7BmA5n6XpIi+wVzokDLkFZ6msGuqUOR43mQHaqxpix7h8v64YEQxRT30hI08nD6mGZ3QTgMyBai3jAOe0QnelHIEY0gzYFHDwMPukt2m4lhWiNjJq8T6/Y73FwXY18AJotACWaYjprRPKCaIUUIHj0mQhMyzz6bGKdAaKBtW3MYiXhOHYPxC2KfNQdyHoqKCkvFEEEjechMeYCmZTtsaLuGP//xd9mNA9vN1iD1BErk4HDIdM0FUzdwmG5MpxHM0BVjrNGXRSeSk8H6BY9qDm3HJz/6C9arB+hwYJcTN4cN19sD5Im+TZy3cHn2gEl/QQgNZ+c3bL54yDhGYrsDOeP6hbJ5JaQ0MRy2jLnlxdUNL17esD/AdqtIY5B8iK3+KJE0ZdIk5CRMk6BtYL8fEZTDXpkOmScfrFmdjYyHxGYH2zHxZx9fkvMzdofWoFp3/8y0/5LVWeCnf/GY7YsLdpzxv/7vf0vTKucPMt1qRGUkxonYCQ/Oe/70J0/41Rcf8+zlBZpuuOx35JuRq5sDpEDoIjsVBg1I6iEracrsg+mE8phBEiEa5OU4ujFXZ8qtSSFGGulo2jNCu6ZpV0iI0DSQBnR4hY6WbytPO/I40rSm14whEJtzPv7hn/Pjv/wrLi8/ZNV1HHSiX68ITQMBYmjpmobz0LJeXbBPCSTQBKFtI/vdyKrp6M/OGXY3POwC665nahqGZ8/QfkXbX7DZbZnygQdtQ9ed8eL6mq7v6LsVw3hgn6EPkdi0TKNC6AmhQYBh2BMdEnJ/2NH3kZi27If/g+30d/fu698vA9PvstxmGpdM5q1rRVl8dM9bN/Nm481XNfC8ZcNfqb9fPaKJI2HovVHpfflNStDCsPlp7UweYjljTBLRyoRVgb7A59X16/jYntxURRCiwTSomwLEDhMzStmjocbpUxUuACJN/d6umCgmwQ76IMFhEyyaQz1GyZ6dI5FKjeoJR0tfxY1C9nuiGAnsdcr3LsQU4UYcRE8NT7wIY1Xx4MJAjeLCo6qqMSRaAt2cCTpCOsBh5LDbcri54ebZK26evWL3YsN0MxJ2CRkHIpmW6JzOyJQDk0baJtKLsgqZRpOLRZmsa6ZW0Nij7UQKgRQi9C1t3xGaSPNkTffhE1aPH9JfnMFqhTYdIpHkQkvQ4v2qZHEoiKpww9/HuHTx6B7ROuI2dsUIV4oLykVRgi8vS6Z7rDixWsSfKfU5hKI3UW6tCTj9/wKhZ3OemJV+DcUjXGgQTQ4HUuYNEPcIVUU0MXstFeVLQoKa0OSalyJom/HKBcu6/sSF4KLUFO9zawJbtoi97KHxxfhV/pX3kwLYm309x3eb9i+VVbeVhDWabgmJc6/iSU8euW9zNqpqFYxP1323rre5/+uU+41M8zn/pvZ+GzzBrHRdKCHv4WNe93neh3OZ67nlCV8VuHcVvfX6ib6AOTLkbNEKaalHghOK1nsUyIt2bn9vCt4ZXnXZ53lNz8qeU+0uy+m5Pr3GTz2r+nb33m7vVPlDVfL+9mnPbPBYKuWrAeBE3X5SuOJx7vfx/ZVJesvyZvp2dPdSnvnGac+b7r17vcYiHImN72lPeeY97fn9Lyll91J2vi4WJzuHelJq3iTFFGQGVydocqg7MR6w+DRVBbqbVFI2I0VQd2aSYv7w+B+XWxaaeVOwSy5hUMbCZ0VCRsnsDyO73Z4+meEpu3FaxZzdgNnYAIgKkWjRC+q5foiQYLPZktPItLvh6rNf8eSn/55m/SFD+mdeXt3w+PLMnAi9b1KU/e6sFRUC2SKkPFfpbPApaz5XiDsXI91YM9NWd/VDsHHPGAqjnQtlTBWTKeb1Wjj1MvZFWS6ayTpH/Jj9QixnVSgyaZmv5AaM4B6TgaxqCnmiGYyqwcQNOE63ynvknEwJr1rjmPAeZrG8OehxH60jfv4lP2N8PWhSchM8ssBHu0R0BalRXPXkEVzG9ZYVGjeW2qjlOpaFBkWTUi0SA1vbJj8lqgGq9L2a5ZzGlfevuXvnk9WKz6V3TAUmme8VhYgbRwu91KLUXqyNMu5i0Uyx6AbecX1baN14km2Njs8j//SPV6xXKy4uH3G+BpED/YNz8rRnf9ghXc/Z+SUxCG2Y2A9bbtiRdEO/F9IXAk+3PHrUs5XILic3CM4RwjkNpicgutHINqUEM4JsbkZCDLR9b3lwxKAgQzDnS5GAhM6Mj2movFMmoQFC0yAijIOFM6kGDsOBF5uXfPLwkj/70Y/42//8czSZlT0XeT4HNClNt0aY6Gi4ubrhejjYfgmBgJCirScRiygtOozubM2HH36Pw2bPMIyWz6rrGYfEzS6zHS94fJ5oeIasXrHdrGm6HasONjfCg8fPaZqWz/71nN0hEiRysz+w3e549uU1wwjDXhimzPqsmblIsRx705iZDso0CSlB3wrDfiIPgS9+vSXGhjbuGZnQKbLZJUII9G1gu71iiILoAJvnZFXOz3vOH634zvdX/Oeff0YmcXYeuXyoNL0Zspsu03SRplViWLEfL2nWj8l6QeoGHj38nA/GFc8+3XGz29OtV0yHiS62IMloVlbQzDBkYhNpOoOGQ7Xmpqt8WDGa60iYRtpWCOcd5xcPaVcXZiDPHzAcbkjDFTpcETozZmpKxKbhp//m3/HJn/yU1eqSs/7SjjgsQo4QbI83PRfrMx53DxikJ40bHq7WrNuOV9stZ21PjA2h6Rhy5vzsjLG5ZH/zkqxKjivaGNjeXHHWBR70HbuUSONEs1qhUdhd72hXa0Qghsj+sKdtW5omMgwDq7Zn1a8ZmWj7SJuU6cV/YTv9Xww63Luv3w0Dk86CTP3wGgPQt9J+berbaeu0d9iS418eIHLnuTeWpTB2z/1f10PrPoHp1N+l/j8WA9Qf07t+k6XAzFV9v+NAB4mueIHZ+DNHHFXG2gWjQGCOHsEMKpJQcm1jNhapC8YmFJQ8ROKYqSVKpn4EY8K9j6XtgH+QAg9QrlvUCt4TKML2AqLmSLNAZcKX9xbBwhhN7zda2xNKFJYLVkX54Ax4icgqVYVpSxp2HG6uuXl2xasvr7h+ec2wS+TthBxGxu0OHZVuUtopI3mydpiILjxGgSZnOoGLLtJogb0IjDpymECjhSKHkMkhkCSSYwNtS8/Avm951X2GnK9oLzu6x+esH59z9vgB8eEDwvqc2LTk4FCDbnSZx0xmwS3cpqll3PyzzwkUht6rKMYq9wic7VBa150l9zXs/eIfV32AxSJ4qrAhJfoOUMsZZoI51p+sPr+lj4rQGBKee/HhsuoygXddui5kFtHUoB6ljoW9V1gcJwXa7laslOQKuSDgSBBSPeUUEz7VFQmoZ+ASyGqCWY6B2fP83S5LBa+tD482XEDaUQX9+Zlyf1EW3C5FeFzeX69BXbM5Z2KMb3UeV6Xd4vfbPlf3yBvO7tsK09tK8K9aZn7jaz3+VnXf/v2m+0qRRceO3k+XEYez2kRfo9DPerw+bhsOZrUILGGqypl2SoF71NeFcv92O8v+17UpLNbmcd9OQ63MB8YpA8XyXcvv1/3UthbrJ5+se94Ly/pLCSHMCrR77nlXy2+H9pSadD4qcqE9EOPxuvOnqsKunkGL9aVe8fzcbYZmUVfhSU7SnrnF5bvV9yv7b7EHb5fb3y+lqbKP3572vM26Kut/7ufy952739Oeo2fe057fbWkiaDZFnw15IKsgweCuVT2qRcwxSQukOCabKQVlADSWvanUvLUp13tqDicPZ1IVYuN8sQqiBRq0ID342HoaHItmApXA9c2ePEwG5wazwRSPrMpKEiVn48ObxhhnM5p4PShTEDaHgSklpnz4/9l7k2dLkiu973fcI+IOb8yhskagAKIBNNjNbtKMNNK40UYmmTYyo2mjlf5PrSjThjIjaa1ms5sCCkAVCjXl8PJNd4jB3Y8Wxz1u3JfvZWYVCmgkWF5WVffdG4OHh/vx853hO6yefs79f/pvmB2+RVTh4nrDkAIzV7Grj1POLwwIypjW6XTM7reVltkBcpaPll6O/S0rI2vl5q3brWHdjYHkjKWUs4lkco6aS8QCCCX/UnDqeB+7nCvsGUWGjHVq7XeNO4eWue4cIVqNHMEyt5JCpmOwOkdZJEg0rJBksooVM+JKfoeYDBFs71EUqdzuWGcOQJeN9k5y7SXK3LF6YGNAZXYgqRgl38g9Ibv1rGhmxch90byrjUGWNp4JRhaSIrGKbN7tHfZkXqJhIC2yhfG6opZ6JZLdrGNfyr3LTEo50NPOH3FfeRfFmSvZ2as72f+Gix6GGKl8lhMCSSPb2RZOA/WyJkWlDTHLikRzsKRennIwu89Bcwx9JDQtjx41JBUuz37L089+w5df/oJ7l/f4wY8+pHcNn/YbYz7Jg2pZY7YGFCCBFwul3Fwpw+BxlcNXNeId4s1GlLDMJXE14EHNyeF8hUjJnGtwriIMJvcqX0PyxDSAD6zaS946fZsP3n/EZ58/JsUEIY4lHlKCk/qYXgZC7Dg+OKbtLug1YLSVMmaZmgzIc9oJ9x485OG9d6ndAV1/Tew3xDgQUqRXZWgTy2bBctnTLFZs1hXH95R6ec724pioLdTXqDskJiFpQLXm2dOvWK96hl7YrBNUYoHgurNPxQBDJwxdIkbLsJs7IfYQOvjsv3VUVUKryHs/PkCS4/p6zfHDOUNYsdmYOFnINfQbfLVg3iyYzSokbXlycYlrhGaeWBwmqjpA5WhmB8yqxHzhce4EcQ9Nb8bhGVguWz54dMwPf7Dk00+2PHvS04eIjM4jofENXdzivKeqG0K0cgazmUNjQrTUOxV773jEzRCpibJls+nYrs9RPM3cakPNZ0fI7JgY1nTDNakfqD387C/+mnff/ZBFs6BqFgQV6qYaZW0Sx7I55ujwPqdVg/MN6/U1J03N0kNHha/n1FVN5Wqut1uODk/oE4SYuF6vmB2eslgek0LHkYdlXdH7ivPLa9ujvSfEoZTZxvuaGANe4Lh2uPmCzs/QqJm6OXGwPGb91ac8b/9PrsMK5+o71/UfmYPpNilZlIupIvzH176pclmU3amCvG8Qnf4fbo7B177vaxw/vebvw6H2piviX6f99/Ss324rYJjx39HwLTBGR7pd8VFXHDo5ld++17GOgWSNdVQMi0NGMuXchG6sXLcYXyYcBhk4TYDzqECX+wvFyWA/F9Benq0ooEYBR8nCGVupN5AdWuxT8u0ir8q1CjSZGlyK8aYosAa2HAniAMOa7vqS67MrLh5fcXF2xdXZhn4d0ZRoNJgSP0QkgARwMVIlxatBmKRCBOt/cqCJBmUuyiwGaucYotGxJVX6mIgkKlFqHLhE5RKVi0g7EFQJ9YC4DrlsGLyjd45r75DlDD2eMbt3xNFbpywfHtEcH9IsltDUJOdJUo21lkffTn4JOjpTyuhMgVwBVyBTWZsn3hg5mDPeLAoyGswZw8onYGHv/eS7FGeVCCk5Eg6VAbCCygY0Cy1FjmTLaNqoIIVCkVHqJo3PImQgXzjaK3Z7ZqmzlLP+NGaqE0ZqxEyYM4L+EgnoJYMeEVS9qbPOm5NLS7Sp7iI4tcwD3vg23ZeLDHeIZYjpfmzi9Jxpex3Zr1oy2HipenPXPnzTaPiy+0yPv/ndyzrwunvYy/rwTfbBuzIAXtp2toDxvFede9P4OH2KF95pmhxbjsn3vWkgLQbe6f2d99my43YGebh1Pt1sL33HN37bvWfZ+44X7jORg5N9bf85bv49/eJ2I+/Lull+3suMeE2d87ZgpldmWLxh7Q8jeyaGtRtDdnMEb89aKWvlVbJnt1cVHS53EMZzlRcr8Nz+HHchoTvl4+QaclM4vKTd1Ldeq32rsmdfx4Mie8xk+nLZI19D9tw+n26272TPfw+yR3KpGauBErNOKqnY3g2XOIlWf6nwNIFRJGHjm0qtVu9Gp4lqkWvJiM8FvFoGUcEvMZrhn1hUb836r2QKPUZzUMpOrhAjF1dXpH4wVgQgZT09kXA+IVQW4xUxbIinWNRSNtSWgMR1nxgGJdCzOvuC0Eeak/dxUrPadGzbnubQZ9+YTSjLfCm4In9WcCrmACpoQ3YOqTLVzR+TstM4O63UsoU0Yz8nmOMju3hGnJGMcjBl+vhiKYNMpaaW5ZLLGOHU3qmIG505iF1HykEF9Soma0b8apHtJWRSldEXVTBm6YOokFLZr4xaz57RnIfeGzZOpJz3tatNZDVt7FcFJOVM/gSllq2vfEEr+b67dZfZ/EA1jwu5npECfsRmKg6X6+zaVmTvSoFSc2qUtQXi5X1qrGlccGXK0lcLxmP3vnMmX5KEFlrBKRrNDm7yc5gzcOeIzVe0N7/HhZedUKlkyr3o6H+TWlk/zitOKpqjJc8fb+nThoHeaO1oqerI4cEciUKILV17Rogd3jUM3ZZnl5fMqxnvPfozfvKTf8vnX/1Xtuu/Z/nwH3h3A1dfnHImniQOojkFU3GKpoSvHAtfoX3kfLNGUZq5p6otQ8jqOHmMtcYYmultilingual_clipI0ZyfTpSoAZEKJzUkiClSVQ4nFSGaMK2p2fY9z90Z33vnAd1m4MnZmeFqDYir8K7CXSeWfsFz7dj0K8Qb/05KKdN75qprmW7UiUMq4dE77zOv5lw8OyMCVT0HTXRDRNNATAHcCYvDK6oqEKJniD3V/AnNvGboPd5t8O6A1fWWqCuePj3j+fmKYRDaFoYUWczyWnQ7+1YMiaEX+l6IMQcO9EIKFY9/3bFeJapZTwoHdFshDdBueh7ODthsVmhUmspR+TUOmNc1TVPjfGS1WvPZE/NAzQ8iVZPwHubzBbN5Q1NHmgaUBUkgaWDmE6n9gpMTRYaWRbPgZ395xNDO+ejvVzx5+oyoQheU0AmSPHXlWM482xAJmjg+OcR3HcPQ50wzzfJCqcXh/dxo8nIW3DAEhuGa58/PcVLT1Avm80Oq2ZKjtw/585/+GffuPWSmFd7VVjeudkTt8G7GyeKUulri6iNCiFyGlpqeOnQceKULwvPQW9awJnNaKgRnjs52e4VvZszqOZU42qHjfl0x4NmqIxDwzZx6NmOzumY+myGuYj5bsNmsWc7neF+xWfdsu5Z+GPDO3vXMRVbr/8Dgn5HahlnV3bmu/8gcTF+jfRvK3KgwvnitaebJbYrjq5Tyby+qSSaK8e/fcjd9bvh6xqXvnCnftW+rSTFgSFnqxZgBheLM5TThbO3IdWnsGD/yUQvqsvE7X1MLFd7kPnbPnC0wOo3s2qawyn4/yJ932qf1RYoZI40Or/xEI4DY2XNL/SUZn7l8MKXSW4RKvu84Ni7T5pVvi2GiRBUqxQ0CCJ4OCR2x3bJZXXLx9JKnnz3n+eNztlcBtoa+hj7hESqJ9H2kcQ6flEoVYmCWlLokc1F4w3O0awp4lMYJCye4ZIBCk4KrDNClAJD5hJUhgU8CLpIkErSmzynKVTWgThAv4IRh25Mut/Rfrdn+4ivmC09zPGN275j5OycsHpzgT45w8wOiayiOPnFuBGSpTJVskNnJ8OJuMkBk506V+f1isOXD7g3kKxVeh3JVmVx7AoJEMp1IdtrYnTOqzo4kGXtmYC67BvP81N298/12kZSmLBeQVrKVSCWyTlE8JUtvB192o1CecbxHKSiKIppyzSooHO/iFIj5sROFNuKNbeM2tr/LK/tG3/1zRsvVeKYZVvZrZAE35ML+fV+4cvnixvWnbc/BdMtxNwNG7s48ulun+l0ylab3fZ3jSvs6+oQZaMofE/2rGFJe0a8xsOeWQ0vks01vK/K+N77lv5NzVS1iWnUXPCCIiXwRi5z1k1pl41R72Rjf9RyyM+68xOF469kTA9JdUfw3+7TTi2+cU4xcLzXy7vo20r8AIs4Kemfj0Otkf9zUz/8k9M8/kOzZC6TQm3e70ZfbZE+eFi/KHtmbLrvump4kk/P259W3K3v2rnxznr7kPmNvv7Hs2RlafjfZY28kpbgTLWlqZBw1EV6UPSnLHr0he/QW2SN8J3u+kz0AMSWcKMllJ0IScGrRy3nsCqpCdaz/AkpIRq+XNVCcStb9szTKw+NLPRzFcJi3d2H6sOm5IjkoKgO04nrW0bkuIBFVoW0T51ctJGXIqTKaA980WUZNSobHUgxEF1n3kT5Z1HrSjJTqCk0whECfAoJje/U529Uls4ffo64Pud484+Jqy+FylnORbG83mj3rqy/3S2VRlTXoKd4Gwx8WlmXTUEqCKilHyBkFnGVyRHt6Wyup5LqwBz3KmCLTcZquL3Pn2Dw1w6gTlx1sgTxzTwAAIABJREFU1melyAfM4ZSDNC2r1YzaLsue3Ta1k/3mmCm9t346sPnjZKyP5TKtnjLd18i0Y2aQ9xmDlzVtj5ozspJRIwoOcYZcxjphAqRkNZqTG+kSzblWmCTKhfMY5UdwCKJC0JTfTyKlYPWZnSClzi55DKxzhs2ULPsNI6VRnudMJUOg+dy0d75iL3/n/LJruXxeLLqnMDrDM0y2utJuXJVvbPN5xL14ln6OzmY080hMG3p9jq89tQZUYdsG+n4gaoK6YnaknB59n/nyCN0uGboNn3zx32ie/oof/eBfMvveP+Px039PfforHqWe88eH5lhKu5rTlv1jVoEqVWw2PWFI1HOPdxYEWtcgvmIMKs4yMaWIiBq9aOElqWq8q0hxwDmxDLykxBTwzrJUuq4nxsCsnvHDD99hvW3ZbNc5gw5mXqAdWF9dISeCzD2EYt8pNjBzzJe14kRp5nP+/Gd/zfcevke7+pLr1TVd6FFCdkZEVAJ1vWBx9Cu0OkPcEatVz9HpFVX1K9rNMYdHG0IHm3Xg2eUTnn21oe0gDJH1xjINfZWJIl2h4oQ4aK6/5AiD4hvPdqM0sWJ70VE1yvwQ1PcM/Zx23ZJSQOjpth0xwcHMsah7fO2oK2fOjWHDrz57zuXaAgdmy4hzCeegroxer6mUWeMZkmPbbxAXWa9+w/2DDY3OiKFFK49nwYNH93nn7Xf51d/f47/8w0eEtKXddigBLw4fK5a+ZusdP/rgZyzuHdMOK9rVOecXv+XicsW2DZACISaGtKWShvnsmKPDU6IqfdwSQoekgW5Y82c//pCf/uSnNHWDd44kLmdoVjTNgsrPOZodceorrsLA9eo5KZjd7EiVA5dIqeciea66HomRqpkj1QJfVQzdwGLWQGg5PDqi8Z526Fg4SOLpfYNqZLlc4KhwwMGsxvmaXqEfWqq6YgiR7eaaq6vnDEPIjtGKua9Q9ymp/s+4IbJohpf6tt9cB9M3apNdZe+72xXrfeXxJiCann/Lt6+pcN6tWAMvGOq+uYHndds3VZT/FBTsN6W9+ZFyr27OZecN7AwSU6OGy8b5AmqBkb+7KOMlWk3In4XRs5TbCMBFRvo6kd0PMjmuGEXGDKYRdOlIz6fI7jbiioqdQZPDaPegZC3JtBNTtJCBCDsPG0UGicgkW2XSyexucwIuRWToiO2a67PnPP70CU+/vGJ1saLd9IQu0miEPuCCKb8+WhFcJwEXoFKYAU4ioomFCJXaM2m0yA0IRkNo6j9dsKitGULlDEBECyvERaPrswKbpQCmEBJEUcRFXEzUgAuJIMIwOKK34q3OBeqqNcV7XROvBzZPW9Yff4VbNDT3jmkenTB/6x7+9Bh/cADzJjsYBZ/pE5LszD5TKGavQse/x09igFt8Nizk9J8CyMZzXQEJk+AEsoNICrB2eBcy7YVx/5YozwJ+7FTjolYKfVEyoIPxOE+3rdLHm5lTO5vVDuQoVrSSkflBs7GgPMeuIK7NwQSE0YgmjlKR2ea3kjPa7IQkEXW3R6O/Oa2sfZn+uaNC1Hjj+N3eN42GHukMp1eeyqvJ2TavdlrGWHZLdQzLlCITSpdSAac2d+4ykN78/taoa4WSdfnCM8nt1/r67Y4aUV/XeHyHUa8Uo7YtIBsSKFmKd+ha+TndXh92xka7nxl6NdehKLUjEAGfDSW5CPML/Zxo30Z5ORHXsYR/O0jVOPzTPaFQUO0yPW5pk3mmuL297g7N1mS4SI5u1hwhfJcOlyMlbzg4VLMYKet/8tuUmkvzHiY3xl8mRl4meyvlmqpAQlM0J99439sdLX8aetEfRvaUkSrvvPhIynRw5Xp3yZ48J3KhQNu3xu93c/UFmVR0p+lvryF7lLvfr9zxeb+58Yjfv+wpHbkpe/ax5qtlj43715c9YvrGKLd1j6oKFFPKyKkp/iWyR14+RN/JnnyJN1/2CJatX2XXgKK47MnQJFR+4lgY9d+i4zrjpnNWjzYSqcRnp1UO2FILKAtk/TlPUVHLJDI8k+WHJFxxcKFGmVdo+Aq1ngjXqy3bbcuhWuBHFNONTas2nT8lk5ualCEpqz7QJ2NgSJrAOWrvSUBIgUJL166fs3r6BfXpO/jFPYarJ5xfbnjv4TGpcogqyYqVGkuGWnjVztHCiPck25129fNMRha5kFW4DAMyKlFDj6VSa8GZmp0sTmUMfsHlDKCMCVN2wBS8khCMKj5fSzUH0RkYKPuC3XuHX5JOHVuQfM6UIAfvRUUdqBSsItmBJPbOFNTlbKQRJyZyaVszvGtCvE2GsR5THiOjlDPs7NX+9uS9zLmxf5IY6+6W1J9UxjUl1HkkOxBkjMAre1GZUyUgwLKSRHWHuYTR4cP437I3RRALECzZTKqKK7VxEUjJYFMOICyu2KSFDi+OcKxQRxrVY86g0jJWjOskqdEtFtrAN7l1w4BPkVrmiFig6WLRcHG94UoHUMsa8q4yR6QDKodUiaYaqCqY+SNInk0U3MkBoHzy1S/5/vs/5qc/+j9Yr/8WHf4T/vHAQF5HmNM7RUiZlrMPcL3tUS80M6s5VldKM/OEaGUTrARBzgjWRJXrMqXY432N9zUpJWJM1LXLnwdjhUlK6AejI2XG9eaCB8dLfvThB3z0689JccDj0a0Srta0l2sOj+8xX84J4ZwYzSGMgri8HuxPvBOOj475Nz/9F7x7fMLFvWsgoZvEtu3pw4aQOtDE6cEx0nyCq37DfH7M5cUjjk7n1PUlV5cHDPWSzcUCtOPZkxXrTSRFoWuh75TDgwrVAK6sSgjFuRSE0DM68bV1nH22ZrsNvPX+kvq4p5oJqa9YXVzjFxDClq5TosDMO9QL83pGU9ckTVxcXfPRF4EuOKpamS8DvlKrPaWJCqFyFZUXhl6RGNhc/JamfsyyXhBCR9U0JJSmmuFlTt3M+Kd//X02/WM++XjgbBUIKHhj3GnE4QWeP3vOP3n0PsuDE9zJKfeOWh7PBs6/7Dg9OoHDezw9D6zXV7T9Y9rhGc4t8H5OXVUcH53w07/6Cx6+/YhaBNVAogIHy9k9FrMTKpkBjtnQM2yuuepaZFizlMS11Gz7NQuNbHzF2WABEhVCxwB9RzNbmEzsE/cOl5bVFwNDjCybmuu2I6RILZF7TUM7JDabDbU4urbH+0gcBtqktP2GYdiwWl8TQ49qQKMSpGeY/w2huiD0NdVMGdLdHqY/LgfTH0xJuymMbxPO04jbDL32+pcB1BQw3OFk+d2Vz5LF9GZvIt+179rrNlszCXHlsymUloFRQeGOFodVU4ymUIsHEk7SiOeFSXQT+W+X8vfTZX0zAtN+dFlxTnvXKeDKihm7crwj16hRLB/InoMMDOyoQrNXmo7AvNy71Ng2J0E2GGSF066zy8ICcuFTIPVIaOkvzvjqk8/57DdnPPtyRbcOpDBAjGgwJ0PjAs0QkAAp5mci0miiRqg0Ky1eqVWZFcVYIagQkgGepLmArxrnbuXguBIIFsklabCxyeKrpPUWCoBBLLrMe8/MeSQpQ1SCAETqHCHknLMioM6hISL00LdEcbSXPZuzHj45xx9+SX084+DRPQ7ef0Dz8ARZzsHPgDqPrSnxWkBXGWeKfceMwxYcVBw0efzZAccxKk1ANSucaZe1MEaljQajXa4QGZSVDoh44/iViIqz+l5k0g3NGU44yGQZSIlmLAY7A4sFqUg+PqnNS5cNNUkK7Z1AKmuqUADeMAoiptxn4Gb4SHfFZhGcqWRGOzGGVr65TW4NySkG05tf6/gbe59eeZMb15j8VOBrNmbJVA8pa350oNzR0z1j3GvoJRN5dDNyfP+w/XveafS98f1t3f069EKvrUNNbzRxpr0sk2C8x57ZAHZWn/HijE798b9ZN/MOmdj094yhN+6yPxB2vp9mM7F73m+SGb4z5PNKnVrKhBoF3+3Xu9WwqvtZA7tMjMlx033uRl/c5JrFGXfTIZGS0ZjcZtj/U8oeKO0PI3vKXrej4dn9NJU98nLZc8cNX2RAuAU3fU3Zc9tcvumol8n303vpJKtoPOr3IntgdOpMxRA3ZMj+1dlpHpMj99Zifs/fWPbsj/XNZ3s92bM/S+5q38meN7epRrxUlu3uTLsrxWarrCNW4vNsNGO/0wRUIJopzxTU8EVKKbsUyO/FUTJ6JR9XMu+BrIPmjJPiiNkVTGHMs88Ufn2KPL1cMYQBn6n9RkI6nc5Sq2OaMr3ttrWo/0DEgqSEGBOurtDO6J9TUoZ2zfrJxzx89AOWp+8Sn3zExXrLpu05PpjZc6hVBEopmQPEZaxYHDOaj3Ely08z3DNnhCsySswpl5mnKa4g1RJoaYbplJ2lXjEKNpFMRKDj+NnolrGe6pm7LAPNa7vgzOIIHIPPMKfHuEZddsaovXmc32WjKhkfF0llBnCX8YIFK+wcZGjOVslzwDkbp/3sxJ0MkuxQMfedjDR4SrD3R7IgwuJn10wr7nSP6t6mkb3zlKkHRVKO87HrJ8kvINPnmWzQW/blsveKHTvZo815Zk7CJHk+swtYtHeb6QHLs+Z1oSgad1L+tp1DnZ3jyu3Nrcmb3OrG431F7Wc5aECZ14e4FFGtSFJbcIWzCeUqwdU1VA680dLNZ3MqP7dArtQjUuPF8ezynLb7iNOD73N4+janJ/8vT69/i6Yt4itUwVe2Pms8/Saw7geqhcN5j68Ss7k3J1TKDB1SoZkVxDuH9yYX8R5XVYirSH2PE6vPZKzyAbzZruIQcSRSiGy3W855wsPDd/jBB+/w8eePcQmqqIQh4BpzjvrWcXJ4wHlMpGHIexNWG0psfdVVxT/58Gf85J0fczg/oangP8b/j01nbCaqPaI9dV3R+Jb15hknC/D1Fu8ToZvh/IqU1lw+e0jfJS4uz9msIjFZfaVuC847vLegAJeFiCYldhB6y1xShZOHS95794SLJx3rx1dIVWwsCU9Ft46028i9U8fQd3Tesh11JnhZ0lRLUE/br/noqzXXXULTgGsiiyZReyxAT4qNxOFcRR8iVxefENrPufdWw9C3hNqRkqdyNbWrcarU1Dw+/4TlW5f87OSAJ49nPHm6Yb2NdEOkbTc0fsZ6/Zxhs6Zq7qF+wXx5j+XiM67rgPQDf/nTP2f+zr/m4vKKJ199zJef/YLnz79kGALf++Cn/MVf/XOa5RyP56BaIvUBUs+YuQVNtSSEwPr6mqHfEOIVQ9iwioEHBGpxbJNjm3pIkSuZsY4RD3QquNBCcvTtjKpekLygTUMlHb2rGFS46gPbriOkRJUCvYtsk9BrJIWBLgTuV4k6DlyERKs97dDRthu6bo0QcFGJmzNmH/ya6IRmFpDk8PJXd67rb9HBtK/Uf71z/pHaCwaEu457+c+3XmFy7ZtR7fbz6xsOfp9K7IuGoDd7o/qu/Wm0Yr8wB5BtSeZQSnh2irmUqEnZ8SUj3v4tx8moBYOQFcuyLl3+d6fQlv+P2SmZem9Ku1fOKc4mc/rYOrf+MR6bL7Gn6JZMJ0bXVIkuzs9V7CxCdjQoRaP0Jf5JiiKrSArQXrM6e8znv/6cT355zrOnG8LQIUPCDSAxg4OUcImsbCiVJiTBkIFNSgLO5UixRJUqJCotavpcqRmlGI1GMq7vqNCHRHKOiBWQjTESUKJaFlHtPETwKnhv7yWojUCjybKiPIQQR8AgKsy9MNNgOAuHugpNSiD/6z2xTwge2QbC1RZ9ckX69DH+3pLZ2/eYvX2f6uQUPZihrgYpXOolPlBzVFOhktAx/rDwd9vcMLBbaD12zqPyfgvMKsg5Z52Nkd0l820C4vM71wxKVXzmME/5/bvxegVE2tlpPB+X368KosYFLFhB3vHZMvinnFcAb56bBQYVXnwFtERH5vUm4jL/s61HpYBAi9J706PpXtVeNHaN/3nhuLuMk3f9tm9o3RnYXsfIWY4rxr3XoZbaZdoxGuFedCLdfu5NmXnrdcdjxrt843ZXhtZt9/4mBsDx2FeN9Wg4zqvQ7TJHy3WmUe+v28axcm7vO00pA9vdvnVXx8qavyuDba/j099lp5O+7nwrl4JvpjdO56fth/LCe5PJPH4ha+QVf/8ptm9D9hSVCNizYo1HT4z3qrev773blw95jcsN2bPLb927y57s0YksmU5PubHWGL+/oa/dePbpufuyZ3L/O5/qxfb6smfS573D7jonawHlPb7oRbzRkelZX1f23N3v15c9d13nO9nzpjdf+QyjzNHh3E06XWFIyfR2LQ4HR8yZ9tU4TmkUS1WZM0J2xhgWssPMYWCZNAkZsxg16/mm60rWKYuosnosnq4NPLu4ghCRhpzdQcYUZviN2aKfsIhvRejTgOCoqxoVoZlXfP+v3+HeD97j4vkZn/w/n7I62xJiz+bJJ6TQcXDvPbxUbNqO86sVhwcVFd5owiUS3S5oznR1hxJH/KnlufI6ySzT5lgaaXOnbggbo/w4RruWvxgxAgrJqLNdrp0aKFmTpW6vZZcVvDbmNkmhj4PRuaHJ5JdOBJhgur5zGco6QyKazPnlM81eDiwrTu8dNpHcX6OBS9mpJfm3ZODR6MUUohq2dk4ztrIARu8MlyEJJx7xJWOr4JqUnzmD5uK0GetxZXYHEUYab5E8d81BI1oCOeOIw1WKDDNnVRnIVIIIyx6jGQtibBB77w4llUxc1fG8Mas1i30nmUYtz5WyhqaB7iKZ9tFSquy5EmN/39TW1B7nauZ+SeiE2M/ZbCrq+YJUKc4vkehQ2v1xzwHGySXq+Zx79UOODh7RdteE2NubT5EgykV7htOKd97/MUf9W1xvntNtrthuVgz9GtVAnRzPNxeI99RNZbHLjWXpxYFsQirzzeSVd2aDihpxvsH7ij164qTEEC1LL9s/YkhIDUOMDDEQYgBVHt7/gKvVMddXa4b1ik6VgwcnxNBz+dkVx++fsJgtIAlDCJlSc7Lf1o4f/tlPWMyWkCK1q3j/nVO6tGHTnqOpBwInB8ccHa4YwhlBPb4W5oua0B3g5IwYA1dfHXB1ueWLry4IudZX30PXKQfHHiGO70Kw4OLBYphRp7zzoxnvfTDj3jLxwds1P/nhA86edPzyo2vqeUOMnr6NJALVzJEIdClSqTmBfF0hVUMc4Omzaz5/nuiCyamqEpraUzuzVVXOMUikloRzS5589RXX55/x4LQh9j299wypwbsZs2qW68I5VusLvrr4iKpS3EHkhz+b8Rf/7G1Se4+/+bvnfP7ll8Qu4JrI1fOvmB0cIY2nru5zMF9weH8D2y3d1TNO353zzvvf59F7P+Znf/lvuX72W84vP+X0ve8zmx1R10tOZidU0gA1IQ4wdKyuLti2KzbditBdMkhHxDLeBnFs6pqzPoBTLhMIDT70bBE6qXE9uJToFOb1kto3nPuGZbMkWHksomzZxDwPdUungeugbENPHFpEE8umJ8SB8zRj8J7V9prt9oqu21L5GhcHZPWMvrtGa6h9IskPeeve/3bnuv4dHEwTZDJqjeVv2zwohlG5+Xs5/xXtdQH/H6x9cyH+x6qA3jQEfdf++Nsf61z6VttYZ8Zl4FGyjSrAjwVGjRs8O4rAaBQEVFKOlrIMDcRS40cDLhOnUnYWJEp0RVYkR00mHytjrohFpkB28MhYZ1QgK6p2FyZ9s+9KRF4+WrIiPNIVjCiJorAX+al4gydikVaiDT4N0F9w+fgrPv35p3z80TMuzzvCEI2yYohoTDigzrQKGnQECX2mp2sQas2AMrvvxCmNgxQjSXymZ8l0f8kDHTEaUHHJnGrmYHB0STn0ibn39Cgp7vKDnAoBAY3UIszyMDgMfIoTfLAoQqFQISreKTEqMRmgjRKJmZkjiYJTvI80KbBIMOsrUjsQr7dsvzynX36GOz2i/uAt6vce4Y+PoG6Y8qOXiM2s2e8ZdHKMIAURaJ5HYyvGEWf0dsaJsAMlImkHzHaIL88jMqLMHM4ZSCoyFr4VLU6rSInmc3iKmSSHnVIcotbNROEiGaNHFRJ+cv+cmVSysrREixYQJTgLm9vfJzTav+KNUiI/h6TJMW9ge11j4q7dfszXcS6N80Gnf+8bDEXECh6D1Z8b59qL992nVvv6+/y+c+rFWi63Pc/Nsdo/XrLB6vbn/7rtVQ6kb3KPqYOuGLfshxvjl42i076IWESpiBBj3I2Hmjx7sb+3vf/9dzf5kYl19+7+T/aNlx/H2LeiW9/M8Hrt8dPbKaNutrsCmXbfy9iXm9+7CfWoc26sL3N7d95s3ej3K3vKnlZ0izIF8v40Ts2p7AFy7Yup7LF5ahnaE/PX/vwVGfehF57tZn8n34+Gfeze5dyxv9Mn+tqyZ7LW7ujLq9rdsmdnGN4ffn31itSio+ar3Cp7KAomBU9/fdlzcwRvlz1jP16QPbfLr+9kz5sve0JkpOKKmqhxRFUqCvVb1n6TrflKMiuDxkzobIFj5kSwbAPbS033T5KN77kWWKFntiY7qsfpNBI7v9THMTXZMo4urjas1x0+Z5ukwvucdIf01Gr6JEk4Dw+Wng/fnRPrmicb5bJPLB8t+Rf/7p/z6P336Idz/uOB8ot//wVXVy3d9ZeE1QUHDz5gtjhmc/2UZ+dr3nnrmKo2PBbVMooQyfTbxljhcgyXqunEZV2LYJkyKev3YvR+guwo4jIctKEoK8SwpGUJpuw0MerscuxulRacwYhaxnRVKTSSspv6uUYMbkfZae+64LbifIIoxZksu/sWmZcvW5wtJM2F78kBkra+dKQpL7Ipn5o95ZadMcHrSRFn2UDqJdO4CuQs28y2TuFzUOcsa8Rppi+UPDVSxmzFRmn1wtxopyz12UqgVp5EOFJSnNcC/ygZXaOslZwB9gKGzyI017Aqh5jNwegcS7ZbCXpV3T2v5OLB0/3LHPm7PSFNavy+ic05T0WFhIoUGvrrBV3wNHNl0BZfGQYeooImnHq8s8z/2nua2jGbzZm5Bq8ej9DH3jC7RlI0mn8vls14UN/j4PgBqCP0PV1/TdteE9YrBr6kalfEtEV8z2zWkII325Oa3DInU66PqH6sg+QyVh/6zLoiQgoRkuAqZ47dIc9REjENaJ6Xl1wyq2e8/+gBX24DZ+szW5eS6LY93Wpg83jF4dtLeteRvMs1ps0eoqLU8xkfvv8DqpzN+Yvf/IYvLr4iScfhAVxsBxiUWeWoqsf0smK7XtDULb7ast3WLOcVpIYw1Pzy159z3faQa7D1nTlLm7nZChST9wqkkEhRCFE5fCC89XbgaLHloO6oKqU+rHjnQaJqZnx2Huh6ZX3dsjwWxEWzVUjCeUflG1w9Q8TT9lf85os1bd/Qt7ZafG1ZVC7bQFy2kxUClYvnT2lqaPstXhxVM6dyDU21wImjkoowDHz6+L8gau8AryyaA04P7iPL93n3ew85vP8hZx9/wtBfsrp+wvHlCYv790laszh4i/n6mk23ZXX1JQ+uP2dx+IhBZrhaePjgbe7fO6U+eED0M2bJMwfaIdBvz4ntJev+miG2XG1XRO2Q7preeTqUAyLPfcVFqtn2wqnrESpaFY5TyyrW9NWCvt2SiMZilI4YsLLqh4f30JBAe+YSCHhIgSFuiRrZhJ5u6Oi2G2YkjmY9m2HDZ2tHT436SNutSSFmnSgS3RZ3mTg5VoRTDg7+Z5bL7925rr9lirxiJClZBTb5x53pd7ruLe2mQrenSL7kfuW4VyiEuwinG9ebnnZb1yYKu93m9UDgTcX321BYbwNft7Vvw+jzzdpdfXuzN8zv2u/WRKxGj5R/Rko8U3YNWLtxKUsx9AuMjqCsfJX09vHYiQI9+pGK4aEYVrOjKgFeikLrssKelfZyE5ExgtSuuuuLXTKNndlXWk0J1ayxjteb0AOUE6yvOzDm1FH3F2yfPeGXP/8Nv/j551yfd8QONPRoGHBBaJJCNMeGT0oNI7e00wwS8jhUGciY86oYOIqDw1HVNWHocFQ0RERhEwMqxnUuCLUIvfMk79AqkjK9mjqlj4p33t5jsswaw5kenJJ8xRASVVIqPOJz7Z+keEkjTzvJlPIgFrEXRahEcQRqD3WCKlTUdSL5hHbeFMm6wj3d0H92hpz8huU791h87x38o7eI8xr1DQUdOXGjMURKdhwFFFvU1BixW/hpCjc8UJw6u3hsyYDPsXMy6u680URT2b3yNQsPt3mFpKCwCfiUcZ6mDDwcu3kC1XitskZMR87UfVhWE+hYLDYVgmfI2VMFyBjCUVIuROsZo05dppRAR0Pkm9pu33+n8H3SbtlbXxrxf4ujZ8+gJfvHTc/bMwRm2SCT30fD755ziL3z7uwXL1Nl5MZ3u7+nmVZ3NTPOTa1Gu+9fppn8rvrITZ3mLn3r5mcoYndnIBtpmrRQqzobb58dfaNBnL13oJO/b3nC/b8m73X8TceF/trPbDr4642fSAnccGMWyf61Xt1eZ76/ysFZxvvr3vvmPd50I+8fXPaUiTXqHzfWBZYZ4LIlSwqVbzEMYttCcWTczAy5TfbclDV3yR6Tbzczmna62zeTPWUMxk+3ju7ryZ6bZ05Mpro3nScPuNOrxhxhtQMcOj5vOT6RshHTDMblHTgnWfawtw/s1vNu/PcfRW78f3revuwpOsLtQ/EiCP5O9rzZsgdNlp+Sdvtm5fIcV3IWif3jMNYCmIZYuaw777LzoyriLADJvrfMFmO0K1k/mnXaTKOWdVrJC8nqmxXMZbVOQow8Prsi9AMLFKc+17PJ6yeZ0yEhzBvH4dGMo2PPO8eeuYPfnCWeXg9cdsrBTHh8Ebj//gxX3UcOD6mWS47nDQfLDp+ecvjwBxyfvsfm+ilX65bVqqU5rXf9Jc8F8UbVpEbZnnTnhDF4kHVnBMnUaiXjP2lmpSgIU/bnlTnzNGctyBjQV3QE0dKXIkcKHpk6QXS3xHUUgrnGm103ac5eQ0fZosXJQjJnGrsaaEZixYvHAAAgAElEQVSTnu8hE4dIPs9lrJwyt51Rc2enUAlMRC1YKjsPDPYYLbg4PxXYY8ZUsW05sYFIPo2OJ0nmoNKk4FPuieUyjXueTvBTxi5lbquIUXUNw+5Yb5lPkmGg5OPECSmkfdldWCtSxm7KeC6lN0VeCEzrFo47Yn4/IhNnEqCZCNKxo6d/wyUPRKX2FX1UQl+zuRZjUlFPDB0hBkRq1AeaWY1zNb6qaJqaWV3RVBW+8tS+wbnMpNErIQ2Ap1QYCFiwKxEEjxPPbD5nsTzN7yny7g96kg70bct2e0EIV1xeXNL2K4bQ5XJbapR3ItnhnnC1vd8YBiBYrShNI62ekwqCkmKP8w5J2RmvglSKhsT5xRlHy8RSHecB2r7FV56u6wkoh4uG1WfnNPc8UdQCSpzJZhwcnZzy4bsfgDj6GC3JSuH52RVtvOBwkah8z+lM8fP/ioiw2SaqeSClFg0PiJ0nrmZsVonzy44UBY0QB6HbRnzjjGY/5JBtr/jkCIMFKeAjp2/VVPOWWVOxqGAmNXUlxFr44IOOq154dh4ZhsBiCd4FnIs4SXifqKuKqqpRTVxd93x53jK4mtABqtR12Y8Y9waSIupwoqSgDL3ZMua1o+pr0tkJqV5QHy5JUfns7Odshyu8d1Tiaao5h80R0p7w8a8Grs8jy/tvsbw34+gUPr74Df3lExocaZaY1/c4WByxXQ08f37JvWcfc/Dwx/h6ydJ56uYQ5x8yIKy7lti1tEPHZbjmevU5Q3tJlwKDJlZDjydSpY4LKrOjCGyqiuve4dvIvabDyZwnVcXMDfRtR0Bp2zVaKc5DGwIxBGMT8h3bIeFdIkmkE6vJ1PcdURJd6OjbDX27xSl0XeRqdc31dkB9TT2vaDdrQhdw3lMhrNuO0M04ef+IuvmfOD7+VxYYckf7/dRgysBAckrsrv2hxeC3f7/dZjv9pnz83QwiXye6eNpeRRfzOtf7x1WQX4B3/yi9+K798TRHcS5NzRmWrYRY3AKj46gYMbDU+gKsR+RdDLcpfy6ovFCBTe8iuZ5RBgYloaWA72JIlOKckb3723VldAbZd24nG0RGXXmE+s4ZTQRGK2etUOAVZd1+94DGlnD1hE8++oSP/v4Lnjzd0rYd2ikaoMLo5dIQCTHRpESF1VGqUjEWeaMeEBuPFAdUkkV7SI05GoQAVM5Te8f33pvxxRdrUj9HqgRDhadHyHlGriLl6+GELo91izL4Cqk9lYNKBzQolc9kh+LwztTzmXfMnXEdd+JJyVGJMBOjq7NMpexryRGPlQg1kdo5NFiWVhUGQu9pRVFngBYfqBpHtQF3dUV8+pzVx1/iHt1j9uEjqvffQY9OSN4z5luJZsqIHeUDZKCoO8CkBRCWeYrk+RZH8VZqHVkGUo62LGBQSy2k/HUG68VnZX2YXs/mVImWFHV4VYwPP41OsUJfZ/0v/UwIVQamCZyRMhitXhjnrBUJLh2Ssb8FtFLmsWb6iDEA9evTg/0xthf345fskeXrmzbHAgon592Mrp8aPXdzZd/gVc7fcyLdYSS8zaFxq5NjBLgvM9IVU8HkuCnavfWc/THa3ft329enQ/zyA3Unp3N/ducUi8mLxukXnFETw6T9vZP33jnwlllrBi2L8EXkhWve7uC7W4fT6dPmbugLZ+w/7vSSmg2Crxs0VCKKX7ftPd8d35eOCeyMT/DC/Nw/45vrn2WNvPFG3tx+H7JHuLlud3JcJte5S/aMziWZZmHvztk5KYo+tf9buYXd69Wyx6bxzrhaznu5U6Hs0Zr7+jLZc9scvLMrkzPKZ33x+/yAo8y8cfFSg8UebhfI4QpmBkZrGICU4JqcxSFm/LWiM3YdTTqRPWXvNR206KS3O5nyFV6YV/m5smFTGUOmXphio34wvt/vZM+b2gpGcpkiOoWE87uxsiR/yZpwcT4KpSaoI5KcjEQMpY5OqcUUNRq+yfpySgpq89fVdpcCf0rGibic+Z9ZJJILiDpW2y3Pr9dojFS19W9X98fhXML5inv35/zwp8f4mefLz7c8vRjYtPDrZy1n1wObNuEuE/X/dcaW96nnnl/+auDsWjlshGoh/NVPr1m+VdM+/3POnn5EG7Y8PV9zfLSk8d7WnGTa8lwvdnQuZFo33RVWyuOTXXU6kb1asuNknNxSHMtlXNEdtlT24s5s3IwyzmnGeSpjzdWim+wcQ0W/K/Ixu5GK/CoyxcgMMv6x8VW1+rpl4MXJrg+yw00uXyYGYwlxvrhhMo5QHfk9i2OSCeYCu7+Koi7mYJ6ckZTH2TLmfHY6FYddzn7ShGQDqC1Pw1FJdyT2oJlurzjl8kNowcaWWSFUhenP9qPxfRilH7qjcizzPpsMdjXyVEk6Vt7KL9meOSUQL4bdRXNd5J3c2smY4lzMc0XFak6/wa12NS5V9KkibBpCqnBiWUo/erBg0weutYK6znuGZUjGbUvXbxj8nMX9mhh6kiYW85rZrLLaa1EZhp4+doShoycRJCFJqSohJgtcreoacGjlqNyM+fyEe/fet/mZlBA2tN2Ktl2zXj1nvbqi77ak2BLpcd6jCVIMORPYMi0VpfIOTYkYQ56CiRjzq3eCREga2A4DoQ90vw0sKmXbDaCBbhiYL2YQjDrtkXvAVTNwwRVDiKBmQ3n01iPuH5yCE66vr1m3a1IacC7QbluCu2Y27zlaBFzzBW4ItOs5cqQ4aXG+Z7sS+vXbfPbbS/ou2fqLSrtVulY5PvRsrwLaehaHjubY9JMYFE2O5YmjOeyoqsiyqpjVjsYpTaXE6DheKEcL+PwLpWoU35hzBBTnErMKmmpGVS2IMfL8Yst1p+AjYTDVp2nAScqVzIoNpASseNbrnmGIVLWnqRa05zP+7j99yb/733+IxsBnX/ycVbjA1Q51nrqeczQ7ZlHd52/+w2M+/s/nzE7e4uhfPUCi48HpO1zPIPRXrC/OWX25oiFy8NaMWXXKb3/ecLx8yoMPzlk8PGHZXzFs1sT+jLVGtmFD2q7Zasv5cMG2fYZLRgt7sd2wTgNzV1GnSOsclfS0KrhqxqBC1QWoAl4SdEJ0kS7OGVgTQgtOqXC0/ZYYI1VSVLdc9eCdMsjAVg5pY0/oW8QJfRjo2zXddo2osKkc7XpgCAOOSOyEzWpF6E3oHVQ17brj6ariBz/6H3jrJ/8jztW0bXvnuv79OJg0bwijAv0NFa9XKai/o0OHiRHhZdecxtl+XR3ymyqdf0hl9U1XjL9rf3pNc6Uh0yezUlUAjdRmOB9p9BjBtKmkbqI029XGb7NWbrrzJBp3BEs562QE/KZdm80yh4NIObf8fz+baTRojNR2RjWWxI0Vl0rbgd2cMVX6kZVXu2+hTevQ9pqzzz7nF3/3MZ/++oLVOhL7nqoLuARBQTVQRZAgOLViqrUmahFqJ1Rq3NfBKTWCk5h1fW9FLR1oqiCqKbxYav/Z4ytc8lSV1TqqPLhUMSShqiF6j68c0g3EVKGzmntHNc8uOnrAuUTjsyNCs5GqMmeOF08ikVxCo1L5mi4Eauep1DinoxNSVIIKQzIg5RFqPDPJkb7icTESBCQGGmcGDPGWRp16hQDaQwqBut+Qrnuuv7qAB1+x/P7bzD98l3R6jPqKpKbMAiNINN/NlJqnGJMmvOfFLDNGsBUzjWQO+gJEcmZTmaVCLty7M/xJmUvZmTXapvJvMc87l41XxWFqc0/G+mA2HwvfeMhfFVKJvE7UTbZAHZHRCPjGQ20tFTxcDFz7FJBvZtu3xY1W2pcaeEcb2WgfyDQgd5yj2VC7n02wMz5kC82kC5Yxgwji/a6QHEWpnkT633Am3fx88+3IjWPGPuZ+ZCKX3KfS/0KrOD02D4BVOcb4VuxfzUbTsjLKfV/V9oyI7CJ23WRYp0FMLhsRVHcniwg+RkSFKOQK0EJ01p8UDUSVrFUVNUNIyua05FA1oiCEMfTBlTWYci6C7J5NsfuYTC87kuSxZLSvlHU/1qBRsmFqch19+VhNTa6791iyJ3fvpvy2MxbLaDhMSbLRZedEn159twz25/NOBu63kc5TdZcNC2g0w5RzhUIp93LyQovhxgIIdsbbfWeH3Pr5TW9/ONkzmStlnymyZ7KnvY7sYSJ7VCYBPEz1m28mezJZLyMlEK8je6zPd8ue3ckvmzWvI3ssozH3daKzZUGMCPgYEDX6LHFie65LQEBjytewc0z2WIY0CD6mvJYA8eZgYiebSKahWu3IkcB3NILGiexxN2RPea4ie5zmLIPJU4tOM1ReHK3deH4ne970VujrkleLb0qKJKOhghxelfW8Epxma9rWnGYyO6fZqZKc1QVVY0Ww65fz1WakJMRnw74zJoSyj9qaL3l+Os53TcrT8xWbtsOhVC5jrBwQZc4vz8N3l/zVv3yXToXPP9vwyVcdF8+2XK4HNn0kaALxnC6VmSo//5uWWM359OfK499uWFbC+6HlXw8rvv/2lv/13/01q6uf87f/99/y/GrLe+1AszT9OmnK+DJBKo54tSyltHMGSKYQHNdSnj9ejOasOH8UW4tjoIsqTncB28WBm1LJuCn6xM4pjKZco80EpwO8LzTAQlKTHQav1TIxMlMIhV5PhCTm/PGaRgp6J5ad5dXkohdGZ5LJ2mL7c8ZWUVjn8+9JTW8qjycCGmOm/CrPaLhnt7tYbV9JarW9Cvt3dqy7bNQ3Z7wClkWmeeJKwUJieGYYBpREVfsRX0kqWC+Me6TzbnwnNm7GoJLyg2SVc9yLDb5rdoZBTMouC0kpkXhlL9vp2Hn7UqUEDpJrO5Vm7zyN8tSwoeNNF0Hz6pjQK5I8643tJ6aDO06qBduhNbpDQMNACANd26MRDo8PkNSTtgNSK0PqianLOktDU82Zz5Z4bxR3Q2hpw5a+39KFjjC0SAr0w5Dfq9G9qXbUvjZnh6+Zz445WJyQVylJjeKu69Z0w4q+W7PZXNFuV4R+yxC3tGkLrgInxL63tZ7p/jQlCnuIdwmX6x0yOPrVhqXzHB3N8A2cXbScntZ0bctbp/fZXik/+Vc/4dOPP+Or8Bic2Zi+9+73OJodg4L3FYcHB5ydPyVpj/ierlujrsdViXp5xbBuUT1mu6lRucbJmq4/5slXNZ/+9rfEvO+FQdiuLSvQV8KwFYY1tFc996sK5uYwQ5TFIdTVQO0TdWW2o6oSvFdUIyKR0FeEPnByX3H1gPNWLMg5WNSexpu9rx96Lq8Hhl5IGklBqeYOXwUAlEgSMUeTGmVeHJRBA4v5jINlxaJpuNoMXG87Pv7FU54Pl4TZBTLzNOJp6jmHsyNO5u9yfnVIX204e/6MeLblg7/6CdfPnjL76YcgNdRz/P3A0WGi7pUw1Hzytx2f/PIx77x9zObiV5yePOL6yd9Be4nrep5JYhta1u0VrcA29mz7DT4z0ay6DREhuRoNHeqEqhKGONBUfZ6zkas+sPRA8AwuEoInJKXrN9QitAhdPzDEwMwnBt1y3VuA9XVUkuvROJDCgK88MSXa7YZh20Fy9E7pNx3iElGt2l6/HgghkQbwCyV0wtHpT3nrnf+FWXNKHDq883ct69/FwfQKiTaJztrpjKP6+81v+7Xa5H56sy/lkFv6UjbKV3bzBsXLbc6qVzqxbiquuQMvPMf0NneP/e9T4X2zlenX6feL4Ob1jv2ufdvNItesGGmpKWMKdI1Irg2jNbsoTRgV2puUeM4Uzh1FA6MLyo6zdVocTM5NwfIOPI+RRON5ds/iXCo2VVMivSmRUpRAO0FGQoUSDb/rQ0niL39L7qeK4MKa7dkX/Poffs2vf/GY5083tF1klhS/6dDocKrUKjgd8EnxahzhkoGKqCIEvJiTySPUzlERieKJVBbZ5iy12PkKEDzgktIlQcRb/RezDOCrigD4Rqi8R1JiqBxRPEEcTTNDfGeKe3I5qk0Y8nOpYABTQZM5i5KLaBownOsQSQxRGJLVe4rAkCybw4syJ9KgRFfRRiFRGfBEqHAMKRo4ToEqKgfeIV6toGyA3gV0OxAutlx9fs7m11+y+LN3WH74AfHkhILgkvpsBEp5VHaGLbM9pXHvGGeXqzBCvzKXDHyNhreMrkYADXgtJCKwMxpNDX9xZ3RBRjo/Oz9nUlDZ2mACZu3qaDaKaeajLnNDS4hlAfVqiKnQbthlSnbUbicvBkvVidHmDW7Td7Mzmb30jP0abGXft4uUi+7JmxG8TukEp3t/HtxiIJsaVIuBbE+P2AmSfePx5Hn2+veS595rWubBZE5P+ys39ZGpjHzRzX/jhi/qRjcuP9UWhYkRY/Kdnx6cciahy7SRmogKbS/0XU/bR4YIMSa6PhFjRFOiaWZsV0q7iqSYqe/ynZxgYNcLvlaqGTSNYzZzRr9Qu0zp4KhmCe8spjvn2ZpfKhsb0sSoP/5vNF6U59D9+aMTB99trRgbbrz3u3WUbOzIlqgS5V+iY/cNui++vaIH3q0B7aTduFe+cJX/n703fZokOdL7fh4RmVn1Xn1N99wzGAyAAbAX9yJ3RUo0rhlFyijKjFqaTKb/TH+DPkjGD5KMJqOJoq3xWoIL7DEAFhjM0XP1dPd7v1WZGeGuDx6ZVW8fMw3sDGwanAB6ut+qejMrMyM83J/H/fH6qmxel/kX6ncxD+IfVx1wyYY+8NrTOr4I2yOPsD3bPVI2wy4tuJ/X9th0XAkPvTfZgZ/H9lidm7N/9cBXfbTt4TNsz8ZOPqnt8T/bxJLNr0EFkc08U14MC3UvtQKm5KEnDz1jHqBkzAplGN32oLRNQlcXWL8mWvH7V4Euf57RybKUsKZFUkdoOmLTILFFQguphbaDkCaPlYirQ009SE2qnJJMn5hv1gO2Z7r/tplD9YMPWYSvbM9Drz2tw2zKBK/3Tyb5MCOJe4EzBVinhtYyi4A4QGjgPUGc0DStZATqfVhF51hHzGOtmVAy36+dDKg+rW36zvoLgSGP3D86ZxwynShijdsCPBEthMAzzy/5zu88z/kgfHxv5PtvHvL+h+cu8S2hym1HFiny2td2+eavtSxfbLj9ceTD5Q6GcdaPvPXeMX/6n37G67/2W1zdSfwP//zv8vE7tzl8/4ij43P2Fh1RJn9eK7+tNWlL54m4ITrd75785mn+qFaZuAcmq9U5KNM9nB/WpBNQffg54UtqH6NCTML+QeaZW8aV68ruvrF/JdK2LeNonJ8kDu8pR3eFk2NjdV7Iua7LUI9pTjCZeMqnTv6I1BhQXJIKNr6NoQSzKnlXr5mJ1LKNrKcw+2siePWb2qwa4vapWuLgc4nae7QoW/uX2wrvg6NbfeRqzCsBL1KZ7mX0Z2U1cbRO6umOKrWSrF6/PyIHuCcSazqtTTqFVgtdyib54fL+Eer8nF7f3pvFJQqnOTx9fvIbp7lQ398UuEqdW1U+/ikeQVuyZsZ1IucGkj/DYT1wbngf537gYrVizJk2GiEFZLEk7ewQl3tI17Bo9mnTHiau9OGtkRKqho2FUnyNdGGXbrnDQRSP78vImAdyHhhtZBh7SvF7ntWJyGyBkL3/doyJGDu61NF1e2DPzvNLi1cdjeNIKQNDXjMMF6xOj1kNxwzjBUN/zjCcefVfLHjCmivPxFVgr1mi4znPXN/l3Q+PSE1L0y2wpiPQcXR4zl/9u7d4592PObjV8dLvPUNjS1574Rt0zQ7nqxV/9dc/5Oj0hJJH1usV6/Upy50Ve+1A0iOQtVeoSuL8NHBl94zDOyP3P/oa79w+5bxXT+zNMPQwrCF1XiUqBFYXA6lJYIEyutEIndLtKI0oXRJiwNsXVHxgzANDNj6557axW0BMWuXxIKZA27RepS3CMIycnim5j4xFKNnxhxQLeU4giW5vJRCjoLljf5mx2LCIQrTIlReMb+3v8fY7d7j//WO+/rsdL/16S9MmriyvcHXnOU7PrvH+J3Dw8jWG/cgP/+NP+NqPvk3b96gW3x+Lksee8Szzp//f+7z62vP87M0PeOGlA4h3OL3/M+zas9z95D9wmgpNVm4PxQ3q+gJrOvpsrErvsobFGHPvPdSkUMYVIQZKMXQc0TTSxA4djfei8OzCuFBPVk/jwLpfM5Q1ZfT0jiEbwziyTsbpENAhY4wUGqxRynqNDgMxJUaM9fkFNio2ChKVYSiEAGUsBIlYDthglCGTJXLzmdf5O//tH7N7/Toxr+mC0IfH00hfmETeox1MeczrX9iXeMT5nuT89sC/N9vEo3/9M4z7pwYzUyjz8Lk3TuxnfN3t3/6CCaDPn2T6Zc6JT/vej/oOP+/nvxqf1wghEFAExSTisngVNKg93ixsu5eXg1zHWbb+Pa/fqWpgay3PoOy2EMj0u/Xzs/69Vb9O6iEuB8bTt5EqjSA1a9XfmZqWbiFC9d9h+qIWQGpTPYsIA6xOuXP7HX70Z29x+2enHJ9eYGsllkISQUcBrc65KQmlNeZsqsZcezqa92mJSYgYXUheTlu1oUN05z9JJDTmPZpCcCdBDSySxQPPlJyoyBZpmkDTBSwLMRfaEBlDIhscnWUGSa6jXYxSsgPCkpCoxOA6yCaGooQUXeYuesl3MSMUvJ5NlV4cZF4GD3aiGRK8VHooYBZoRGlDYDDjrJaiJ4EmuvO/wogmkI0wDASBrkkQR1gXymrg/M4R5a8/Zvndr5O+9hxldwmSqsdao8YqFbcBFpx0mqhCmOZKqDLcU6ZaoMyo4CRZsdkjjKlZqM7B20w+mM9hq9oYQoNn6uWaDRWrWkcFv8SYq8Uc0UEItc+WVz1NxKafSqmi6GykkHwy2SRdoV7NYTWAlnluT/fh6Q52HtzfPu1nme1A/fkSEb0hjP336meCgyDbcnf+ATyrzQ88FUAieBPcEKNrdweZg2gecd6Hwb6/Cfj1MMD2WceWWpozAcP10p7sbFvn0mp2g25lvk9Lz78ZJk7fllIYcuGiD6wvCut+YL0urHtlGIz1eXTJkQJSaq+IRjnrP+JY7/Di6y8itkM569DjSEi10bIWhwbMSfeMAxipjYQIsRFSG4kpk9pEuyssdqBbCIu2YbE0djtz0inITFoBFHH9dfDMPeAxlRmXx0P3u/73Uc/9kfd46/g6y8fY3Ovi044wA7wPEqhPOC4lcwgzeQmXgeO5akDtqQdPfp7xRdkeJgD/IdszvV/BzG3XhC3bEz7L9oSNr/QF2J667D/D9tin2p5pZ94+3qWzbZ1rsj1RJ2gUJnm7KRHDCZuMlgHLA7peY6sLcl5RxrUDBONI6NdI3aNjrNXoRI7XA4c2cOOF52hbZZFPaYaV+0M4YDCB76YVrEeQmBCJqCQkJEQShA7rdqBbIu2CEJdItyS1rWfKbj0zQ8gSEIueyFJBU3/2G39jvueX7jeXXtnYnoffe9T4yvZ8eUdWJYaaWGFetVIIFNPaR8fliCbM3wH/Suqq+7Ax+Gux+pNe7D/5nXXP1kmNoq43dRk4Cy5VFdQINe4ruGx3NKHUqpjDkwuOz87RUohR6lxi3kN3dlq+/p1nOTk3Prp3wZ//5X3u3VsxjAOLFNnpEiKBPsOztxY8c71j90riO9/apd1vOf3uVcZ7B5zdPedkPfAf/+1b/Nofvsdv//q3eenmTf7RH/89/rf/9f/k/vEFt64f0DWTMoUBm2qXOsk2BqV6LdN9KFpQFe9zNZNOkx1yYl1LJW8mEhtqIlclQDD3vYMD57FR9vaV514qvPjawK0XleV+pklGagKxEWJIxCgEOkAo2rG+2OHDd4S3fzzy/ls9Z6eQi8x2YCJI3CaHShbCzM4g/oyn2HiqHGIrXqo/birhJpsxSdRVZqn+PVeMUjzmCBOJ5vdWzBkEJ0Kn+wyN+N6ogVm1RNVmCa3JqqV0OQFz7mc0zW8mMrxWo4lfY4ihEqs2hUZOtgrEGChThVFdQxOp5D59YK7wr3ZG6pvTrNns8TInIKrVZNPqL059u6bPBbm8Jz9tYxhHzBrG8yWeJBxBC+vVBf15hosTVmsH0CU15OR2fNF1LLpd9hdLTC4w1kRZeNIF4lWWuKRiHkaMHjXv/RODEC25L0SiSU4atZbZ6QzVQrGMlYya4xOqxf9dlKyFGCMSvGpTJBFESNFl/FLjpMTSQClw048XAC2FomvGYc04nLNen5HXh9Cfc/beititsTiw6jMnq4EXv/Uab/zu6zz/4gEf/MWHDPYxf/3X73Djazf5o//lOyx3rvHd53+XV555lSiJeyf3WI8jR6eH3L7zFmfjCSPn7HPKjZRRMhdnHc1CiHSMfWQIwv1PnuHoMPDhh8cUNTQHNAf69UgxZdklhh76E0WzoFVpf1oOTSdIY1iItE0gVptY1MhWGHPh8Fi4d89Y7BmpKcRU3I4EoWsibdwB6VBr0FE5v1DGHsaM7x1BiWmqgvVkaV9ThdQEjo4z9++f0hdPlm4aoVsau3t79Dnxzltn3PlkxT976Q2u3Wi50l4lyC4fHwaKJqJlvv373+In3/uAv/rBm7z+0rPcu3+M6prju/fprinDeuSjD0/4jT94nYMrDd/47hLaFad336XfW3J+9gkfpZb10HNRnOTaHTOo0JtRck8bhLEY/XqFSEIiDENPaCJBG8oZhGYg7kSkwJ0+YMG4WJ8RFToiPYWxDIxA0YJkI+bR712Bce2tLwiFoMpwviYPg8tBBqFcjGhWdAxIY+Sc3XaOBVGvXNKiBDoO9l7hD/67f87V527QWWYZhEEixcpj1/UXQzB92caM7DxBoPNZTuv2+1vA0JNDKH6ML5YG+mLGk+pqfzW+Gn/TIRaREKsTKxvAdXLCZhB7Cm5llr2YgO5Lc7VmCjngX8FzqY76YwLjyxUG1YmW6mzO4IWXks4/z0SUS+uFmZCd+kDVI03f7UHAJBRUqmycrsjHd3jrzZ/yw796n3sfrRnPemS9QlRJ6mduTDGrzUhVZrmChNJgNKKoeLZgg9DWexQlQhgxEhfroBcAACAASURBVDEEuqahlAISaFOkqWBKCIFQqgTb3Nw+EhYRTGi7RIjKqAXBq8WSeFByoQ5QJZ2AHyfZUsCDnBSIqQEpFRyKFAmYFigV3JUqg2WekVtEKDWgWErjerHZtY5DMJIoqxLpMxACTb0PE+dDzcpTzOUfABtGl8yKhbJK2NkIZxm9e0R87zn2v/Ma9sINxnZBKIkiuQIyFYiuAc8cXE6B0hxYUoNNu/TYK71U5+GGvLdKagZC3S/m1sjTwav8SKmAooBVOSCshiAToVn14b2zKTLD9RWGnALaOfaRGrAqm4B5aw+VCa+c1lmc+tjW7fHpDnam8WmJFNNeaEx74mSHtnsksfX+FoApG5A3PADWWhC0lFkeRerzCskDGQlb+u1Ss40fIJUmgOzBY8OjAbzPShh57I5/ybxukGo3pxtjZzBnrE/f7dMqGeb7ZJvvNoPDEigY61w4OR84OiycH4+sLgaGHsY+erZYEQclisvyqLjEjAAUXw/HeocfvPtveP3XXmGxjAztyEXqOTh/Hs1VqqVA1XHyuR2EbAUdjRgjRTzIihG0FcppYB0gRGhaaJaBxZ7SLSNXDoRlCsQUqgxR9iSKIGh0m1RUCeVxhN5DNWQAm5rYeT0+em95cGxn55vZIypatn0+eeBnHPCSy69vKg8+fU7NwIrU6tXNrHbJwSfwkS/Nlfo9JtD6aR+ft+2ZNFUn2yMheKX29nEn2zPtZ/WYIX667aH6UuDSR+Fzsj2fOnsfsj0bcuhB27MBAZ/c9oTps3W/dckjB4rGPLI+O2M8OqJcnKDDGaEMJO1JogQptFJ7sZhChFnCWby64/hC+dHt97n16ss0bcvYCBep8OLpmqjTM1AnmcxQ8WoBVQi1x4OI+3BBIlESkk8gB7iIhJiQtEDDEmkWNHtLUmwRaym05CYiIVFCyxiD2zG12o5xs/Y2t+rBezZ72Q/YnvrZr2zP0zdEHHQyJUnwhu2hguQIYqXGO+Ay49XKWM1ql4hugfOY9/6ZKnmdJKmBnExguc0cjLvHYRZXE5w0miQigwi5KHcPT7hYD2Au8V0tIGaemHbjhSVna7h3NvCDN+9yetJTSsYU9pctN3ZbVqUwno18dOec/WtLXjk950c/+5h3P7gGktjd7ZD1wGnfc3znmP/rX7zJ9euv860X9/jt3/w63/uNl3n7P7/P6fmK5uouhhG3/HLUpXQnqySVhShWRaRtSir0W29USbz6P60tJiQIWokamSzCbDOVKYCRAFdvZL72rZ4XXunZ2RtoF9A0kSYBsdRzJITsAH4YiGFBSgP7Czh4Zodv/vYOp/cPeP+nIz/9y4Hbbw+seo/NTJlJI7c/bGKeMGtv+LOQiWyaKnI28YNsrVGPP5il8SbKzLY+47/vyXau3leTTSWgNt1nv78SpmqgKk8+Ke7Nss1bfqp47zCd+trOMYzHRKK+xgtaCVN/jkXLvMfOcpzzXltqjJcu7dHTdVYdWmYbadS6tCmoctUO59vtkhnV+l4RnQ8z36dZJ/fpHFkVHVqGfuFJEwpjXpNt5GxQLPh1h6ZBEsQm0DQdi65hr4tcbTpKf8S9M8czQIgxEkJLjA0pLWhSSww+1yItIj53JmWbMgfuoUrXRlJoiI1H0044FkwKRTOTsSs6MprPxyYkok2JOBER7yYeiSgFsVSVZIwQFrQNyP6ESynRMvmbSll7f5zToyN2T0/57t96nf1nGtanp7zwa1c5eOk7vPLRGXG/YXfZsQhL7t/P/Mart8iq3P74Y+7d+4SPDj/kuD/kfDxGpUdkxbCrxP0TVud7LPYOkWZAh2us1zD0LX/5g3ucnrjygxZjGIx+XQjRaLuEDlDW2XGUDKuLQrf0SsblnpKagdQYi9ggBoMEpICVgTEX3n1fWGfhym4kphGJxZMLgrBIXnktoQGLjGOh7wslB7R3BCQGIYXgBEi9bwHFwkiTWt77ZMV57j0ICwECdK0RuoGbLysH7zWcHBp/8i8OyX94nbebd3n1159hPXolbCHyzCvX+Fv/1Ru88+YHvHdbWfzoCvFKgWXGioEFXnhun71riRtXdnj5uRcITWI3GEcf3+bk8Jh+Z4ezrN6LXCOr3NMtAwNO0BMUywXNLg1qqpADGgRMKSoEGr93NlBKotfIMFxw1q+51V2jiZE8Dkg2ikLQQliPHksalGH0KjyUJhl5GCijSzOn1Di5lKGM2XHMat81ZzRDlIRp5NlnXufv/ZM/5pnnniNaJpoxhMQ5Qhn/SyeYflnjFyRfHhfwXJYJ+HKMp1ci76vxNA2RjEmDSWQqI/f/O/iNeHVGnIgfNo7bNsA2x7uE2acTrAZEW6tLrILzU7iyIarqoepbE+g71dXHSw7zRD554tEUREegVp1QY6x6TWECRyYOQlzXOo7nnNx5h7/4Tz/m7Z98wuooI6uBZliho+uOp4L3WqIQo4FFgnifo4hnZiWD1j1hmii0QfAQLlEyNE2HBKVtvFNukgYjEAJ0k3SdBIIEghVidNU3oZBCoBEhJJesKwYShdYEYiWBKCzEyAIlKE3yjTREpVt2lBAJbZV1kUTRAEEJGpDsQU2vGRUhUwNWcSAghoTiPZlaMfZCZrDIRW4ZArTNQCfMWuNSA4lclCyBsTZHbYLbtSJeho2MSISLMTOsWuLZewwf3Wf57RdZfPvr6MEVYpWlm/KRg22kES5VeV6SqTMm8mWjKz45uC7Z4FOuzsMagHsWXJ2Ac8ZgDWo8DKmE6Txb8Swwj9ylBvVaQRUnrqrgiVgNxmAOhIFJCs9qUDdJRZht1hHU5sVz1rhtSUo83eNx0jgPfmZja2A2KPOfUCWjLu/hM3CyRQrBBlSZdPNn4rIGRVMflAk49VM+WeXK9vtziL11fY8FXj/lFlwCc+fXpAbudum9OVn8U77Xw9/DK3wUI4tx0SuHRysO742cHo4M60JZC+QIZUGQiJogFhANXglQwFRpBCKxyqF7dekP7/2EtNvz2qsv8fyzt/ikvyBfGDvSkbNnMGKJgssxaIESMiUVzCJSajWHVtmw4iCOhEAgIUNkHITxPHGW4GxH6HaFbi+RukS7E+iagSUjIjpLw1D7f1y6R5+a3COXP/sp9/dx48H5cRk8rdI7M7a7AYseXOyfWeH+uK/zADa8ked69LEedV2/KglQn7ft2RYtfdj2XH5PQqg9xbZIpkfaHpnPs02APmr8orbncTZjPs6l35mqjB62PVvu1WO/1/Sh6SWv4nAJO5XCuO5ZnZzQHx5STo8hr2hCTxdGUig0CUS930AQdYkXK36dYbLhsa4P4YOPDqETnnv2GW5cu8rRuCZYT9sFrAwunYNv9yU72JzNew0EoDFPXnJScRIOduA3BSNEAx1p9BzLCcaOEjti2iXGBTHvoqkldgXXIvaM74lgmXyLeU1e8i02f8tDtufxtuhx4yvb8+UYQQQtXqFbtPqNalgQCsXlt4VaWVeTnbT6j/VZ+e/gVfTVVw/gFfthyx6Jg3STipx/NkyYO5NzrVg9lj+P8/XIveNzxlxozEj1vBkhWqBdJCxG7h0OvPnWBWcnnqxT1ImEu6drDi8G94XVQCJ3Pjnnw7d73n7vPqvScf6Jcvv9M/qzC9QCI8rtH73Fn/y7O1z7x1/j5u4B33njOX76vdvcPTrnykFHismT4GRjbEwncmUjnc0kY+fRH0F0LukRm1QCJsM3rbFpqk8EOTMxKgn29zKvffuC51/pWe73NK1X0phVSXEVgqXa3zZDE0CcODHWBJQQQWSXEK9wcGvB1VvCd35Hee9nI//+X33IR++sUbyiTdUq0+RxSgiTxDe4wyVYdMA+zfvPRDz5xYQah1DJQzEuJSWoTZL2zPdTVLAQZhtRSna5Q6kyxnX5KZ5QFOtkkjq3qfdM5woimFp5XKpgrImSU/WQPz6ff5vr3HzvOn0xCmZOCMaKUWT13lyIzwdPMvDrrmd26UFfgLOUolj9Ga++mkXJt3x9wfs7+VtPt+0pIoyrhnEMFCkEM8bhAgQOewcdQhRIoVa0RU+iA2KzyxivsFg8g3UR1GXs/NmLPwc7pwwXDH0mFyXFRNt2aEiEFAkhVV/eq8WKQZBEDLEmxylQwLxaKUqHpICvIvcTpvmkYohlXwq2SSSMoSFKmHs1liq7ZpYBRS1QLCAR0u6SsHuVxY3neU6MTOD4XsDCdUjQXTdevmaYKHkcOesHbGksFgccn1yw6ntW+YLD/j7n4ymD9hgXFNYsYmS5f8jpeQDdo2kuWGtgGAM//stT3nn7gvOzghUlLiLDqKgKV6+37O8F7vzsgjzUJOW2+oZqhCW0+yOxHWk6oY2hcnBO+uaSOT4LvP9hIEZoFx7zEIBgxIgTTAEkCVqEfoBhTCANOWdSkwmd+3mqQgmleirR7WlYMJbI9Wd2USmoRbomsL8XubrXcf3ZxIsvvsr/838fc3w28rPbK24+3/H975/ywnduQqjJO9FYlczx+TkiLfvX9jgd7rK70zCWHkO4eW2PdiW88dKzHAzXeP7GDd6+8yPOLk4wzWgaGFeZtSkxtQzDimVKCC3j0LNKRowdMhYWi0CKSm9aW1sIRCE1LSFWm1NcjWdQuFgNmA107YJyviaKeowaFRvV7zuBvB7cJokQWzfPUvc+HQ0rjqOqFmxwafg8jlACNirSNLxw/WX+/n//P/H8qy95DyczQrOgl5ZWGmRqRvyI8TkTTF9SZOlJHL9HOabTS5fimIcd28ce8nHf4YHfv+xQb8CVr8Yve/wi9/yLeE5Pt7PweQwTr46ZtFhFZJN1OIEJ+AbrKaJhDog30P0MOyCS8HeKZ29Nzuvcr0kQ8VyoUD3V2RncfKvqXALije3mcFs8g85BmbrhyQTgT2BJBfWro+ml2b5BTgyWINj6Ph/+9Cf81X/+KbffO6U/7wmrTDsOhDyCRkTFJe/MZfiCBLIpO43SER1kjYZkJUigjVUr24xYJVZiStRkH4IEmhgIUShaiKGlCZ5ZhHimrGbB+2FFCl4625JrkkhDCJ5BqBmKgiXfKNvaM6ttAl701LjGdwikRQuNICXQpgAWyaEgGihRWPcjmhJB1ZvMIsQoULwse8VIg0u+ZIW1ZgZAquxfjEZTszJXOZBJBAqxkoyYkDV6EIoRQ/aGkxYpRdF8geVIWPf0R+fkO8csf+ubxBefw2KaARazecLUYKTK5UmpM3VDWFZRizpPbRMcTHre9YDCJhgRgSiuiWzVeZgmowfscRM0YXMRkWBztZcQCCZVy7vWNamvgbnyaapcEmFO/9sKEqdQcZNrCRIm2ZRpHj/dY5bIecQ+v+GuZf5bwjbJMz1jKgD4MPmz3cLkQUJlIp/DlNEpzLJWfq4N0DuR1A9VrvwNrvsRLz7RbnQZJNxY6J93bB9HgX4c+OT4nDv3Mif3jOEMbAiQE0E6QhFE3d6ZCcFqYGne5NZTsCGVQCKRgtu6IVzQHxzzypVnaRq48/EHHGXjje734Eri7vkhqgFCYQSXlCQQSiSUKekBMKUwgrndCzEQU8Q0E7qW2DRYiAQV8kqwITCeuqTNYl/pDxqG3YZFk2m6cZbEfOhJVMDp0Xf0MaDuU7oW57VndslV3p7nj16bT+f1bo8vwvZsZo09wvbMZ75se6qv82jbU32yLdsz+VO/6BP4xWzPdtwE084UqgVi/vvTvtc2kVsziymIjWg55+zkiNX9I8qJk0pdGGhCJi0hUAihJivV35/24xg2UswSCymChUSIgXWBkzZx88p1UhSODu9xpsobN3ZZxAtOT9e1MiBg2TPpQ4lEjChlfp5qAUpxwFR1rixXq4R6SNUPUsR6go6EcQU5IGWHEHch7xLaJWGxSwntBJVNd9bvoUw1z3LpddhUT9oDz+Er2/P0jTLZBzyhKdU+uK6EJ2AuWW0inlDFpsp6ZoO3VJX9XnpCYJDpZyA68eExndXYjdqPJ1TFAvXzQ62e8oPeOzrndNWTVenEfemCS34jgZ39htML5ehizeFJX+er11CFiXSv1UUqynIhHN0f+bM/uc3O1cBLv36NoY00XaK/cLk+NWM4P+b9d+7z52+/wt/9RsP1/Y6mE+6frXh+PXJlt/ZkNT/btIY2lf+VkFC/ou01JvXeTLGrVfJhqlJxsoPa+3Vz3G5ReOHVgZe/dsH+lYF24cR2ECdRBK8oy6X6nCixkhhGA9aiakSJJHsWk2excBWxAbiAbo+X31jy3AsHfO/f3OYH/+GYiwsD0SrPzZRbhszxiD//7f6TIdZnP72JUczqM9msm8kXllqtKbLl8Zhgop44aUKu1SMh+p5kJkxV7mZGmtYwtTdUjaOc7Kl3UJxok+LHlzA9hyqpF5RZrs8MKQ6IxwkfqOfTabexqcdU8EqXKR7yh+pJSFaP7RfFXO1lfk+cjJ1ZV7J5SsG0fjyp1uNrX0N139aHbdJTNUrHcOFryNQYy0ApPaCoNnRdx1B6LGdMjKaLXFm2NIt9YnMNSbt07RWW0vlcMAfN58TkENA8IDLQTniGGqOO2LoHQCSSs2NKqW1IscEXtBC0VnGKEAmEKbk1u1JIio2TRaKkFFDNABXch6wFipJCAxKI0hDr8QVQK6hmB/olb82RMCf5qgTEQpWuG1AdKWXELJNthODH+9FbP+WHP/lzPj57m4t8xqA9qpkQCikUDvZ6YnOXJh5wcd6R4kfEcM6dj/f54Q9WHH48sj7PYMbiKlgwDq41vPZGw6LL7C0bzu5HPnp3pNuHED3xd2c/03SZ1EUWbSRW4qlYIZeMmfHxncB6bTRtIiavipKaxNpEaOIkhRnQogxayARCahlzT9MEUsx+zZoR1KteLXprh3CN0CWuLXcI8QzU+we2TUOMcHwi3Llzyhu/f4vhJPDejz9mWO9w8+WKmRGwEp3IXiZGVc6HM+68+yEHt3aI68Ry5yonep9uOOPtf/0jri+Emwf7HJX3efveO1xpFix3hawjxYzSD97yQJWhXxMl0+maJhurkrACHYWlGGeBjT1x1pkBo4z+2moY0JAoucrsdS0lKyUWRlXEIuu1IoyEGBhGl7wjBErJTpZntysxFixblWE28jDSdgkrUhULW567+jr/4J/+zzz//C2KBQbpOFjsILhs9vnJiqZ9vO/zORBMk3s5lT8//Y7W5fGI63noGrfBlJ/X0D8KiHH4bxMIbp+6bk1PQHJ92mc/K9tLHtj4f/XGo+754z7zWdf/ed6fX7X184sNodlIuEiVCpPNvJ1lKajOrEzVFxUCF9kI19Vmo94LaeoVUM8j01yfzlUjJEcMHljqFUAQ2TjUc4UKl4Ee0fl8m/MkqCH8plH2RFIYkOHiPu//5Q/5sz/9KXc+6Smna8KYIbvub1AnY6JOYIMSDegzyxDZa1pCVg8car+EGP06kkAWo4SGNkZCLIh0IEYKkKKTN2qJYk42pVhVdBXXgQqe5WBmkCFowAb3w11Kp8rs4JmHxZSs2bPoFLJEmp0FIWSQCE2iBKFtEl1jWAk1q0cIIREsYNGdPm88m4nBM7eGbIzasEjeT6iYYMnQONBYA9IyUrxPiy0pyQPeRoIDMpJQLQzmBFgwSOqATHeQuFiNjINBNnJvyEoZ1x+wunfK/m9+k8Ubr8HeDoiiQUEn0tGbHU/EoROZNjfIdeseXXIBqZySE6hT6FJkE2R4cVGcS+unmUglmjzErtNpXgOT3a6yESYgyXtdWZUjrOvEJo2NGvbKfGyfyttJw9Oqm7IsN+9Nbz4ZIfFlHlYbV099s+bXtyDUS5VD9TlND2UKui8DuFt7an1Oj9iV3VqEzbPxV2WWRLoELs/B/faxL1M7T/os/Cv9fBI/Nl/zlEm/eX365tv3xd+0OUtTzbOjo21NNwlkNe6frvj4o4H7d8+5WCmWG8iBoAkpkaAuPGEFRANRkvufJMyqesWAV4SGSNJAm1pigZCMMUWaA2FQeOe9t5G44IVnf4Mb+QbH+ZhEwCJoMMbi2jApCZS4kYsxrYHhyFiJ/JgijSVKiZgqqZRKMjUwuvyBJWhSYDCh9DCewXrZ0nQt7UJZdGckxo33YX4dVBs1JVqoPPr5zn7fZz3zB/zY7ZkzV9/OyU8eLFNBDf9eVTaETRSAbWcDT/NVNz7sbKjYWk11l5xByU//8v69NseZDuvN5J9uX/Xztz3bJMxkMLaP62OTLHDZ9viki1vGXzYcExvbM+11v3zbw0O2h+0/n2J7CHgvRrTOH0W0Zzi7x3D/Y/qz+5S+J1HopBA7JYr/8ax9l22KUdwPm/w4M7AMeIJUSEaTIhbV93EJyE5LVuPjTz6C0PLszVtcT3CRChIhWKBoBTANpFal+8TQGnEbuSiW/R7E6H6hgxlGjEoKqfbVqYBnjE5EqSEMmF4g4w6yPqc0O4zdEg2RiWpTC6iIV7EbNUHFM2I3Nn7rWc5re3sdPjwTvrI9X74RZ6DeiEFn3zXK1PNFvDogOlA/1r5ZMdb9iRqbebaV7+214qVi6568RJ2jePIVlUBRXJoySvC+OmzMlZjR58L9o1OGYUQU711UE64Ul8cObWIogXuHA6bQdYGr+zvcPzpj2TTstoEmCPsHC9796IKDKw33jgovvbxHvKL8/t854PYHAzvjTX76A08GPF8NXL/RMp5/xM9uD3z3uR2Wix26NnJ6NHB4vGZv0dZqrQ0Jq1PdybxnT47ONEN9lenW61ZlFidCzSby2gzTaQ0Iu1cHXvvGilsvrFl0IyEWVF35wTSRkvd1NIV+KLRdnKVOh+LynTFkiC2BaxR5FbUWMUVsjYUXiASKXCNcWfO3/9FNrj/3E/7kX37I2XHGssyEyCRdb7McHZv1IZOIm9Q5UvtOSlXvmEuAZrfXY78t/zjM63hKrtONb4T53iEgVqXAp+o6q5Ck+vyN1OS5Od6WeZ80U6zUBFGbelr5g7Oy2ZuETczjiiRV/pGN7fG4y4mvYC6VLyJUxcmNbP5kc9QT+6K6ZF8xoHhFh8zX6zbYqj2zWZPcbedTLs6JnneMfarzv6BlhTJ6JZ6aS1TnjMWG3f2O5zu4slhy2l5lkRbIOHB2+DFqHaFpa4KHE0FN0/i+RUPXtEgMuLxbITRabVugZEO1Z6RQCqxLceLOIKaIpOg9l6qNdLsWSLVtgBJQVcroiaBqtZK5VtP5khjRYr6nlkCoMnpYQGic+CIhwavock2qdZ6yPnsyqpmxZFSVMfeoDjTskk+PObz/Jvf7N7m7/oj+IiNETzYOK642a3YOCsRjUmjoV4EUoKw6fvL9lvffPqeMkLpUf8cVap5/Vbl6a0Uomd2lMNyMNIvI8ZkBiZAyy6sjbacsWmU3tbXXtpPdxQwtkXt3IZfIzp4QUvHkVPz+LFKgCf7MBKGoE20htIy5MCnQNsmr1LWI7xUVRwkxgTxDaM4gOk6UxBAypRgn54mce2T/mLY9ZufaASOB/u4Zd995m5s3r7D38jW0eF/uveWCW89e5+a1a3SxIZ0rq3un5K4ln/e0Zly53vLarSXP3Gr42dE7sKf048iN/T3aU++nGa0jSu3VpQXRwl65YC/CB9IylpG+tITGrytQqhRpYdBMN/nVNjKUtUtoFqVXYWGeYL8eemLT+J6tYJaJwSUhh957LpkqUSJlzBQ1LLrU5jjWgLkojJEkAYi8/OKv84f/+H/k2q0bWGwwOpIE1hlCGbk4/ICxCO0Lzz52XX8OBNO2o2gP/PwlGdsI2ePG50GMbTuynzYecy6zywd4dFLfkzuxn1a2/yQSHL9aY+OSbAJQtl77anyZxgYckdlD3yaFwKUcpGYeSQU/Jl1rA3d4p1A5GCIRkamyxI99KTOReo4ZuBNKzd68JDNTHd45XW/6XmxA320wZjPXKng01QWLu4YeLI9weo+3f/BD/ux7P+b+/QFdZRaa0X4kAsmEoFVbuurPSnVeoxmtFcq6AA1hauQa3QFXCWQRmmTuzARoEqTgmW4x1u9n3gSW4pquTZswKbMuslMogSGr90JK7gCOuUeI7KQGEb+mvhRCaBgFJBopBEKbiPtL0J5sDe2VfSI9CwS0UEJgHDNtDEgstCnRj4rFQhLFhkI/wpijkzpBGFQoFiiSiAbJyizlsSoJ1QaTRAy9ywVaoFBL3TGXjlAhCUQUK0I+c5CnFZfXkKofryc92mdOT95E752z/J3XsWeuOKgsghHrtK3VJ7bJqpvy3ZQakAdx57nOHSPN8ac3dK3NL2fQw4OyYurBaZUj8bYJ3vsK0Rp0+UTWmku4SVawKiVhVaFiqkSqJ/Evx7Z80iYzsMzLcVooIoZarOvJyTydyqee0qFloyn8kIQbD++pD9WVPOAHbO/DMyi8MRuXfm/zuYf7M136jSmDmHjp5QnwnT7zmCyVh6/tM6sFHh7yUGPhR0DL9ZqmrNyKMiHiPSus6j4LgfXgDbw/un/O3XtrxnNBR3HdclySzhAHDBQHQzQSrP7B9wOf2NGz/syIFqYcZu/NJIpoQmJk6C/QqCz2dpBPltw+/4h4Cl1qGE0pZaTk4hmCkz61iQeJNdvQpECE0CZyLmQrxBApZi5jOjiphURSomq4QLIGNGAFdIDcQN9Ehiu7LLo1XcpEyfPddHs/JUL4c5xwhl/Efb1EVGwelx/ffM/0DtUTmKszUTH3T9n6s/3zNA8nmecNX7G1X84E6ua6dAsknrG4mR+4TIxsMrzlwSX31I7P2/Zsh2Qb2/Mg+G8V1KtHlEmuSB743OaYhs62Z7tK6Iu2PfPlTSDiQ0M2fz7F9jiQ5fM7oNiwYn1yn/7kE4az+wRdIxQaMWKVY573zQpUilRQO0x+o+/Lfuf8vCE40Os+aq3AFiFEGMeCBaNdtiz7Mw4/OYS0omkiWpw8Ui0ug2QuyevyhVplv6jSuaE2nle0jA7eJ/NrjJ7Io3hTezc+kRSr/URBM2IrQj6H4YCyaLG2Q6XaXSJFYOoXQ+vLugAAIABJREFUaVNywxZevpkBj3tqD8zbr2zPl25osVrhYzUpy2jj1INTyKK1AtIB2iQOXM6Au/k8NypZxbRa/N6WCiROa6M+7I0yhVntqWH13rpMWjD3mo/O1xyerclaqgylpxAG8+cXYiS2CR2E9eB9cp69ucO3vrHHX/wgc2Nf2G+Fk3NlWA3esyIEEAdqdxYQgtIsAssrkeWusIiB0CRefnHJSf8J58cXnFxc5/ozz3H92pK7dy+4f3zGres7LNvI5JVNaWS1WxCFcolk2vTjmaaZz6QYhFLqa3X+bc+9KHD91ooXv37KtasjbeM9YRR/Ll7tBbmYk+EL7wU0FAiDEYuS2ojYDmLXsCKE7jcxLYR4gOghSV5Hw3MoA2pXEUuU9oJv/M4Vlgc/4V/9Hz/m9N7gfsvE1/ijnB6pV6NFt8FFZa7emda81VhFzFAJlZizGs/WHkS2FY+HzfGnrUWie3Vxnmced4b5ptbjTHyTlwSgNvVwskpcb0g9E69W970jzL77rOAwbS9mNbbb9E9yKXP/kqqbZAY8oCNKrYSaXp0whyBVvryC7VQhi4mUMKq8XpVKr/fGwFk58/X2NI/+wn31YgaMlDw4vBKFXEbGMRObRGgiV3c7nk0BbfdpY8dBEq41iVURznVExSjFJbFVhKAJLbAeR4oEQmwQSaQY6KLQxOTkUBBCo+yEhrYC8iV7z8VsCsPIKKFWFwshRGL03pTeUydUeXOvNIrVppU8zGRQiJM/IBBSjYF89afQVqltV2dRm6QioaCoZQourZe1JiqLVVnjwOH9I/71v/+X3JBzno9vcbGz5s5ayKPRRuiaNc8kQ7UDa+scGxhG5Wc/Ef7tv+oZR5AktHuB0HisdOtF4cVXM8uFV1hRAiKZZ1/dpX9LWK2UbldZ7CupNRaNsdtM98mYJFOGIXB+YeRiLJbM1UvB2KjshIZpV1bLmEFMHXl9MWMTodrIYoIVty+qRpsiZWwpeoL3FodC7dWEIqEw2n2ECwoNEjPPvXKd1377t1jfVc7vvk/aa+FGw3tvfcjZ2Yf8/h99nauL6+hZpL9YE8LIeHiXK7vX6BcNt650XF0o5/fO2Vku6XaPWd3vQW5ya/8qZ/ePGFF0FJrQIlpIIWJDIMVCDI7Q9EOAxhzuySMh1qQuHcEaVyqykVLOsbCgqHJeBq5ZRxe8TYT36zMwJVh02+RFmjTiVXtG9X0HgyhIE9FxIMRawZmVtul48bXf4nf/4T/j4NoNmibRr9YcnXyAGKSmIZSe4e59nvnaN6GMj13Xn5NE3tYO8yRkzq/a8BSIJ//8I+7Rli/7uY4vE1H081RffTX+yx5TpuKcqS8GxLrUbPPanBlSwZdJpkRck3Umc4CpXaiPsHWuiRiSS87fFOx6kOpZnSK6OZd/cGsZb17b/JledodUZFODMoW40Vb09z/gzT99kzd/8DEnhxldZ1LOUArJItGMphRi1cgP1IBYPZsw1XS1Yv49GzG6ZQIdyL0SpCFG8d5N0TPEkixoUyBMEmeThBRKFgMNJIPYRCwIgwmSA0mUoYyUQRiiQDGyGY1lxhoFBIDiQVVMDV0rdBHSMrG4tsMwgtBw8MJVju58xPq0d4c8RJY7CyQIfb+mE6EdYJ17Vrn3ppMjFIkUCmUYWDNVTg2uvSxCHyItThqNOiCxIJo9YJVIbBKlGIU5TYxihWCRKEAeaACRRBQHYkpRRsP7u+TM+fdXDCcnXP297yIv30KrJKBpfbo12NhAGdWVFA89TahVWRsSYgOM+Hx3+cfaX2E6Uu2pNGmER2PW8DbChqgQtoKczbx2sMr1pL2lptbqKC4FLTNIN4E9NZSbSa/6+YDWc0dAqsb0r8a4tFfJ/J9HAmSf1/kmze7HDZ8jWkHOy3bs0477WZ/5ecbG5D358VxMpAK7BQherXi6Lty5t+aje+ecng6UPkCf8AwBt72OPM3GdCaSquqnB+YhsEgNgQaxSM5KVmXKjp8kS1SF2LcQWobhguOTEcJVwkmHDVLlXwwrI+OQcWhVUPMebiVnRh09AArew0QsEDJVJkXRYPVc7n+HVME3i1hNEjBVrAQaC2gRGASLsNbE2O7RLzOLRU/T9CSUqBs/cboVwTav/VzPb2v+Xqp42piteT/1ILH8XCe59NFtP/cRIC/TU/0Vshufx/jibM+Dvzf55VRC5MltzwSM/jJtz/yNt0iCrVcfAvx9fWglxbRK1ShBM+Vixem9Q9Ynd9H+hMBAlFx7dNolCafplJuK9UqAmEtjNq1Xi0dAS3YSXLbkkCqY2Ro0ZWQ19pxfZGJqaGNCpDgJJS4RVkqeL2CSmCpanHgq5tVFeAJUstqGPATvvwS+vxcguFyNS6G4w6FixKn3CkogY4yQM/GiQ/sO7RaUpsOkIWg71zebeHXLBOxv7sgTPruvbM+Xclitso+1j5kEz6CfYhavrja0FPc7pDYmn3zNuk+6t4o3MokOooe6V9UzzaCjx3WVlaISCiabyhiBjJOpd49OuVj3aDYW4t6oyEby2Wq2fNN2RBF6M07OBu7cHTg9G1ivhU6Mk5VXHPclsO4zvSo//PP7XLsLqX0Hazre+ckZn3y8JmD0WRkuDtm/saQ7O2PgeZ557nle/84L/PVP73NyMXBytqK7tjv3+plEJTGt5E+lnup12nQbzPzya2/V2eTbhKXZjC9JUK7dPOOlVy5YLEf3Mcwo2UkWEpiI95uqBIe1nkgjOIEoImRtCbpHbH8LC4EhQ4iJxHVMMzQHCD3CLho7zALoS2i8xQvfOuC/+afC//u/v8nZUcYCnpdoTgSK+HMwEe+vNa25iRRiilncBxJkln8L9dkzE9mT/VVMPWbSye+j+lp17wkWvBJsticTFkAF4jd9nYJ5jyatVbNS5chsS+LUCc/qs6kTPCpSUwCr7fLyqCp5L5Xgr3tDMEKNz4wNKT4jDOYJVnOOaj2WGV59E6Y5sr3/1O9mNleDbabL023A+j4yqkvVaekpNhCSIdH7H0oQmt1IiEK2wD1tyb2xWAhjiPRpSVjss2eRlDrHWkyQmJBilKFn0YwMqoxjZhzWjFqgjDX2TqSmo2la0mLhZDvBVQuq2oyv6EAuI6XU3m7jgKn3WgzRK5JiaogxuVQihqQWSf6MimbGPFCGtftQIRCjV0Zly3UeeRWeiEvaY8pYMuPYk/PoybxVMcb3yIKJcTqO/ODOJ7xykHnx61e5OvyQD3eMdw8TRUae7wK7qyUWOkregWC0csLZSvnev1XufJIRMWIST/JtEvvX4Bu/buzuDIh5PDVSoAvoWY9pQ2zg4JlCWgzERlm0gS4Ykt3f0FJQM1Z9pu8b1IzU6CXfyHuHx4q1CGhEbaTkRJBIvyqV1AMkM4xak2O98EakkNI+q/WCPqtXASHEYLXnrjDKikHPiUFpzAme529eYXd3zc3rVzh++5x7773Fy9e+y8/0fV76xhmL9C5Nt+Z7/77nj/7hH/D6Gwe898PbvPvjM/av7fEXf/Uf4Zu3+OSdH3Hjb3c0O5Hz0xX3Dtc899xv8o0XAz957y841yPEnDhMTeLEgvf8FmhTh1lCs7eIwBQtiklhHNd0bcJCoM/mrSJqstMqD+QCSxHOy0jRghZPWCylVKnBhmwDg2bSOBICqGZMHYvqdnYZ+5VX6kkk2YJvfPu/5jf+/j9hb3ePvd0dQh754P3b5Kgs2g6LyuHhPQ4ObrC4ts/tt38E/P4j1/XnTDD5ZHmyz/2qjkdd42cb/6d7e3iy8bRvgo8f/yXM61/umIDTWboFmMgjbwUQaiC6FUOKe4TTb8z64BMAYhXNFwMug7MeEmwFoGyO62fdEl+pTuNMQmEVbJm+eyW+toB6//6lOpOxBrgFKSvW9z7k+3/yn/jpm3c4PTZKPyJDdsediGohWnZHWENtJm20SJVVM6z4hlrMq42sGOO6J0VYxAiixJiIIdEE8403CBqgi57dmrPRxojYgPYjQuvVBUXRrKTUock3uSSwosCYPXAsVQ7PqBrU6gCqBrIo17vOewB0iW4v0cY9Tu6f8cGP3mXsjU6APFLGc3Z2l7R7HeCZQbYesPVAUKE36HaUcbVi6GuGkgiUkS40hKIQjdAKmj0rSsywDCm4xJ/W4KGY0SShbRpW5yNCZKAQEVoaYiV9XJqhuByOChQjqGFHa8Yff8gnq57rv/cG4RsvU9qWQKAE/5zNEQR1zukGoDLmRrbzTJqqh4zNXDSZ574H/nXeBnw+CEgFmKZ5OAE1G6mJ7YzeCajcxLFT/4kJTFDbkEgTmFdh9xp8+fsTMOSLZQqEn2SFf/nHgxXAHvBtiMDPBHmnjOgHEisuh4Zb5OL87sPjkmRV/Wt6HlNG8CXQbPt7P2bf3X7ddf4fqLT6tO9RDe+lCtApY+1xv29WJSeErIGzQfjo3ikf3znh4jSjo3jCVgbJfoqpElFqJtz2bZiCfKnHLurVjUm8uXQkECcJnYBrVIdQ9aUbbpRXOIrvs7to2Em7LG2B9EYeC4VMzgNavEIplxGVjIrRjwND6SHV2DNUCqr4+otmLnGQ3b5mCyRilV0paBQogU5cgq+MYBqwIFgMXtXUGDokSm6JiyWLNLATV4TgoESZgDWBRz/dx4/5FsqGTLg0F0KVnKjrW0upNuKyrLLbD5/N2+9dBo0fmAfCo+fpDDDK5fM85uIqvjKPXzXf8vOyPbOd+EJsTz3eL8H22Pbrs+3ZnM+MR9qeqZZAzAmlZCOxrNF1z9nhEWdH99DxjMBAMJccnpoWb+yrbU1jm27AdPX1epScvcpZoiDJK4oFoIjLL5mvtYTxbGq4HQYWbWSZIl0DyEgpLl+Si1LM5ZKKqsvlqZDHzDhOvUHc+JgBWvuDONtOmZJGxOYeKIqBBRStwK2AZCSoJ4lIIYSCMaClR9cjZRjQ1KLNghwXlJAoEuYM++n6Z99ge548/AS/sj1f4pFm1qPMazwQahIb87ozbO7DNMVnZooFJwAiLtxsEUBnebxJv1Ot9rm1SgRMx5n8XjVPWKo+JwZ9P3B8dP7/s/dmz7IcR5rfzyMiM6vqLHfHvgPcQNLIGbWaM90tjY3GbMxkpgeZ/jz9AXrSo2SSSWrNSMPWcLqb7CY5ZJMEiB13v2c/VZkZi+vBI6vqXNxLAGyQDcAQZhc451RWVlZmhIf797l/TkoJh9JgfZe0lNpLxy67aRw+wGLRshp7To4Gfn60Io6Za7uBy5c72tauMJGJGQZV2tmM51/c5cknAjeevkQ52mceR8bzkYOjnntHpyzjXS4d3qNtXmO+d53v//l3+eEPf8vycMWDoxVX9ha0wXz1UkolW6pvsCaXWNuq7fk2EU9MZMd03GRDBK7eWHHjqSXNPFmFn4OYzWciKE4zilXdeFGkKfg+oBJxbYMLc1zYo7inEPXE8RTf7OIlkWlx8QSkodBV2xURNXDTyJJALK/y3OuZH5wlfvi//oZhpUZ01byhjZ1+yO+tJnN6njirAqkQtM0r8eu0z0mW0SSBp3tVbwrWV8naL1dhSqkxdZ1L9t5akadT1yvBkutqXd2k6bf143S9Zt6qJpdSpboyWtxayg90yj9dk0zrflNqMmnVwtVnWhDxRlaVUv1XNbkqR60ezEwTZ0qkLRNxN82MdRXNdHmfXn3g8zZycSiWzGXEiyWCas7WBzplFmGXlITj44F+ruztd+x2M7J0RFqaKoPdhhnOtSZLhmM1DKgXhI62FILLNCGRNNfPLIx9zxDPWfUnnJzZfh2cp+1mdN2ctp0joYVauTTF4CJWYVVKpuREzCNjNKLMi7UT8L6h8Y2tAefwoSGEhpISMff0fY8xqIrgCE3A+wZLkpY1geRDw1S9HMeBPkVUiqkjoMQ0cr46pXEd8yuXufr1HZ772gc89ZN9Tt4a0dsz/AszmkUipwVOThDpefBexxs/FVIueO8JnbN+Z13hxW849vYHm+LF9ucghZQ9ZweBkoX5Psz3M20LbSssGlPQSdV+F7H4axxrZaUHH2oaQk1WwUEbfH1mVhmoWcjJo7TEPteWD2ZLUrJ575yv3XkK4m+wWnlirr2ZnMdJg/MeJ8r5cGb1205wXph1nr39HWZz7NpXM7qcuXv4Ln2+iZNzXKPsX8t8789mPPjwl7z68uu8+J0X+du/+ve88eb7nJ+ecDx4Xnj5KXJpmM06gkscH5yz4zPf/NN/xbUrL/D3v/g/ORlugVqiRXYth0PCdQJ4cknWP1iEEgs488tSzKRuZv5QEVKxJDBxgVQgjdAUT0lKwuwKleyWpITG04SWOBayHwmhxplUaVbxNG1HXiU6t+Ab3/5v+N6/+W/Z2d1nPuuYOXjvt7/haHXC3v41XOhIJeP9Lk+9/ArLk/sM/fKx6/ozIpguuNrVQG6pgk7O7CcOhbfN5ePe8ylM6u8KxD6r8djP2HZWH/ouW07xJ+2p9GVxZr8844u+tX8+xwXyZwuE31Q0TT9XQZKPBI9bTZbtL/a3SWpjyo6vAa0wBTR27NpeySR4oNbLibqK3QZgcVPgpZMZqK9MS1W3ytnFYWY34/I5xx++yy9+9AvefuMuy1PQPhNKBi1IFqQkGq1Zwi6gCM4pHVZaHwK0inVyBSAjmi2jK4H1snK0wZxQ5wUoNN4x7zy5RASh8UrjrYw/NC0pR1JKII6Sa8xZInjHUAEOVxuZiiEaJplXIl5axuzQ4GkawQs0XhhiplFwZaQEky/odnYY4xkxF8tEyRCHzHJ1hgRP4wTGTIyF5Zhw6pgtIkcPYJUheMWVhDTVkRHPfLelLSMrTYyuAcBpJuGtCqtmwhQyJVkvJ1/7fQV1NCiNRbpVvqExIkcLDWVKWiOlhOYe9/4DTsdfsj8k/HdehqbFF0fyUqX1mBCRjaxMDa7QDQg2zWNl82+a/xaZ29wSKpC1BYa5mulW1nNX1hIThWluXlwfUxA8HW/XY89zCsM2QFp9n9Vy1Aw6apC4kQW0z/1i28SPgllrgYx1AL0N8H6S7P3t4zYVah/55I8Axw//vLZ9U+27Pv4aHnd929dxEejd/pxHgLxb/soEMG8f/7v8E3OjIUvLURQ+ODzl9t1Dlmc9rByMHo02Dx1+A4Bu9QpzMllqLBirwIARuZZ9nYvixLz4lhrkYcp4vZaqumT371rzDHf7zBgHyqrgSqFBiRS0mM55TiND6cmMFMkMGokayS7bZwtWvVSzyoxXzkyZuKUIoomC9bSzCkMDVUIudU+qoEhljLw2lFQoY0EyaGxYdTN07lk0q9p7r2JxTpHyqDv++DGRFdOzu/DMpv2w3n9XwZJJ5H8NiF3Y7y4CvA/PgQtzyZCbR7y2AUwuvpmPLJXpsx/+vC+Db/xZ257p9n2WtscyG/ij2p7Jh9q2PbL2+1xdh9vfa+182b5OpC0D5fycs4NDzo4PGIclIj2OyJT44dx0zum99RfZXOPk98EmO10zICYtpkFxoSYYCVZ9ObIGj0UKV2cd7xwfE7PAGCk7jfWPzNZfMpVCypkxFlKGUkzqJkUoxVXDZ0C+8UzrndmuqkrIiJimvxSt8kz1Gv1UWcH6u4kUvFOKJoqOCImiAyW1ll09S4jsYP6rM46ryNY9+fhKpq9sz+d5SI0PlDxJLGetVRYG+mrBwNXJF6331NW+hNPvJiC+uYGTVB5Se9boJIVmJIBWZQb1bq3OMIlgFi0cna44Xq1IJU95hCjULk72HFKB4BztTsPzLwROl4lxTGupScWziplln0lZWMZIylZo5UJC35yh7Sl37js+/KDn4M4ZOkbGqgA0DktyvMX+YkTE89SzLxN2ZgwPTjk6G1j1kXanW/soUtZColRHn6kFkAm6Tf2/qk3WjV0s071VEMlcv7bk6vVzZl0itNg7cyYlswNjLpTe41VqTFCJGI1IEAg7aCxoibSzF9B8izz8Gk17aPMi3i9IaUS8x8cl2u5RdMDLPZDraDhH8pMmz6Tf5LX/wnNwr/DzH75BrL6/rm3kOuJek0vK1hqp31/XttzhUJzWuKIe5+r3V2drzlHnxBTbq1rPKSfrPlYWm9S4xNn/nUx+ZL2/602x1OuebEypV20HCPb+ScSMaa+pz2ojZjvZvk1FxrRHTkmmUtdAKZUQctNfbE0IhTKdUKc5Ue+f1jjSYZLqa58YtozR71zZn/dhpLMRxqVk4xxESLEgpZDHQlrBMA50c6WZzdmfXyLQkFNhtTxlqWfMugXBzfHSEAiUrPTjYPUstY9t4z2NAy8tEuZoKTRuzlwncD4TxxW5jMTUszo+NuLcBRrfEtqG2WxB8HNw4Jz1NyO062eXSybFgRgHhmEwYsFZAlrwDaENOB9o3S5NU1DN5DLS90uGYWV9vyoR4oPgfIOKR8Rk9nzjwAeGOLJarRj6M4qOlAJ7z7/C+fEd3IPr7Lx4xvM/gPvXn8XfE9qX7pLcPqWM5HgEGf7qf/ecnRp5UyikCLM9z/Vn4KnnzmmDVU4DVhHtHWcnjtNjT9HCzmUl7GR8I7SNMPeN9TGrKEauya9x2RAjeF/wTTGyyNXuft6In6kJA6poVlJxpCTkWAgz+/4o5GwbQKElLK8wWxQcT5PKDt55nFiir3eeNgSatnB0PmIyxZCxZJrGgXMZZIDLLbPuKd599z/SHyUevLNg9vUOro489zLEW/c5O/6QG9f3efW7L/Ojv/8ZMWVOIgxJCGEPX85IveI75eDgDuOy5+knX2U+u8ybb/2Q23d/hcpI41vD14ohNlqifSfxRjDVZ1yyJXvveEfbDwxNS0k96pXYJ5Y60LWBsBIjqrPtObFEygjeN7YP50RRIWYh+Nr2ImfSONjvTvj6a3/BP/+3/z07bcuindGIcvbgNh/eepfu8lXm8zldO2NcrXjpxefxsWc8uMtr164/dl1/RgTTZkP7WKLlY8ej3v/we79AxtR2ENZe8gaW+cSneDg7+FGvffRDp799SdLJP7Px+8ydL9B8+5IMix11jTGKTLrJtWLDXVxHG0Kp/nUil0Sri28b6Loy6gKBpUw4gr0G64CACRTYzp6Xj04JoYIRPAa/2QTfnkjISw4/fJsf//ufcPOdJefnhdInXLLmkSVByObFmjPqSEnxat89BU8XrIeQ5oR3jlCbQzoR2tCAB3UexZFKpguexlspNzhyxo5TIBYaB4hVQol4IyCq62ybV2LIjiErsxBwijW3x4ARy9YXGqeERnCtlXgHgTgMrIaRtFqxeyasEhw9GIlNog2JcRVJSelEiTkTVWEslJzIQ2Q1JpZjYiaO23cSJ7FDnUdiJgSIGaIzOb/D454ZDV2bCc5k8MSBJCtrdwSkWIZvRGilMQk9imVNqRJLweOMU1TThncuQCm0YvrAY1b6fqSUQp8KJf1n9scR/73XkNmCoN76EUm2ebQ1J7X2T7KhW/NGt37V9ctKjSt0O4iZ4otpMvoaYJlwzkRWbabqZmKqmgzbxd4CFTHXCp2JAeXrqqX1iQTU1UazE6Gka+dNi3/EAvjijMeCthPJ8dC/TwIuXTzmIsi7ycznwnk/5iKrjdwG5T7d+Og1ffwopfY+eMitePiaVWs2VT21qmOZGj5c9nxw6x7HB6eMS9OmdqngsqKjN4lLVyv1ZKokKKhYfwMnujW3t0Fvu6fF0vkJWujE04rpT48ZvDqGUoP7LFyfXcX7HRIrQnB4LUjM5DEx5BV97FnFJVFHis8kMr32JG/ZhgXQIoh6vCjBybpI1u6JSVA6L2spFJ3WMpYAkOv+4qRmMatW2avWNP2XxYChFobkYF+YM+BCxH3CZ/aRsQVkPWruqqwPsustn/JzHt4fP+Xc/Oj8vzivvszjs7Y9OqF7W4TLP9b2bFcS/VPankorsCGfp3Nbli9Y5WPQEbc8Z3l4ysnBHfrlESWtsFJJ64PkJVc5JLfOZpfJf9wCOp1YBunUl2by62zfs6oNdYI2IA1GmmSzFxo31WJ7ezOa+9anzXlvlYySySUyRCWOiWFMxGjkUskwDqDZmlqjWBa7WCPx9ROoFyPTbl4bmjORMtW3sOwjv3YsFIWand84h3ih6AolAiNRM6VE06PxC4SGgskxl2rctHac0Ye8jgvPWeUr2/M5HblUr7PO6VwyrXdUrw5ZK4xPsni1CmVdqUHdf02KTKvdWecau7o2YdN/VKxCmQks10k6yddKHyNa7x2eMg6RUqwCUKtPoYLJ+DnLwO/PIs+/MmNnTxhG+O1bB8SVcbx3jwcOTpMB/Vo3Y1GefWYftHBpT7h6LfDO2yvu31pxcjCgJVM0IwilJK5fG7h2KaGiLNOC5WokJzjvRw6Pl+zMG7yxRmZTa+80FcEVI9OKFKZ+kWrlNTV2rPejFBOjrrdlPuvZv7rESaRpHHlMBj63njxCMys084YyZksmy45clNaZSoOTjjIq3heK6yjHf0uzeBoXnkL8s8RyDMOAuIzQE/0Rjb5I6J5AGQjSg2aSKKIZZEFpXuF7f9Fz87c3uf/hiqxpXZFkj10vxM4TZ6Ji6geT8oa9btS4jcmvrb+5WsGOyYEaeam4SX5Pq9UpG7Kz1PNqsYhoirytz5FRktbjdm3YjWRab43VBqjN9el61skeNdafepVtvE9Ypz7Ua9PJ3kldAOtvqGt/UKjkbLWhWmzfsR5VGyyDiVyH9f62PtsX3DaZYka2XmBiiR7WAymZzVAYU8E3gTBruLTYZ7fZQ9yM1s9omg5coGkX7LgZV7sdnDTcPz1lzCMFZTWsiHGgxEhOtpa6rgHf0IQF3WzXKotKpgszEsV64GDE4DCsiGPPqj/jfHWE5oBzjtAG5rMFbdMSQoeK9btx0tFg/Z0oSowDYxro4xJ6JThP08wITagJIoG2nRGaFi2ZlEf64Zy06sk5ghNCaGmajlB75jgcnkCrHeOgzHcuceOJVxjvZ/qzfc5PnmT38vssnjtnfGLO7pVzDu8rrrlNPM387D9NvksuAAAgAElEQVTMef/djv0bytB7VudKjoV27nj5m5HFLBJ06rxtlc9xaDi85xhjwc2U+aWBpiv4kGmDEXilyvC7tX/m6AfDVZqZs2QFKVVu16QIQzCyDqnPvmSyOoZlqrGkwzcWQJUkoJ67Hwh3DxKvf+1JLjdX8J2jbRqcV5rg6FrHzsLTtcLNnJk6qhf1VUYRi7m0UMhE71jFU269mRmOhNWLA8sltCixF3K5SynPsNgrdG0DeKJvOe0dd96BYey4eu0yp+cH3Lpzi/d++zbf3P8+e7tP8N1/9t/x58N/xf/34/+NW+ltXG+EWe8yOSYabQkLTywFxCMEXFGIkeQaI8pLIkeYeeGsJI7ykmvzPbx4Qq3Ida726s4DMXq8a5Dck7KRrAHFVwxwHHvaMOfa/CW++y//LXuLBaxOWTTCkCMf3PwtURKXmpau6Qi+Yb7XsXNpzun993jq0oLdnb3HruvPrIJpPb7ghu6PMh4HQn/a03xsgPkVMXJxfEUufWHGhUDPSp2pTteU2rQuia9VTFTAkQl8pLp0dRODLVDC/veR+HNNLk2/1zw62Q4IdIt0woD2DdBS5SPWJFV1AMUqpxyCSyccfvgeP/5/f8Z7bxywPC/oaFUzLo+QPD47Ws0EcZUMSUhxFAkQ2prB4oirnkZNBkCCQC0JFgdNCEw3JKrgi3Jjd0EpAymZY48mRCANhbYRculJRUgjiPdompz6jOZMTEqMShmTNSsUk5iAQs5CEY9zysw7gnjGlMgUhpxJMVP6zLgcWZ6P3DvoSX7BrhsZtUFyhCbQq6Jk5q3QrwY0wipb34c4Js6TI1IIOeKCZ6BhsGIrgiZr3Bms31JZV9t4XCi0yXqojCqWCRdglELMDcEpC68EMuIcTh2eQi616aJzBoAnK+/u1Ai4OCbcUtCTJcd//Uv2CjT//BtIN5/EMWwyTUAPNRAR1hm508usg/WHZH8qyzQRSlbDUNiEdJPyvbfgFeOvSpVTkO3PmqIkC1XWM30CIqX2atgcVonGKq8zNWKWel0GGUy9rDJT/7Qv6ni01BJrm/QwkfLRzXzbqGzJV0ygZH2Wsh1JTxZr660XpKcukOfT8RvZlckeTgCiSco96jmYTJtd9kYKSkTWGX7b98A+b2JM6rmr3VxXsW3fATfNdWo/IoXiOVkqv77zgFt37nF2siQNCtnh1VOKw5VSZTYNhHHOM1Wo2vUVa8LrjGQyWRUrKi26WR9VlhxXZek6Aj47QnG0KINma+khhWa1y6w8gfA+oXMEHKREGntitn+pDESXiGUklcjgEqneX7suD87kUHIpaJEq2W6Nm0VM7sU701lvfCDUnijOBSOtXSCpw+UK1jmH1p+lOFwRShJyCgzFweVTZkBwcT0XJqm8ihES1ICZR02BCfCyIqv6DItWEEjXBxm+UqzXX33+kzWawI2KGtY5ouuqmfVhD49pg66jTOTH5mPrZzmmHjdT9coEOk+/b4PPX3SAZRp/CNuz3js+I9sz7V+Ptz08Ng60/k0b27T2oz5T21MrKrQQSg+nRzy4dZuz43uM/RmUiJBxUoxjKdbY3fqAiAF8lUxa79mVTNusM6kStXU+O5g6KouoZeQGsYSfoGiAkozwKiosXGSndfSANAFcJpZMyomYCmMqxKSkVCuXslKiWKWU3SRr7F6z2q2/ktTLnZ5z9YGd4LwjeFebjAveO7w4fJX2xJmP4JyYv0mtQKk+t5cMObF0Qkjg/JxineGsqTqeLLY+fc36fxQ39JXt+fwOFSXWpKEggq95QrlAQCimV2vJWhV0xRvFaKp2NS7DCFEmcpaJ3NQtW1SjsLp3T/GaFltr9l6L785WA8enS1K2ShOP7am69mlZ9+O5e3fFS33m6pUdvtU0dK3yq18fcXya6xqxZ6W10gWUOw/OEHGcDY5VuoVrrqHFSCvD8Q36n7WeZ25A4yFJy9v3F+S0S9EjYkkcnZ7z0tU5V+aBuVc67xEtFISV95zEQjOO3GgcbdNSRDmJmeOo9MUqFwHrTVns+rwf2N07Qxg3tjNWfYGg5BG8F0YKzmerHBChFGeAYlHUDahklAUNe6TxDqr3aBffMv8lrUj5Fi50aLyN655lLD8jp2doFt+uvWsdgQdk/wRoBL3E7Mor/Jf/5nX+7//57+nPkvk7Kut17WUi4u0+T9Wh0zqixsTr6qe1rzetcSNoLiSPbsdLWs+5JnBq5ZgKUnvXmk3Y6DqYjbSKICMx66ZVtogakSpLJ2vlisnGSmX+Jkvj61kn0lCrnLlqrUyoQZRJiuvm+9c1YQuh1H3G1p6r6ihTjWpZHwhaK6Os0lTX9/dR5u6LNDRFkExJI04sPskpkUpEUVwAHxLtbM7u7j6tdBRRmhDwvsOHgHMtlxZ7vP7sK7x45WnatuP+yTG3D+/z3p2b3HrwgCWQxSHB41xhiJFhtULLCSKe4ALOO9p2wXy2Q9s2VdFF8a6ltDuoFLJmxhhJcWDMA+dHd6EUq6DsZrTtjK5d4IO1JLC+Dh2+aUw5JRvJFdOK5WBEovMQmgYfGpy0+NQgXsipY0wjaewZVivOTk/AZdquo20CwSnqhabr+MbXvosvDTk73DhjHK5Q0gHznWM07TL2C3xzB0/k3V+2/Ownc554VbgyKOfHDQe3CkcHPU+/BE880dPVdgeu2nKPcPwAjo8dBVjsQrsz0oSED8qsaQjerfcJrRXOThzLVSEXpWupyd5SEwaV4D2dt2Q8QcglkUohZ2V5uiTXvtbOC5oVxJP7wJ13oMuZm+9HLr0A7ponjyOuWdE2LZe6wJXdma3h2ivOYlOHSLAkQc21v26tqh0CTfHc+GZBGTi9d5k331jy+it7uBfPyPmYbqGUmHnx2Wd57tnnCaq07Q7FjZAHnrx2ja/tPcNOG5ip9S9XnXHj5Sf5H158jv/l3/1PvPP2T8ky0Ke8th2iUvdXmxOtc+ScSTSMan6gpELbdojrSUVJDmgc4zBUSUCrhh/zSE4jBEt01pzN7jnFuUCMGS1WDfbM17/FtWefRtLIbtviPBzcv8vB8V18N8d5I1MXznPjqRssVw/oGJnv7HHiHm99PnuC6VFjcsB+j0y3zfiim9Ct8ZA/+rFZiI8N1qa/bzag7RL+zQf98e7dJ83o/vyNL9H8+jIMlwHP1GuJKgtkQDcTylBNStkCQ6b/TVmd9b8V2KcCBRNYYZny1AB2OraCHkzyeBPI4JgyUNemTDau4ATWi7haYSXrf9ZrpxDGE+6/+xv+0//zcz5464x4BiEKPhecJqQUNFl2lCOb9nURc14QQuMIwUEZKVHwuYIz3iTiRAT1At6y/Btnm7k34SlOTnraRk2LtSQIjsYVpPWoZoJYrtgqS5WpKHZ/fQVIYoRo2ft0AS2ZnCItgVzUyqyzshwSIdXc1gAxjhQV0pA4PiwcLCNnI1zdU47OMqRM441EygitKG12rPpCjopkpXGOc4VVsUaaTj2jBnJ2qMs4Mf3qjCcVT84GRretNXtEvclVjYGsELpC8PbYXBFahdYpYZKdc56STTc7q6OUgFRnV7PNTV9MbnBcjcS7Be0GTv/m1+wnofuTr6Pztmbz+O06X9YEj01jUOuDUBB0Qr1QIzWnbN513LWRD5nAvglg2d5jLedP0HUvsOmzp/dsgp1Kla414y06cptAXCdRjwqqr4EZa9A5XYxUMO7LNC5k7H/ku310r9scsg2UbsDczf5YK3BgY60eCbLKGmCtLxqIuQ2oTeDudJyWR1yr/X0CzqZg3f759fEX9vAtTK7G8MbVTw1at8nR6bOdrGPmkuHOnVP+8we3uXfvlDgkNFvVj6vnK2NtQD0RpiK2HsSIcpWaGa0Zh1KTr7BZnBFXDOitQGhRTypKVGHmGtBAKNAAM4PGwMHQd8z1MifDOwx5RS4ZVwopDQy5Z8g9Kx0YSEQZyWRiBU6dCN6Z7IVzYKo0tk845/DOmtOiUoMsZ1J6GEntnK/XXwFtsUpTVCjZkgesA0YF5oqgA5TiGdSTLx8zD47WjwaU19m2zgYvdQk/ZilOeyFbc3tKnFgDgLoBX9cPfwJkmDKDnYmKTyCITHbo0e5+2Z5QwASPTCDu+ufp89a9E3T9EdvEu73ti+hvfrLxj7U96zVb//aPtT0bQPd32R4+pe2Rj7U903ebcok2hJg8ZHuwtSIFl3v6e+9z94Nb9Kf3IY9YT5iJlBDQjFaAXOqX8BVIX0siq1UVouCc7arWLLl+fp2bxUmVEy5IKoTW4Z3W/gAgjVUjAbgw0jXC6SoTSyJn219jzAxjIY6FcVDy6KosHmhis0Yn0qsCEtPzdq6SSFv+q91ftYxnJ5sejnb16+ovkWLnE2d9NR2omypJI/MCEj0njYMMzs03z5ya9LK2PcIkmfvQJFj701/Zns/XcM6ZdN30tUVJZOuVNS0XqM/B7r9mtf4xdR24Ssps5ZmwbuaurF+Q6Xi119VVABGTOxMKTk325/BkxbIfqvqA0ohbR1yKEYX2eITzZebnP73Pn/xZy43rDcFdZqfzvPnbQx4cDpSYidUMFTUpurFP4BxxPCfmAy5dm+NE1t8BL3St48aVhiafEcdTzvuXuX/k2LvydeTwA17da/j+tYbXuoGrXWJvPmO+8GhoGVLDB67l391e8uBkZDaPvLAjPH+t5fJMWGW4vSy8fVq4OxTOS02e0cLufMATydHimFIcOtr9YqlkVRgE7aGdOfPNJRlQqqbooAokIekK5SYiDsae5fBD2p1XCO3TlHhAxxwJz5PSfbw8AeNdICOLb+D8Hk7PwZ+iziHZU7jKC9/6Pq985ya/+ptbBtJO6wVYOyGVPhS0LmGTxJviF1fjnMkmCwWtPhZVNthsXAH1lfivfZvqXiNi1eC+zr11KlclmZiuQHUtr2g9kXjIV5qI6g1+IGASdbjaiwmmSqhqrOp3Nt+woBtZxFIVLKq6Q2AtPs564yx2jgvkJ9QeTlq/z0Wiyfy8mvyqBf3CKxWNlBxRjTVpAlJOFbcRQijs7tkc6c9O6ZsFu/stRTIxryiDY67C7sKh8Zhm9gK3b93m3v0PUck8d2nG1cWT3D895f7ZOTEpGYgl0Ql459FciGNkTD3nqxOOTw8QKYTQWm+ndsZ8vkfTLCil0PhEbiKFSoTlTMmZcRw4OT1C9QHee2btjK6Z4dsW5wOCw7uOtmkBJaXMkIysisMKyjnem+xecB7XeMQ7ggsE3zLknqzW82k1nFNKJDHSzHZppWF1dko/jngUT2RcXmZnd0luzjg/6+nm54wnnrd+2bB7PSGzjFs5+gG6XeFKF/jG9yKLYJjRqBFfCVRyw4N7jpQDLmTme5lubioywSvz4PF4kwmveEJBoQSW59ZSoWkLIrkSzuZLtcFbdXqdz+RIqsnAJyenTL3lRCDlSr02youv7nD7DSW2M2ZP3WBVzuicZ+4dl9qGy/OOvXnH0cmSWBJgibLG4piNTAVEU40fHXLe8uxTLf2lmxwcLPjZD8GVwNX9yJM6UnTJ/qVLPP3cDjuXPR9+8AYhRnbm36K7ss/1a7vIQcYfPaAPK067wOypJwkCJzcj3/jOK/zgL/41zeKI93/7Fp1mDkvmNC+RqDTeQSq4NDL3jj4b0WYElEWhhQZxgVKE837A+1Atp/kkLgjEiskls1VapeRzSXhvPcpQx264zqvf/wG+7aydhWSOhnM+/PAdVv2KndlV2mbG/mzG1d09tAy48yNms5YzFziJ42NX9R+MYPpERMP26w97hBdecxf/9ocCsP4g559C/+3fP9uxyYr4cjm8f7zxB5pPX43ff6iry1BrtoP9zZ6Vq4SN2Rk3BX9eaogyBY9aKzgMuFsDKuvAd3Ijy8aZlDXSgKEV29VOxdJM7LLMUddp/RkwKiJVM9pIpimHGFFCXHL/3V/zN3/597z/zhnn55E2O3zJNCWjOVkWfRmQ3OCo0gxZ8RpofKHF0ZBxuSAEa+4qivcNOGvq553D+YYmBGahgBS64HGhJfcDOReCK3SNOcjeOYJThvNIKUoThECGpEioTmwUxjiixRFUrd+SRubeo7llZCSEQKpERNGqbS4Or4LzAU2JcRg5GgtHy0yh4zyfcTaA14xfBMZBGUrCNUI/DAwJUhQ6JwwJhiphp0Mk+0DxwXojKTRqGuQqkaSJ4BqrwnJWeVaKIyabCz4XZGVkXOuEoLX/QBH6euc9GCiskVwciYKEYsAyCwqZpINVNCnEIVI009054fwnvyIHZff736LM53WmpRpQVAGbCvyYRE0Nw6Z98wKoUkEpNsCwaraeDjplLtdqtQnZx1B4R67E1laFHaV+phgZoFX6QutaEAv4EKGYzmItZbesdbe1vhClqAcprGUuvuAVTH/M8SiQ9fcd2/0g/JR+/PAxFSX7OD9hmxB77DHbr65BBSAlFFiNA7959x6/fPMepycrtJicg3PeMqeKZXqSgeLW8J8TqwjCWUbZ1LhM0VptIOsp5vC2TKaeTN74+Jihj9C5hlCroVrxeDVpT4oSCuz6S9yJypAigyZiTox5xTIvGUqkZ6QvkVFy3W+oe8GUSVsBEG/BmJdKIq17+5mutkxVuFr/ldpRQBzUtujOeZxWIqr+20b2SrEAQU/m6KqjXDml7JzRhRWezHSmYrfzdz26TzDqHNmeK4+anjL5+rA2CVQS76vxuR6fxvZcwPof9fo/ie2pFki3jk7W4DmPpxy+/zYH77xLHs5xpEoIC6glsqijdq7W9RdTJukkmTiHjW1TBS24siGZpl6GQPUzDTBiTPjWEn+Qus/WbF27fqWbNYyniTElSvYm8TUWhqGQRyUNShpKlYOByR81nH4r0UlMynfTP8qt+Rsn1gPTvAH7fFdF7Vz1fk2SyGRrnDMAdvKDZe1NW0btvJwTxsypL8Qi4Du7DwYNkahNpNc37/cZX9mef4ohRfHOkWsFgU7VStPaLlpJIGrqUlnLLK8lO6mxEPVvdT2tq8umHjR1SpcalLlisHqZZMGMjmAclQeHZ8SUzM+XqvSAr/JhUy+jaa91HB2O/PhHd/jWty9x7dqCeC2g44KXrjcE4Pg0c+d45GiZWCUDPT3g28D1p+a8+K1d5ju7PHgr0B6fkXPk7tlI28Hp/Xv86K/fob/yLehX/Kvnr/DM7DJPdbDXeeZNomuUlhVNTkgHuV0wLluenisvvrZPc3ZCnCllFmhnI7sOnrnc8T12uXU+8LP7p7x9uCLpklbOkajkJZSu2oMsaNFNPxOs6iUPIGRcY8REUsArqg0qGedn5HGk6a5T/AzPFdLqHiWdU/IJdGdIu6AlUvJP8e1ziATS8i20fQLfPYe4AdU56jrzo5rn+M6//Abv/eoOp8d54lrMLFfzPPl12/lvIhuiRetzpJJMk9U3CzL5WWUTV9TzVCtdAeyabKpqCXW1px44ioh1PZ4a4NaYaWphKvWksuZvpiub9BmmC6/2u7haPFljr4lQd5XmWcuKKxKKbTHWgbRSRxv6alLYmJIU1qQ2VPKVdaXelNRltljW3+XLYO1EClSZWkRqH8C0Tp6adQEfIEdLNJ4v9gkS0Bxhpuwv5rx06SpPX9/n6SeexCkcHt3h4OQWB0f3OTg55HTVoyHg/Yym26WEhq5b0ITWkkmTElymZUHWTC4Z1UKKRjoth3OOTw9oQovgCE3DrJvR+Iau3Vn7AnGWKBRyjmhJjLHn5PwETgs+CKGZ0XZz2qbDOTG5O2nQtqWoyfjH2BPjQJ8GcrGEuCYEuq4jEMiarFfU4Fn1p/RDZO/SVRbzK0Q34uUFHtx/i5J70tCiOw7HSBzuEpzw0x8Jh2cNi6uJIoVhhc1bn/n6d4VLlwYaEcgJVyt7nPecn8DhgUdFcV6Y7VkijXPJ+oGHwCR4Kc7aMOCE/jzTL80/ms1qVbUzvwOXaYJYQiEAmVQyccz0y5FhFSuqBxRHirYOYu+4996Ks2Ww+6dCKUrbNOzMO/Z35+zv7LA32+X9D0/IecLkCkqu+0/FqnKuOb2JRRbyXuSYzM5TjqePdrn3wZLz1YqUAlmVdgbf+68Dz758nbx6ibf/4X28eN78+S948OEzXF8IoT9kb3fB+785Iv4iMm8cTz/7Gh8sj7ny5IIXnn8W39zh9H2hOx1IZ4Wc4jo5yCVl3nWIZvoipqKTEjFbe4fO2e+jgJ/CyqgUot3L4kljQiTSSCDnkSLW1yxIoQkNnZ/zwouvc/X559EYaYMjl5HD4zssj+5wY7ZHmO2xv9hlsbNjiejLQ3bbjj409Ag3b7772HX9hyGYRNabxNYfH3UgHxsFPzITTh9xuk/izD7msx7+80OZ4BcOWAcdn/zjJ/Aa2Zzr0/BAn4Sse3Tl0sPj48LEr8ZX4/Mx/NTovQblWgPsDRhiUkpTg2fYOLJTfuM6+1YmsE8uznyZAqPao2l6UazE3t5XNoF29fbW/BOWoTE1n5/8U2GqWDJ9aKcK8Yyj997gR//XT7n33hl6PtClQsgCKUEq+CxkSeQCpIbdvUAaMz4Va94qJk+WxNG6GS2OLmTT7we8s3Lupg0EMcmIiGMRAo0XiivoLFivE1Ua2Tj6OSfIhZIdxTmCjEzgzZgLqRhImpLSh4BvPaFzlEZgGXFLJXQeJ1bB1LTtWhvdiWUOj1kZNVNST98nog/kIdOXQOeFs742XqRQirDSwnIE51rGNDBkIWvAd5mUCkTF555FY1UNKi1FPZqgnTt88ATvyQpZoPFCEAdEXACKkKNj9KCNI7vJ9Dt8U7M/1AApcAQniLNy44mSDGKAtZZMVvAuMC4L3Dkh/e2v8c4z+2ffJM46XAlQK4JKDaqUgjjHpGW/baOnjJ110FOvY3p9kpeY5uy0NQmYlCOV4NyUPtV3uvqK1qolI0Q389f+5rBMZsu+W9fyTSzXZhtx1ojV4SyYki92D6aHM/i35aK2wdiNnNXv9zkfB+5eeL0Gzx/3WdO1llIefW7dvu4tgHnrM7f/r9v/3boPbPkaCpA3MiWqibNVz9//5kPeeveQYZmsYqlmjGnKSPEmiVcKZK1BjN9ULdXGztYHzvqFrQ2vVlzYbdn5ukekmm0gLtIKpHgOXhA3wyvMncchxJIICntun0EbIplBV0jOnMczel0xaGQgMrpMrmiuq/Z+HflPxJB4vKtEUnEIgeAbRFvQgFXjNkBA1VFKzeMtHmveawGBdx5fz2VFWxYAFRHrO0ChaMFFTyn7lNgSd8+Yt6c0blwDMmXaEx/jCj6qWqW+UN9n6/3RMmybY4WL82maEZ92SUg93zTH1j1a1ubto+vud/38RR1/CNvzyMjrU9ue7RM9+j7//rbnos15tO2Z/i4P2R5d2x7bmyLD6pi7b/yGs9sfQl5axVLd20suuGojSrHqnMr/2Pm9rWn7zCoNKxMVMyGSW2BkvSZVRZLZoywCQTgfE60z/X9F8cHOW3KhiNLNPRFPVGGIhVwKQ58YBpO+ytFaJWnestGysXcyNQF3UgEbI4u8QPDW+9LXPd6Lw4vUagGzt04q7S0mVbN9rgnsnKbj5DFIiYgU9jKs1NGLI80AX8ltse9fJgD34sS5+Hy/sj2fq5FRJJkU2Nr3FEsU8zrZo4w6z1RZotUPtGdhsZL1TwGwhBDvpMJ5U2xW1nO6qp2v5RR1i2BKqhwvlxyfryjZyKUOMek1NrEedZ65WslXinJ0MPLjv33A5UvnXLvh2dsV2lnL5UbJVzy3zzz3TjPHfWHI4BvHjWcu8fqfPccL336Obu55+8eJ8islLRP+7iknZyM//dF7vP3bv+JP/2Sf549+wf7RT2kkMctCm0aaDhrnaVOLl0TbRC6FFTe6Bd8ee2IcCbPMvHMsQkPQFtThJdK2jpd2dnn+xjV+c+eA//DeAdTEFs2F2GPxp689pEbFt46cqiXMdoedCppBgoUuMvNIjhQdjJAbb+K6liQBFwJtdw1RYVjdpIlz+ibQdPsw3qbxT5LTiDSRsnyTZvEaofFkPUPKHCVw/dlXee5r/8AbP7lFzvZkvFClsy/G3RZbVFtS40upJXO6ZS3suSrINn1SlUG2l5ooVFtm794kk+qWDbIOu4qviXNra1FYz/VJPmsiR3X6uSYYuGmPkWkmb8igyvUwXVyhSphOe1tdG9P92Ejb1QTOdTSWLn63eu9sV6rfUev+VFMHtztYfVFH0REkWXKKmg/hBKjJErNFC4AEYXfnEvN2TsnJZOJC4LnLV3jy2hV29q+x6K5w8+YtDpcH0BZ291p29p/mbFROVgM5Jpb9koODUwZNBB9omxltM6ebLZh1cxbdHPHWyyylRCm7tWq5VhwN54yxZ9WfQ8mExtO1C5puRtN2dGGOY88Ip9STciTnSE49Q+pZnZyhxRJw27al6zqrIHGBgEeaWlXlG/rR1BSG5RkeoQme0FovyuJAnGMxu8JLz76GFmGx2Ie2IfAybfsBSqGUEd+cI37kH/664yc/bNh9VvCdUkYhDkIclJ1Lma+9PjJrhFBgTJikWjEf4vCBZ+iNCHKN0MwKzluFtvcO74VSTElGdMIsYHnuidlkM0MoOGdSbYhhNzNf7boUClbBPfSZ1TJTUsX/xBKAU1SkFJZ3PQ9uZ1564WlC6uHwgP39gO7ssL8Le7s7LHYXNF3Hg5PDqVCQgkmx56xoyWhJlKhodowPDuniMbd9z5AdQQZuvCzst08ym48mna49I2ck/x6ZzNWnXmK2d5nL+y/x5LNn/MN/fI+D1ZwrewtuH6349YeHvP76a9C2xHZOTj0yNMzaG8z2GnilxZ0U+vczD45NOWfII7MAUZ1JEMcRBwzREoFDgZmHs9UIqnRdIBBMvjGbCpAoSLbkamks8SuVDOJIseAbx277BN/60z+ndSApMZbCkHru3fqAK13H3vwSurjM3v4+zU6HH1Z0OaKzBYco9+9+yPH5/ceu6380wXRRpk1+R8TzaYXega4AACAASURBVP++/oDfcc7fhzCZNqgNMPfJ3v8oB/LCTvcpruHTjY+X0Hv4s6ffH3fN21DkpxsfR3Z9GRztr8Y//VCXKEbPYOBcdajEmmultilingual_clipzeZEJkfN114zVd5MXNXyLhV0qyeenMMpUJ+cGGqm/OTU1QzOUiX6JvDU6QSC1EypWk5vf9uAIoKv1VPg8xn3P3iH//SXP+HDdx6QzsCnTBMjLpsaYMkWZaXiyNrgxJFjj0QL+rUIhQbvEteu7uLGyLgqqAQ6Z5t7cQ7fOkIX8KJ0mCxUrkBJKEqQggsmtzcRYZYgY05DrqROkRZIpFwQ11BUWS084TnPWdexd2NOPwgiI+1poLx5VPsW1Q0sRWJJtPPGnF+XKD6jSVmdR/rcktSDJkQzIpkSPSUkZgI5Q58LKTvUj6ZDq4KjJSsQrCmmlERxDbhCCAUvEeegawTXZNp52IBBqmgjxOLIOHJt5+WdVEfHAJgmCNIYUBGcNbVEMDk9B1k8pFr+XcBJIDkDX3LK5BZ0NSI3Ewc/+gcuty07332N2DRMAYMTqs63zaV1oFKJp21tK6nyCXLBZrvK81SwaQK8ddtGb0I2WxcTaFMznNfdlwUVk5vZXiaTUzdJUor6esZpTy7rYxFv+9BUTvglGY8CeB8Fnj7aRXn08Y8CjB91zAbg3bJXfPz9fRikvnitBph+5HX5KFi3+fki0L0B/qo0IlLXgjVLPTg54u/euMMHN0+IvYFJToBMDToETRnNDi/BSFzcBsgt9ZrKppqANcgrqEVVNSB3TFWiZQrSnSKtMvpMPwyEBDu9vdu7QPBiTXcVZtLRi+O0H+nHJUGFZekZZGTURJJk+44qUiUF1rJ34vEhWKWkVBJJA0LA0eJlhvMtpQS0WFWkVVPZ8SXbXubEQSWpgjTVMgfsFhTWOb3iULFqyayKDgE9sepIXXi67piZH9ZW4pOswokMuPjcH//uh6XMtmU/pyreyb3+JN7lR9fRxr9cA71br03HT1Uj03GP+vmLPj4L27MhJKZjfz/bs3mYn9b2PHxNv6/t2T7/tu2xayulgGbOT+5x8MabDAe3ofQIVcqoVN9OClomCVzbW2Wy09PvMu3LldyWzbVNBI1MMl31eqqrCUlQGop3FBetebnEtcyR8yY9XJzSBM9YhOWYWQUD1mMll1JSStqAnJOc6AQtOmd+YfCuVinZtQUxWeTGW0JMKAWnJjvjsAQbJ4KU+j0nL3vKpGYi0Fn3T1Cl9rOcANdMQ49J6AraL0iNIK31aJjs8UQpbOLNi+Mr2/P5GiXXCpTgwAm5ZHzd37OWmtC3Bc5T14tuaD0pgNvyF4Tam8uA8FRyXWcbQH4iIFTV9nxnAH0phftHJ4wx0gCtKEG0zjFTs1hD8ILZqunvqqz6TL864/bNjPeZJy4HuqcX7O0EbjQe1wjzZaFPCo1w5ZJy9Yrn+acv0XQwvrzDzTduc7JccvvmIWenIy/td/yL/BYv/uJ/pNGMlExgpOkCPoPLnpKhlEyY2zrTUdGyRPol+XSEpsp4h0y7KISmQ4LDcWIEQ0h0cg7SU7d7pBHIQokWhzQLR47ZbEKwyolSlDIUQrKkS8m1QmwcrOIgZdxOwCUPweGbHXSSPJeGnAtlOCR0pnzgZi8R8yFNeIKcFE+G4QHqHQ0DyIqCx4WGV7/zIr/96U2rrtKaeKm2ZiYaZlpDpcYhRurbHHBqMbupjkpVUFCbS1tUjGOSRNzaG+vrupkGW2OyRq76npOF0bWdmGIai8f0ovyrbPu+60+qNtGt7f/0BlPKmGyI/dnrFuo2ydoxUa1UMtaSMVWnGLAuEJ2udXNNdu+ErK7unRsC74s6jJymbtWFlDNTdlTTOdo5JE14H7iyu4+mRLOzB75jd36Jy5eucvX6C9xYPI1oQ2gCV69e42zlmc92UCfMY+EJ52m95+y85/DsjMPzc05X5yxXPSfnR6STu0jJOB+sD9N8j53ZnPlij9DMAEfKha5dkEsmJiPGhEyMI/3poREATcOsmxPCjOCNyKWZkfOMkCNaIjH1DOOK07Njjo8y6pVu1jFv5zTtHPEN4hpar7jsybm1hnilMKx6xrQip4HilNdeep3dZg8kM8QVgcS16zdo5iNjjMR8gDAyHHr+7i87dq4E5vsDuMLYdwznnnFUXv22sLejhGL0sAt17YijjMrRoUepsnYddJ31A3OidF7ovPkbyKaaVQTOT0zyMQS1PrkIIgnnIDjPzLu1j6RFyDkzDJFVn6o0ZCWNVSzhQaBPA/P9hpPje8iq4f4vfs7r332VvedfpszeY6frCGnG4UHPg+MTex92C7VgMuoJgksM2hNT4N5vfsm8Ve6e9aSuZZ4b9vcd53dbHtw5Z7XK5DKwGgvnqzPOz+5y5coNfNtCOODZ7xRe+vp3eP/vzrn73n0knpI1s3PtKb7+L34AoUOvXeWVrz3LvbeOccd7uGakuVx4dhZoPggcHBRGcazygPjq/RXrzzW1J3Al0jjHcjUwb2HRNhQHZ2RKsf0gOF+rO83vbRpPGS1pKBWl0zkvfe0H3HjhFTQNyMyTtHBw/w75/IS93V38Yo+wd4l20dGg6PKM5ByrovT9CcPdO7T6+ITiz7CCyW35hhWA+kjkI7/z14uvyePJpTXQ8vuMh873KJH6hz9TH/5h8/kfIVy2f54A7Ic+/4/niH52287Dgd8X3Zn+anzOh0ygY+3aXsvDZcsuVN90Az7I1LdpWneTxN02QjKBJ9XZm94s5hzK5Nxur511YFsPlClknmycrC9knUFOBimElDn58E3+5v/4G+789hA5z7RDQVOm5EIujpLAqznAIXgaUWvkumrwqojPONfgcAQSy+Mli6ahbTwNQucdXRPQNhC6gGucwSr1HrXFMlAoCcUTnMnC5f+fvTd9tiQ5rvx+7hGZee99S71aG72g0QABguBwMZAa2lBDaUxmMplpzKS/VJ81JtmI1HAozYgckAABgtgavdde9eotd8uMCNcHj8x7q7qq2Q2gm2hMh1nVe+8uuUZ6uJ/jflycMAiqKELTRbINntVaIDUQhkJfMmcHxsm34MLmHLz6Ko/efcBLmgkCfdODRVQyTQ0S1psNKSXUILYFjQkxxUpPFihitDKQZKCxjtAIVnpIA0mVoQh9MTKFlCO5tFAKYj1SoDEjaCKEhiFkmqBoVFS9DH1rEIrRIrSty2mUvlBEGFQoSYhFiGpoKKhmuiA0QFSDVqEJ6GrwxoiIO74IEiPlQLC1oTmiMqAxEQalpELeFgjQrwbCvTMe/afv0x4saL7+GkMI09o2Bhs70EzrW2PwI7sAh91asg/GmVbB6greVaERniZ/8m6+TtnZ8lSvJB3jmUmWi0nOwX8bj3d/6BREjQ4lZHadyH+zxosA2Y/ji7yIZNp/76NA5H9qPG89ft42XrRdv/cO+Kk+3VR5HwDeyeG4AKPbvzJlIJ8+Oefv3rzH2+8/Jm+lkksOqpLNFRxzpgxuRCV4ZpxHljLZ5H3dfEr9fs2uL+ZAktTjLCIOfiFIFlI0coRBEhsrXJA5zJlBDoghEGgchhoKTWnYYDx8dM768oLYB1alZyUDqWSS5qkZvJT6rArEJjKvMhdBXLSnWCBIRK1FaVGZE9STBax4NUKW2hhaFAkR1YiGWq1kVkHXCLkQWv9uGRWixWVRZRTCKwZDxM6978U2FBp1kn1cGz/VMYGNT3vG47T5ZJt6ukog5+z2bc/VH/3OcX6+COj9TRy/uO3xNUR/CduzS6F5/r4+2vbs7+v5RzjKA4nYC2zP+Gd5xvb4MRUDoXDx5DEPf/om20e3UbY1a3w87lyBOl8fVcb6ctlRIpNPOU44/+7YsH3MNtdx//XbY6grFCwHyEpOgvaQY2I7ZOKBy2ZacD8zSyaGQp8KZ+drlmpEhiqLBznVioQ9cNLLEpxUatuGpomE4BLRalYJJyeYWvUqJtXa7cTSFOs6oaS1Wkmnc7SiiBhmmajRE6hGkmmE7tUqvZcJbEEuwIRV32BqaKzVBJNM7/j9fZJpglufPyE+zvjC9nwqQ9TX2tElrV4pBRj6nqABjYrLhbtU22hbSgW+Kf6MePKVV42M4pAqgpUKpmNg3nPJsKmXmuGSecv1lvOzFU3JhEqeikmVyC0grk6AFaR4YglQ91XJnWKkPLBaJy4vt9y/v6GNQhatnrJQpNBq4PJ8TRLjfNNjwfjZ39zhznces1lu2Gx7/psbC/7oZsuVOGCD9/ZpJLtqQ0qkKFWRopC0EA2QgLQBkpPGadsjFsht8SrFmUsCx+aYoBFTY50u+dG99zzxTgUsI6qk2oMNA/pMiAJtoZREaCIlZSRozdT3JzZnQ2cRy5C3GYmF3IJsOlJ/hkghr7+HNjPQjrY5wsolw/IRpT8nnHyblAotS2T2EsnWxLKGsEAoqCTMDrjx6lXmBw2XQ/ZKD3NyXqqVHYfVJNCdILKfThnDG2GnWGq4rTaXHh5JIOo8ovpRo2CjSznWnrFVfaHURFHNtUpp/NqEw/m6ILarLJI982RWz0VqIuaELbjKxrNaTWJU2cgxAaKSSOLP0WicRmE7d3PFY2NsRxZNz+C4+Lkx8jgMzDKjfVUFyuc75ppgFIxSUu1h7UkDcVYo0rttLj3rzSWz4xOaduZraVpx58E7HHRzroZb/O13v8u7996inQuLwwXHJ8dcvXrCrDvgqF1Q0paLyxWbIbEZMmfLJXcfPeTh0nsXDaknl8TQJ87PT3n86LZL1LUdi+6QxeKIrjugjV71pBopVsjNQC7Z43Er5JJYrZ5QrGDFJe5i09DEDgvBY/fQEZs5lgf6tKZPa5brCyiKBmUxmzPrOqIIoa3J1rlg/cBQlMEyx7MTFt0RoPSbns12Sc4r2ltbmrAib1fkC4haePvvG8KhsHh5Qzc3VktheSasLpWhZL76RqIVAzVyUTQGJPvc22yE5aXL25lAO98SYyKKEUXoQkvDDKm0QkYwelSVy8tMKoHQQIzqcV/0RO6g0MQw4QtSCn1fWPcJYkfQtStdmCBt5srNwpWjwutfjeSzjtO3GjaXHeeXmcd3H5OHQ8Kt67zXPwZdc3F5l8t+w6ghbmbkpDx+P7L96YZv/PE1aDdcPFjy4K0zbv72FYbzwDBkhmTcf2fgx999jy/duMLZ40h4/5KHdyOnjw+4cpzp+4zphqHcJpZHLA4L//Lf/rcM6zl/8e/+N5qHjynpMUNeUWTBky0ki9y88jrv3z1G0jmiDXE28PJvJY5vznj43oKzJyui+nWiz94qhEDBk7eb2KEaGZLRANeawHLbexVpjdND8OT1ko2uaUhph+UcH77Mb//Zv8GCEGOHNtAvzzm9/zaLJhJmR8jiKofHR4QoLFdntF1kpYFtXjHceYuTfulVUS8YvwKCSXb/zPb+/gTjRQ7asxHJJwRdnrPBcYeMgddH7v9jjBeSS7/k+Dgkzicnen6FDv4X44vxKQ6ZQPcdNO68cpl+ejXTGPgrED2LUUYiaqotqlVPddvPENRjcKnjZ8fgcuqzMQ7Xwi1WAc0KiiDjtke2yz3kZhBW9/+Rv/6//o7bb58xrLbYNqGDA63RBCkJxLznBh2z2DHvBjbna9SEEDOqASHTNIVZJ7ShQRHvW6RVmzUqXafMG2gaGFTI6qBGGBJNFlIPpRJAFjxQDuqggppLUpRsaFTCQsgrY7PI3G02/Hy74hvpFeT1W/zBN6/y0/4RD352wWu3jrH5AevZgG4gxw1YIDZKzoW+X7E1wzZrUp5hIaMzo+lzBT0SBKVpYdhmgimb5IGEovQlkEqDSkELlAGCecaMACUWLHdEDaSc0KAkA5NAp0oUoGQHgDEGNXI0ghizgjuzAgsROvMWW60wla+HeSCXTC5GLkKopFxzFLjYbllSaIMwt1AlagrJ3N8vBmm9pbn7hPt/+R1eOT4gvHx9CoAn4GiaN7uMzEm/XPbm5FO2frTf+9VN+0OnXA+w3XMgo2a+f9/21uxpqleJmklea8zUm8jaMZfZt+Nx0D449/kGXJ7NXN4fn4T8edYTckKEvVfr3R4J7+l3+dB29iWxJsJ8jITHDP+n5seHQWQ/t/LU5ybgekydxEGjUdrAJ6HV3dRaGvGeXN73yCYphLPVku/9/A5vf/CYfpsgB9QCI1mah4JlsKyUZFCMokITHAwV3fVTsJqeXoQaiLiMHBV0LWaMSj3iiDPgVGiu83djhbUY3VxYNRvO+y2nacV1OWAmSpZEItPnwKY3LjeXtKmlLwO9JJK4HB1VYz80gWbWMZvPmc8XxNiiRII2mAWKBRppiNKhRKK0iITa2FfIGT+H0IB6LyrVSAiRgBDH50tqdn8poOqkHH4dKBUlEe+tZ9kz+mxZCE1mGTILuSCQdvNG9kDq/ZkxNtmYAPXx+d6bQxNYbHsb2KtOmOyT7cCv0XDtVQHsso0/wjrskSjeHsdr0kawZjyX0VaJ7UDh6ZQ+52Dvp2F7ZPR/fkHbU34p28Oe7bGnbv7O9kBN437G9vARtscrftQMs4HV8pyHP3uT/tFtpPQOHctYIWNYSXWdNGTshVEEYkCCS8TuH5tRkCJIoErIVSCzAn9mY4a+H9PY3qN2eaf0hvVCaFpSH8jLRH+ZaQ8FGiFlgQTZhD4Z6/XATDNpKOTBJa5KlRkT8SqFNjS0Ted9GKJL3sUw9oosxKA00fX4Y/SqpqCjYcz+edFJFi+oEkNNEgjjpHECoFSfcDqx2oAbG6kiQ0l0bMm2JNOw3RwiMyM0nvBSTGoF5t58mC5wmWzEOFHkKevwhe35rEcuTtqoKv22R9RlHV0yryZC49Jnap78JaKVzKj+7Fi9oQFRT1EaSnKCYLQfMi5I5svZ3vxwkB0oxpPzJf22p2EMq3yOFBtnitXbvauaKQLB6pyrc9WK1CSVwpBgmzJDHqjqvC7lZsAj4fb7Z3znz9/y+VQ8ieRGK/zL60f8zpXAQTBSgpZC0OyykgISCqKRfpPoRLGZUtQoMZFLIdmMooEENMF830UYBohDwaJhxydkWXB3ecnd1cZdbq1EXgJt/R7k3okIDcYse0KkZK84CFFdrjsb0mfagwBpQNpA3gb680RcNPRyDrhcFUGRnLAhYc0ZcRYJ3TG5XyL2fQ5uvsx2/UNMIqG5gqUM0qDlFJoOIbE4mnF0bcbl2UVNUsPlrvYCGRUhkyfaycxq5WWdf2aEmuBm1R5M/ohlTwCtMvk7n6bGgRgUpWhxwh2okRRiVqvo8rTNMlqDmqxklZySkWAaK5HqvMvVvmJW4/+nqSUznNCUigmYVHU/m/xaXzO8Kt2/41tQ8GQ/2yU6ZLOdTZosrh+5TbEYnpRFrVT7PI8RazHIaYDar1hV6GYyxRCQWW1PuaFfhlwriA4PiF3D9ZPrnJ1fcP/8PqWD09U59x/dZ3jLlRVOrlzh1Ze+xJeu3+LalevcvHFEG1uGlLlYLnlwdsYH9+9x//yC1dDTp0QakvsRtqUfEpttz+mTBwzpPaDQdQsODq8wn12hazradoavyJDzQMoDqSSGYUvfr1muzzHx6pKm7QjNjKadIcxobUEqA3kYSKWQ+hXb9ZLl+Smo0C4aumZGUGWwnhIKTXPAqy9/g7Y5Zr64wrDdkMqGbSpcLDfM1oLqHU7al7j99gPeub3l5PUN7WGmDMrqPLI6D6yXmZe/YRwdVYlGU4JmIuYKDNpweQbDoBXzMpqFILHUKiTxJF8CRq7LekBUYYDNxud/0wqiGQ02JfRMBBNehZ6T0A+ZdT/QLa5COAWDZpG58Urm5OrAlc4TaubXMr/7jRMOD38Xbb7OO2/9lA0PsLPeFS00cfv8kScg1GdPCqQcuP3DTLxc8vWvHtIvLvn7/3CHb9z8Busw0A/e6y7NA+/dWbHqlVUv3LvTcXC1YzFXikXWm8KQB9p2Rp/OQQrr7R04Gbhy4yVmN084vrHi8YMzzk8fcnjjKperDRernutHL9O0N5H+HloUowHNHF0zDq8sOL+74MnDC/phYN4EVlmYNR2bITmmpjDrWjabxGXKHHURLl3TI1smY2grlE2mJCG0QtdGhsFYtNf5/W//j1y9foOSe2JQjMzDex+w6nuODk+gO2Z29YRuEdmm3ntqqZHKwPru2zTr+yS8f/GLxq+ogmkXyvzyJNBnMD4pcSUf+mXP+H+E07q3SHzS8SFt6ec4r5/Uof1FK48+6hg+y218Mf4rGlqliBh9vDEbsoIPUrPYp0zS6sRWAQXvbWMgYVrIZKeVVncyls9LjXlGGSamrKuJoprAGc+iHwkwG4kBqc5sdXyDbUmn7/Ff/vxveffNU7arAbaJJnmJs+WCZq0OotUs3oFhXbC1oMVQKQQ1ghkWC23bMGtbxksRdUYTlCYKsWECF8QKM+8M6v2cYiCWTNsYfRrIuSGFQNcWojg5YCaErsHWiWHINLOG7fGCzWtbLh6e0jVzvv848iffvELQRHu04M3HT/hP//iIywvh37wW+dKg5FoVFDTTtQ7CbJPr3G7TQOk88LBoSNrgSTyZvO2hd9mqTRIPeqKSimLWMwwbyhAIRCQMDAiUA5oihDiAZe9DIDW7tw00jTdkTIODTQG/bzODoIUgfv8CxYNY9X1mrZJVKEUj1mTyUGpmiLDJieV7PUWUJgQaSUgpxID3X7HEIMKyBFZJ0PMt6Z0H3Pur7/Ly//xnbI8XhFxJJFweYiScHMwYwcCKsovs4TCjHa2zWMQdWjE85VnAtOZam2s0m5dVj0HUs3PfpWVscuJrWL4jodDd7zXIG6uqPMOwAnIj2fQptXb8rMaLMvJfDP6+YI33G/SU+yAj4Lf3vReBxh+uVKh3bA+YHaUPR3JoHz4et7EPHDvA82wlGmClOvjjrva3VPdd55xUbZMiBan9ky7XS37wzn3evP2YzWZwu2aQc8GyYVmwwYFcGYMPEcYszDrjKGWUYFQURUKAEl1TuoCITln3jg/4d0oqhBhJlJpxh0toRnWyvYFVyDzpL3h79Yhmm2iKcNYueZ2vULZrzvstbTaSZEIbXTaqibRt6zrpBy2hkkdmAYr/M20I0qBFEXPbEaNXNnnVaUNsGrKaAwHqnVFKqWtcNkIMhBAIqhQZFb1kqqY1g1YaCIUhJxAhV6AtF8XWLVHMM6APC4t4SbC8w/Ke8VKne10qWDECFiN4V4G7Ms6dsUdbBdilJihMxb4j0VBG21GrKe3Z/T7/adlflevErceloHVbY5ncHrC4P8d/E3zLT8P21F//GWwPz7E9z9nfnu3ZqcWOR/4i22NILogl+vUZD996h+2DDyBvYVyLrFR54FJleH33WoufvKeGTXO+dmP3SknxfgFhJC8mKbmxarcC6ZUQE9VauOvra1C8n1wWt1+bQLkcWD/YksIAagzbwGvzQO4LthrIwQnjoBFEiCESYqRpI2HW0hGcHMITbJRCFPHekJVQCyI0IdTG4RACxBCqPZbJw3VSwIG3GB0I0qCT8qBgO8lcc3Lb8MoqECe/zf27tqyqDyFs+kMk+rVzHDjsdRUZ58loe+q8HBO0vrA9/6zDb0khD4lieYquwKsyXMrVzzWLQTaCOsk0erB1tZoqM/x1daJh7M1R/c2nKhXrGPt4bVPh7HxFHG2DH0X9zF5SlQhmnpWtRN+/ejKZikD2eeAJa+OxSf3nPvPU/wmD5N8RAzQxC8LvXWv56tzoBMoGulhom0xjBlmhETDx3rMLpTRGJpMHoTTBk1QAC4pJS0qF2MKQMzG15NwQYosdfA1m17n91l8x5IQEv8YFyNWnMbxaoGTzZMfihJOrx3ufXW2F2LUM20TuneQp2Xtclj5jOaGNAAmZByS6dJWKk15aIiIZjTcY1g/YnP418yt/wLB6SG5OMfsyXdkibUdbLlBWxCZz80sL7rx1jsuSjuGIuV2xen2rb6Oyu+ZjcoNNs9CH+zZ+H0slqDDvwzTlxVnxnm0KkJEa+zAS2zalLPl8MZfCn2zQGO9IRoonV+WKBLg9qqTRU/p7vmaMMZb7Zzb1jqPOf8VtlBm1TzNTX6rxPKVeE+pnnJQbMYkdMTWSL+PVcTk/AS2f+/5L4LKPxYycMiN20wRBQqFpG1Q9fk3F2PSXlLxlu1nRHc+ZdS23Tm5wZXaN9+/e47VXX2Z+2GJAP/RcrFdYgfmspd+uefO9d/jRz39GVKWLDYfzA65du8Gta9d5/dYtUoG7p6f89L33uH/2hJR6zHxNbbtMKYntdsWQNvS55/TJPR7luyDQdXOODk9YzI5pmo6madDSuFpBbOkwShlIw5Z+6GGzQaP3ztYQaGOLhJahFIamoXQzyrBlSFv6fst2fQaSKRRiN+ObX/0Wi/aYLrRgRtd1zNobHB4ccKU5Im+OkMNLuu7rvPtOw9Fr79DELRHl9FJZnrVsVqANfPnrPV3A++NaduUEE0wNy4nzi8afjeBJB03nMr9RBzQIsyZCqAl5JaAUVArD0JB7ACMEIYRaDy2+HnRtoNXgxEhxCePtOnFxmclphevDKScvCYujDW3jCTRtyDTNQDNbod17HFw54aTv2KQNl6sBsQ7SkuV6WWNeg6Luw5TC6mzD+v4Dvvv//JT5rcidN9f83isN7zx4i83WkCZQsvKtb9/ib+48Zjv0PLrbEvUCK4GhFy76Df12S2wOsH5gdnzI9uID7vz8LnklzPXLHB+teHj3Ie+8+TO+de0VbGh4crnhKy8fc3T0Gqv1m+S8IrGtxhFoCje+Mufkxi0e3lly8WhDnwoWlL73JCCzzLxr6Nc9l2lgfjBn0c4gJy5SdgEnBYkurZoyzLoOy8KrL/0+v/Ov/hTdLGnnLbFpODt7zL1H92A2Z+gOaU9uMr8ypx+cHZw1rpRx8fADePQmDYknJXO6+VQrmMbxofDiE3z1mc9+2s7a/uY/wWE+bztT4P4iIsmeDe0//vg0HFfZAyt57pE9ex+fo+lAHwAAIABJREFUdzs+6nvPH78JDvinP150jZ4FFH6ZSfv5GFOZPKMm/hisWM3GHUMfeTrYwwPWMZCZyjDk6ev2LPgxfX9vW1bBWNtz4aaPTyAIuAZvqDJNBWxAzu/xd//v3/Hmj59webGElREGYchg2Wizodl7KAVizboyAj2tqlcWIYg2iAoSPIt/SAZtoA0KMdC2wTX3m0CkEDAade1cBNqihALbkkmmFZjcMqRACB3SCWoFM2EwIc5m5G2hCR0/Wd7n7OyYhxeJs/Mtcryiv3+Xt9eF//3P7/L3/5A4JLHdtPykPeR4fk4coDucESSzSQOb5E6X5UQqgVSSS2SQyZYxjYgYQ0reZ8oKpQSyRg4WBwyXK8rWSKvWs1ljIEQPPEIQCAWNQogzJASaWJjF5MFUzuRS0KAeYJXqpFtBwhjYVOBClVQBlSBe4ZQxRBvoINFTSkaS665bNkxdCtG01JlpoEoohpTiwnLz1gmu1UD/D+9w8aXrHPzrPyDHFi2yk4ZgX/f7qR9TxhpTECaIemVIqSTUVPEnT8GB0zy1Wvnn25q2MsZK41+MRJGvbbtnboqCxgzm0WGrMkROYnkI9WI79vkYLwJzx74Mz+sX8qvYnzEV4nxo227bRps21RFM98Ezf8f76v9/koqHUef92WPy+z0eX0Vnx2MqbpeHnHnr3hN++t4T1pd9VeswNAuSXaaFDFYCIzMqO2ihnoPWpPaxz8PuNS/BVzTUDh+iDjQzgrp17hZBJNZg3J8ZMcGSP8vZBJpIORRWnZCGHnLkq+G3iYeCHvrnixbyFMCPICdVx8V7LQUiKpEQG98vwbOnQ/BeZWNfKa2QcAYxpW1aRF3H3Aw0OLEkIXhFU1BCDJPvJwiqwXefizfSleAA+1hNgZCTYpcNqjM0GNuDQqeXrof+C4xPCqBO82xaH+UXduPHZ2y8/tReDqq6k6aS8a7vjvGTzPdf1/HrZXsqLCd8JrZHxq1V4O/FtsfX1yBgZeDJnbss79yBtMKrn5xsUdfjxCiMndpsZxomH9EPc08mb1qTCyX7697T09fBMJGxvpYq4jK6MmbcV9tTG9C7BL55cowpUhpSTjQUfqdrkXmL6AGIYUWxbLttjX6vGE5LV5BGhOjaSE6UmVQSYAf0e+UV9Xp4lrCK1OXf0ErWK7tecPqU7al9RmAi0VQdLM51u8EysZ7jTBUrgW1aYM2zqVpPeTjTKzuw9Wk/fPz5he357IbW56CJCtHnn07X32p8U2W8KuBuZmSqTKPKHkdbyT4dV3p20Hp9/kYw3tkBnwfZ/Lm5WG1Yr9cE895C44Zd2tmPAbP6PI/1KFI5xlJJRn/2i7lw9PjKXr1VtQx551czrqkwF/gXh8arTaERXLYWQwdPmpHWwVJ0PMNRWlGQBpgZWQOhE2xbiJ0wO1YYMhIjtAG6jtIekEMD5RKab3K22nrSVhFy3S7mfUc8oQZSX1UntBCCsF0ZYoUmCU1VxogB8sZ7VkkwJGYkhCrvBxoDZQ0hF8q8ynMn7x0n60RcXKVYYFjeQ+N90Dltnyh6jWQZK4HQtkh05YYrN2aoCIlKnNTiyJ0vSZ1De+GzeAKbi/7KdJ8mUl/CdJ8plTi08Vkb54DVb4+xjK9LZeylV6cZaG1Tu5Mc994/Y7xT5+weAzaSj1NiHyBmTnjUiiVsjLXqdsvunKVut9RrIlLAYp1pgku27o1KkJX6LZFKr1YZ9BriEUT9jGUksz7fY6xCLZZ9rROlDQFri7vcFJeGKy7tf75acf3kCk3suH50k1dufImoC9544+u+xok/80MZGFJPjJEmtAzDiuVmSSqF04tz7t2/w8Ozx7z78DbbbU8Q5WhxyPHxMbeOD7l17Q1Wfeb8csn58pJVv6ZPPW0LbTfjQCCnxHbYMtiWlDOnF495+PgeAaPrvI/TbHbIrJshCMUifdPS5oxY8USYnNmsl5Q0QBBC2xBjhNBRYiSkjgY/lyFtyMOWq0c3KVl4/OQBbXNOFxuuHC34+ssv89LJV2jY8N03XyWXjnuPv8dlCcwOIVogbY3lhbC6jKQkzI4LN29YXet8bipN7ZMbSIM9JY+HQIzuY4m4P9IGj428UghEAkEK/TZQSiaIEqP7Mqq1elGgadVduxyhGDn1XFwklhfG4ZEhUWjbwq1XMl1rNNElVlGlmDGULTM9x8ojWl2jbWbbRyjKk8uHDHkgBK8qkzH+jJk3vh34yV8If/PdtygCs7bjQgu//eXf49riZX58/0dc3Id3PtjQLJSD2Yz3335IOW/QpqWfXaNcz6y2maaDXLYc6xHny8hb3/sZH7zzU+LxIbOjA776xglPHnxATo9ROeT0Ys3XXr7GzStv8PDBd1CeoFoorqGMklFLHB5Hrl+/RboMvP3jcx6dnULs2OQNXTEWTYM2QjDjsIv0rbK8GMBq4oVBULd7fZ+Yzw44ObzFH/13/5bjRjgqwjoISTL37rxHAY4XJ9w8usq1ozmbtCGnwrU2cADcP3/C6vY/clOXDKbcXq/ZyItppF+CYBodX9ijWT7j8Ys6dL8Iw/TM5+zZ7TznGzW75sOfm5bYz2zsZ76PMkm7bHY/pnHR3jn0+z+fPebnndMX45cfH0Xeffbz5p9v7ICU3Vl7pcZIDvlHSq34qEGK43rsyt73QQPbZQONY3RUVfZekumtfWd4yrLaAymkOjPuSFbZls0T/uFv/o4ffvddN/bbCMMGstHkQsxAbVQv5g51K54IB4WIN9RViYgKsREIXoYcGyUEYRYCjXfUda18MqkUYjCwiOYa+GTffsHIeJZqKxHJRuoz7axBU2LoDS2RIhlmAV20HGwz//4HD4hxhtmG/sm7/J8f3GdlDQ/TnEfLRDffMqSrvH12zitD4qXYoxuYd2Ba6IdE2zbEtqVs1wx9wgwymVKcLNxut5gliik5FZIoQy4MpxfINlO2xpAb0EDQhFgiEl3CxRSNkSZmovRkU9a5xTTTqRLEKEPCzMkc1YBGl5ZRKVgSVGaMLaODKDFESoasLm+QVbGuRSSh20RMRlM8+zeZMzRZgsvBCK6nK5kmZ7ohszWDYsjlikd//X3aN16m/fIrMDa1ZZzjNgUpU1+mMUAaw6IJPPF5pxPhI0zRju2IJmqDZWrDciTUYCXviCtGMKsew/j07a0DvgLseipMjw4jeVUrCcWdyd+UsWvwu/v7Q5nRHwUs2Sj38fTn93saTa/7my8AkeVDv40gmJlVeY4q5wNTr4hnK4dffKRPf27/+MeyghEKrG+4zbPC7Ufn/ODtR5w/WZGHcVuCpYL1BS1OGFke59cu+JbooJDlEfytXcS0EMRloEYpOQ3RM8lNKSVMuvZVvIkqFoUVq30kjJKTVwZlQJShFIooEuaE0JHyBm28Csr9oowFQc2bnI9gQRNbgkZycj11kwgSie2MUlUH29gQNdanSb2CwZxACxIgBGKIfsQaSMVBJI3BP1vPxnKuFQVhugWqWoHt+txLPUcKJoqJkHuhvzS0NTRmpE00YY3aDto12GuGLc/M7dGr//D8tr3fX+T37ght2IH38txn5nljsjb7IO9TU/E5x/VJnsXP2fj1tj1U24NLOI5LDw5C/KK2Z1xpduvY82yPSw2ZJc4f3OfROx+Qt2eIDXt+XiHZgGqNUaWunxOXUQmlujbDLtvcySw8G178fKK6P6lmOyKu/idWJuB0JNusFJdZU/UkGBFKKl7xg9JoS6iSZNi45gN4f4Iy9nurFUZBFSsJcEIrILQxThc+aiAEPzJVB6OdFHCAQUUIwY9RRb1KA6t9mNw/VvF+I2OlVkVTnVyrn0GrzWKUM631ytZjZYlpS+kjW2uwNoJ7nS5XUyfO823PmKLz9J3+wvZ8dqOYEmtV4tR3sF5/mQhWB99TNgJake0q3lWfozIuJECYqtIc7Mo2ErmAGCFoXcd2c6CUwuOzSyx5dfRYF+LUce2HJiNlTLVz3o8pTgudfyeP9JEVNxrVSFmN1xAYf0z2Unw+feNkzlcPMq0EJEPEaASCiifEB5CmEl7qsmbDphCTknK1g9aii0NK2CA6IDFDMAig3QK7/iXyjS8TyhlsT0ln73F+fg8NflC5VF8qV/K52iPUGNaGZGVbALz/mhVjWBdk5TYwREFSJm1HhYRMiErOQklKiArZsJyJh43HDUPPkIB0G43GsM2ovE13/Hts+7fR7hUsrejmr9Lj5yiqnNw4QfRdJI1ErNXnfQ+/sPGeub+mdS6MT75UkS1XNXSDLForGLVUm6tOcmqV2ay+6Bj0eB6leMylvv+pSk2qL4qNU7fK+MEuOc7tt4j7X+5f5imJzsTIda3SWhU6zu1KMe0Inxq/hXH+mlYBtZ0tE9H67DzzuoWJlK2nU69nVU4p1KrUj1pbPx/Db3WmWMLUaJpAlkw3F6QSwNm8P6loYL01YtMxb2fE0NP3l5T5QNSWYdiy2Vwi6gldB80ClcbVStrIrD0CjIPugEbgxvUTNimzHRKWEmdnp7z5/jucnZ8zZKObzzk8OmLeHXA46xhyy5BzrSDMDDnRNNmrzwRKTgxpS65k0OnZffKjD2ialvn8gNliQdvNaWKLSeOEQtoC0MfAkAbSdsN6M2BA17Y0TUSlcZ9LjMP5dV65+QZKQ2i8anu1XLJZPWD55H2+cuvLqF2yzltkazx5mNBmYEFDScLlE+P8tGG7gWYmnLyUODioxLulihUohYBKZLMurNaxYmuewKyxVDUdQaPQBI/1XELSpvis33jv6yJCaMzldjVXcgq6piGMvmIRNpvC47OB9VZ545tCbDM3XwssDre1Mrz6eJRKEBeatmO12sKw5fjIyEm4XPacnz/2qkTJXs1TwEpGNNJeN9749hHf+b8fk1NBtePHP7nDnx58la+1x1y99k301iHrZk0TAmUd2Fze5Oz9ewxpwfKuceuVr6HcInLEOj8mpRWZBj1Y8Z+/d5t/+Wd/xNWDyNVwjDaX9P27zOINlpcrtr1w8/h1ftZcY7t9gljCGNyvKIkikFNDVuHkxoL/4fVXuffzJd/7wc+5e/6QkI15G9geNFxsBp4sB7JGLEYiBhJ8DQiBohlygRL55rf+lJffeI2wuUQWB1iMnF3c5/T8IfPZAddmh9y6fkxqBlbbDVdnc67GzHI1cOf9n9DYkkEb7lwseZIzRV9cQ/mr1bL5VVm5j+Wo/Yp29qzz+RFOrH/+hX98gvHxjv0XlbP7p7734fdl799zt4qDh7vMNtjRTv77uLTu3vti/KrGf4VXc5qSFWQQEBpfIWoQP2a5i1Qw7ynpp1Hiy1y2qKJqXg1l7CSadg7v/iMgFTwZQY49cZG946uBuUVMksOK/YZ3f/x9vvNf3uLJaY+t+5qp4hVLJWVyVv+O4aG3ervZgkCRqtMN2ojLAagSYyS0kRgDrSqtQmNAb0gRNBRipw6MJj82lSqBh8u1FDOvwFEYApS+oGcDcx1IfQYJiLlAQOq3vKJzXr39mO8tB65eizx43HO7z/RhzmKRuXUw53IlzHVDG43TrfKSGpQBQ+hmrm+s3ZZkQgl50j23mqk4pAELSqzOWiGSzAGNtBpgY1VbOxMoDpYEoeREiWssthQr9Kkha4eal/LONBCEKVNGUErKlJRQAtkKGvx91UCpxI3VTFVtXBaua7yPjOXkGYOpuDxfNl+wzZvQUqdqEZf5I0SaGCAlgoiTgDljDy94/Fff5ZX/5QrD8SHBFJNY7WeZKpFqXZLH86MsSQ2MR4Bs14/Mxhk/zc0RJJ4Cr2lZk+rM12kvu+1JrboY8zpNXdLMUaW66XHfjMklVXhkyir0+fx5Hs9WNcIIfvh9KGVsNj82Sf9k48Xrs0z7fLqS0kGRp45ler9WkqmTo/6BsW/R89fzZ4Hf6bXn+A4OStgE2o3E1QgIna1W/OCdB5yeLsnJewtgbnPLYN4zqQS0AlCeFT1KhghTL2QcGChlT9AkRg8oJeIVPy5Z5LNT0eKbR5SgoVYw+UQPeE8JwWXrstZ+RlKwlCeiKjYHlAIlZzxX1EmhXK19iLUa1hQs1DvkNiNohBKJqi6BoZEYImObK8F74LWx9eMTqVIWEGJ0O2EukakGGpzcdmlXvx9T/5t6rwWIoSGVBJQqmgWokQTS0NAvC8QZdpQRTTT0Oz9Nnvbb9ucDE8D/fEB1f56OZuXpD7G7mbKbx88SGs+bf/bs3/U5c6P8HJDY9sD8vfc/7yDvZ2N7dnPqqRvGvu2R3TryXNuze9ZQr/odN/fRtmc8jmfO+WPbnvqOZTarc+6/9T7D6oxgiam/XO23wbSK7sUtFTye9mBP7awCgl7VE2QEM3zGq1Qwz2BsjKZWCRrGN3wfpVgFOh0Ydpkn7+0zVsTPQ6hkeGK8KzIaNRE0ut/qPooxPneqQgxeraQqBA07AmkEPkWQIMQm1OMTYnR5qKABkk7PumNJ/n1Fd/duSt+3mtXshECu1ziIg10KWDKa0lPyirZEcj6iD34M4xV3TNT+CdtjPPuof2F7PpsxJi3I6O+Jg7oq1Sd27TGCeI8uw7y/0RRj7MhAxaePjX6ieZWT1YQnw4lPT+zY4QcCrDcD64ul96fNXoGTK0FsSK0YhpEZmm677izaPkZhViapMX9tJLSUwp76wOQmKy8vlH9x1NCZH1+wjGRXQ3BZaHETkJ2A9RMKWC4UKfRZYDD0sCMfXmV4fMawOsdS8sI4FL3+NeQbf4J1M4b1XZpH7/H4vb9lvT5DoF6bWsGSjX41VNnvRNM4SZSy0VQpupSciIoqFB0TZvy7uSYBNLNIyQXrEyFESpOQw4ZcAiEVQjTyoDUOKWABi3NyWpLyJWIdOW+IekIeLrG8pE0tzG5xdNwRWhiGGkvYdAcq0WM76UJ8Luwx/p6cidvNMWlI6znsV9XKRFK58gYqU53k2BNU6nzEvJJpNyF2KX257MUpxhQMmbgkptb43m+GMMm4YpVU8n1XAUSfO+apnF4t5fTQ5KtXw7UfrVk9Jh39/Ono6jy2kbwt098juRTqZ/bn9ud1eDJYBinE6BJoCYid958eUpV/F4MSOD/P9L2w2awZBqNpG6T2Ry6l52L5mPtnD7wKMjSICbN2xpXjY44Pr7CYHzBvW77y8utky2xTj1lhuVrxYDbn6PCY9ZB4cnHBdrvi4ZMn3Hlwh77fAkZo58wPjlnMjumaOXpw4M9bMa8yajO59OQ8MMxWlDyQ08B6veTs8jFi0HUzZrMD5vNjV0pooLUGDYFSWlLeYpYZ0sAwrPGYu9Co8vK1WzTaotpyeHDCy1duEErGZMONoyNevf4S3/nBX9Jxgw8ebLh/z5y0LomcOy7OA+t1cKm7WeHGS4UugBZhasho4zOUubgwUvG+b4YRmkxsM1EzAaPV4nGQma8TJmRxkna7LT5nBULjSTsi7gcFMRYhEK2QKOSknF0kzs6h74XuYODoGrz6W1tiLIRQK3LMJcYtGu2sATngzmnDUY4swgWPLbDstyy3a7f3CuoMb31u3c84ugqLQ2XYRozEgwen/B9/8YSv3uj4V3/yFZbXLojNOScHC466E5p4C4Yv0c2+zl/+u/9A0/fM3r3J/MZLXHn9dS7Wf8XiygHvDhvO14MTygKLdkbOHWl7Sp6d0m9OOF+vODm6ycH8ZdbrOyRbgSVPFmW8fgMhBbbbAVso3/7jb/LGG9/iL/7jP/L+nR/Rs6RpG2wbOLtMNDEwm3XYduvSqMltYxsbsiidXudbf/iHhPNTykHHOinxqOX83l2a0HLcHfHy9auUDpb9mkUMnARhm4W37r9J7u/Thob3N2veu+wpQSibxy98rj/fzRJ+0fG8KGcauwDs+ePpgOyjxs4xfdpB3gf4/nnHM2Dj5BD4e7vFv8okVCdsfHV088x2wY+wv1DWLX0M0us3bfxqz3l/O59/CaqPM4Qxo3s/coTaRdODkTHbTDyQn0rU98AS/yUjNUPcPzxmwdWgQn0fnrEk0z5Vx8lej8PCDuCQ8ZNezjpIpClrzu/8iO/8x59zfv8S1gNsB+8/0gfyYEgJRKkyK+bVRV5iHOvfrqvfqNI2gdBGpNRePwHvF6ROBEEtpa+BlfbJdaQxclQkCn3fQwkViHX5BhUjFpeP2yZlKCBNw+KgYX3+BBmUdTJm7Yz/9Q+POf7pkr++fcbltqO498/QD9im4+RaR1w/4bg7Zr1pyHqBidJbSxuUxdUtKKwvnbZQFW9AKJFWBfqBYFqzgCMDSl88SMhp8GBeOlBFQyaglCGCQD9kEPUGvjFhTWHetDTRM5WzCBYaGlMYEo0GaNxBaZroPUuKTKBP1IYoStMoEnDgrErsubRVJokhvTGQKL1ReqBmtuWS0OD2MBWvfCqhdekKEYxEyYX80/c5/+HPOPiT38dGLUMb52T5UAbtWGkke39Pb+9JlYxrl9nY3HxH+hj1ubERcvNAecwEGl8ZwyeTPIF7Th5BhfPHHe+e1TGAs3Gt+Hy7Fc+CvJ9U/kZe4F88Lzv6qd8/zv5st7pOmKiIy4ay65nwdHXyLz4cOJVp/u0q64TBCj/54BHv3n7MsE3eFwChJM/ikwxaIpapoOToelViqWYsU4HbkmtAI7Ui1ZxIsjHwr2CWX5tK6iLVbntGc9DoPQ+sksfiFXaq5n38LHsWa/DzyLUXmkggqDffFSKD5SpDV+VKRd1GRyfqrTj40TatVy1pIOVKkIm67J0KsZJfgnij81wB3gJtE70aQerv6vIoY8YuQBPiVF3roImn8EkpKL4PNSglYQLZArJpHbBrenJoibGv4N5H3+sJ0B///oT+i1VAdrexj/md+vHyzL7HuSbPALkf/sxvzvh0bI+9wPbALjaRX8D21M+r/NK2R6ZvPW0Pn7U9UuOSwsDD9z7g/OF9GnNwCMBKpthOIq+uiM9stdowK+4/ONrsJBZjBrrV6sN90HL8DKMJnHpriEEIOl3noGPMVK+tySTENUo1ST1mVcFq4kxVZRuXXjTUKqoqi2e1R52qEGMgRq29ZvzZk9qHUlQm0mi0mQ7o+JUOTag7oPZgGu2gTM+uxjDFeOCyTIh4T4YyzjXP5lcgWsbKmiLCIC25F/K8nlCtBnjR2Nme/Zjy448vbM8vP7K5AkNN53iqFwx7hIHj8iNR5JVNpQKIzqqOHqcTwmWyPXi1re0qlbxv57jeeeXe5XJL6geC1WpmxoSrZyvLdliDjHCFv4wnRbkElZpN/odPk9Eq7E25PcM2C/A7V2YcqN//MHiinktylvqMmifymUD0GDCoQjCs8S5ERRwkD4c3YQs8foikWgnWdOT5FZqDG2TL0F4lN2c8fvJDtnlwr9w8wdB9GIWsDAaC0jVCiUbZAL3HsDlB6YUcMjE6iFqSUDpBDyISCmFRExP6QOm9p5SGQlgo5TwhHYTZzOORdgZaaBY3MZaotqTtI+gvyCJQ1mjbYHqdktc00eOc7WhTqYSRFUYZxBpq74heYEzgnGoYp15GMt3z0eMrI/IkUDsl1TVBatWR1Lk53c7p+2JUgkvdVo7TyEayp2BqyFQ2VI1wxQhUd0dRpnVWpsK48VjK3nwWqdWA5jG792UKNa4qu7VJavUIuL9r++tzxSLKPrI2VunLbh5/joeRKDYgarRNpEiiW0RUjZScSCxmBAlomdH3cLpccXJ9wXze0OocMeX9N9/j8fldvvTKS/zeN/6YYoX15oz37r7Lg8cPePvuW6xWS6xkDg8OuHX9Fl+6+SWuXb3BQXfAQTtn0bVsh551Mh5fXFJyz8XlJafn55yeP+HR2UPWacv5xQMePbpNQZjNFhwtTlgsDpl3hzS6INOR8kDTtn6OOXvvpbQl9VuGYc3Z5SmPTu+7ik3XMT84oO0WNE1HbGZ1jszI/UA/bOj7FVeOjzETLi5OOZrPmLWZa90JN65c58rsGA0zCj3f+sbX+OFPfsi9+54I4hhYZLMSLs9bhsHXfWkSV64qzVihKsqY8KoUhiScXWjNN/FnTOOYoCuIBkKscUre73nm/fK224wndHvv61FVJRehU6GNHtvlJGzWiXsPBpbLQC4un/f1300cznuaUGhDmJYZBNquYT6/xsVqRm83iOWUKznyQcksNys220JsQIpXRap4hVUpynarnN6/5KvfnpHXsDlXrl+Dx3d6Vm3H+/KYvH3CgRZC6Yky0IWBZnadgyuH/NG//mPu/uDfs8gPePj2ktdPvsk2KIubc66+dkm3CI77bAN6ZcP9D1a0568SDx/S5td4fL7i1sktblx5g9MnPwQNroZqgLlcaC4DgyhDbtluM32C1167yp/96X/PT978Xd579zucnr/LrL0k1UT2thGKKZttmWxdlEgXF3z19T/k1q0bNOszdLZArxyxubxPvDjluJ3x6tVj4lHDWgtt03AYA6tcuHt6h/PlA7SNnA5rHi037rP253Tbsxc+159vJOiXHbIXbHzi8XG/8+Fg7ddrMZBnfu7/OS6i9b+9TJD98vR9B+1Zcsk/8mt1wp/Z+BBI/MX4BGMfEqj5SZLZhwBGlw6Y3FGPMmKFO0bIwtiB7DVIsRFOH4lAqQGR7Dl2HkzDSCaV6Z5ORFZ1hjUbw8Vtvvuf/5G7d55g24RsCmUw+lyISRDJSK2oiTJK4xkNRkyBqNCo0USha0IlOgp9AS2Z1oRGoC2ZEIwoSpFCsGEs7IJszOYVBFAIJ0eszy9oLVCKMWQlascsZIaQWG4zRYRGAxYDuZYgY5lhrbQE/qffmvPtlxv+v9uX/OjRwCYtsdSR04rtnRNmN40776159VBZL4R5yaTcQ25og5DoIUIzBymRzcooJdOXChblHhMPyHIRgjYOSvcOzJgWNBdUlZQSTSNkC1AaUoaYsku91Kq0YUho1xFjQ4iCZpkyIZsmkxFMlG0anLhSwJQhJ7IJZoHYqPd5QFFp0EZJrdcMzOi8bqB4U9JsRl9qNVtxneghF7TMe0cHAAAgAElEQVQTrILJlCrFUBLzfmD5/Z8w/9qr8NINsMiI61SVEcZZZjbKdtQMuv05b8o+6SMCpYyA+zhGMjRWr2x81abHTOr834mRjG/sgh4fYzbh/nPqQc4YJJVSfs3Wt08+xr4T49hd8adXyf0AdQpk9y/OXvaG2SgpNwIiTwPJvr0PA7zTuiFPb9PnxQ6E3TVK3z+659+IT1LhPAXwdWtWSgVAhfcenPGjt++z3fSUbORc5eOSuBxe1qlP0Bivj4flGeJaz6UgQWuFgmftmwm52Kj15GB2lcS0MasgOLFbTGiazokd1aeOf7reebxOyfsQjH7fSN6oESN0GiELljMZl4uKEhGNqLi+eKM1MDNc6kqDB2XqRG0MwftFTeWBLmvahohqoAlesYgqMQaXsQqBJrhcVqoZrRqcSM+5ao7X+VGKS2JN/muBYErUQKaQU4B1w7B0adI2CJQyZXjvzydPnKh3dw+jfcqTe850eep++oWeQJWdL7jbhwPA4/3fPRPP/r4PoFgZIafng7zj523fKH3Ojc+nY3v2gdUJM6u/77b+YdvzzM5+Jbbn+ec94bsvtD2GFZehEcucPbjHo3ffR22DkCklV+B6ZHnH3hrjRN+dVynFqzXwZzgGnbzKKbKxui6Weo6GA+1VlUlFp7WziXEHQI7P0uRXwpjQlJNL6e7P8fFMLQZCVESy94mplR0hUGVC/dprM/rCRtPoJEdoFRgKOtrReq8NJDjhrSpekVlBag3Bs//VpZMB7zklUkl1oeRS7/GYjFjBzrjrh2VmxKhINig9ZtCHGUPyak5MvTJ8Z3Tqj33bs5+Q94Xt+ecYNlbMFJvmG1ojpxGkF4cOx95Mot5nw4CpkTr1DpqTJEWcKMF8HyOCb9T5aYaq+5YZuFiunCyofsMkrwg7krnaGKEmpUzr4bPQhUz+adRA1IBZrpFhqT637aANMV6ZBV5pa1egUimNUCNP8yq+GARV78WUKYSZkreJosXlybvgxM//z96bfVlyJGd+P3P3iLhbVlZm1oat0Tt6muRQ7BnOkDxHI81I86o/UK/SH6AHHUkjnTlaeDTT5CHZJLsJAr1gbQC1ZOV6t4hwd9ODecS9WV0FoMUGSTQ7cLKQeTMyVndzs8/Mvm/TUy9b+uUaJRriloXcOURr0uOHhIlHz94jrx5xvd6ganM+YgllsqIuUTkBB86Z7+TU4rwuqtHjDe2WBPqYrJOpUMrjEpWHtO1g4pHKEQ4q8rInrw2YxIFPjtRtcRUWYleB7vpDmqZBssflQNq+h5e7UE0RPMgElUQfNyi7MoGBNFTEG7VoYWK4aQZ2MYe9xyHpYvR5xUuz71XB5SLHVXQ4yw77RQTDuBpNv+51upV10Clj8dFgw2xfS+YN0dBoUlQtAUvpwMf0wnYulTLgDWPjJzbWhijKisAoidlBI0pKfCbPrNEy3lMeCh1k97ktS45U4i23t759ObdIlmzriBOooWps/cnqyZoK/byHboImT98n6nrGrYNDateQk/Kjv3ibNix55StfIbgawVPPA9OvBh7cP+Hi+pInp6dcX56x2mz40c/+lu//6AdUwXOyOOTe8R1efvCAk6O7nMxnvHR0B0XYbrecXjzlg4efcDi/xXW34fL6iqv1kjb1JCJXq1MuLh9ZDBBqJtMF0/kBs+kM52vDKkJDlTuYmM/S5p52uyZ1W9p+w9nTU4RMVdXMpjOm84VRgztL+IRmwt2Tl2ncnPlkysl0Tt8ueXT2iJg6JvdqJr6i765YXb/PTz/+38mScGpdzzE61ktPu/F0rXXxzaeZxS3rbhasMzMOCVhxdK2w3pgCpA2zTFUKW5yzArnKmZa4ANlZ/DQQ6K63kZRLHCjWhYUoLjsqD5WriEnpO8fjs8jjU9i2DvWJ6+srDg4i3jNSBTvM56x8zeHiNiI1TCoOwoz2w0v0KRz2mX55Xch5rSBvv3BPnJK14/VvL5jP10zDhKcfVHzjmzUHh1/HNw0/efcdct4wzVjXZ/aIXhP8lJDP+NobD3j3x4K7U/Ha5FWcVORYkxEOjufcOdnw+OEFB+GY7b011+1TZPMaOT4i5guurpckvcfJ7Vd556MZPgUi1uluBiOSVUjq6GJk3XVsuo67TnhwMuXs+lWOT17h8uox77zzF3z48d8grsUHT46e5KFPZguDq5iFE77+W99l8+QJbYL7dyfgEucfvs9UA7cPj1kc3WKZEz57pPJ0KpxfP+HR05/TS0TyFr+5gJjIOeL7a2ab9Qtn9d8hwfTldqaA4hDqDceTTzPUL3Agb1RjfOHb/uq8jwiUGkIdeohudrrsA4r7oaruH6s4+q60yKuoVdv4bDQKXhirOjCQaaxWdJiymwKxXNdIaTv0eghZdpw4o0Mge0/us8psvyTbfrXob5JLv/y2nz4aw4ZxaBQgRAanbn9vq14dK9zNuy5/trevRUu2/MgOXgDKQrg7n4wAQwnmn61mxFH1l/z4zTd5960n9KsIEaNyUAfZHHjvPFOv1FjQ4IPHayRopqksUKuK1pKgxruNM6DRezq1OZczTERoAjiidShlbxRwlSO3PQ2B4AK6jUwnE3Jn1bqqiU2/pfceV1W4KeReTQTWB9TNULdlVnvWKRE7R1DHSe34L1875MHtK/7kJ4lrBJ+3bN0lp6dHSGyId2vSbE3XbXE5kl1PV0Ah30AMPbmP+DghbaSIbxo4iwh9sgWx75XcJYgVsThG4pxRCzqlj44chSoA2gEBVwKSlBLO1yTN5C4ycRMLAGtfQG1Be9imnpx6Jk1tQSdKT6ZTJfbgC91WI0LQDnIqFIUVqCPkTAod2RudwgRhmxSiJ9EDSozgGkeSEpg6057SLjG/3HL9lz/m9r89JtU26IauI1U/jixz+oYwaxj7w7eDfcnjZ1ICyptUSAW0hxJ5DTSRhUJjPI8bx7feCNp2gNlAQ3lzDuzs3Jc+zoGx+hxMk2JYu2C3jo2vI+vY/j9sO39gt1buV1HaB/vg7s627Nuh3aY7+2M7l0/t3buBLENkL6jm7+SQjIEuUoJ1NeoQVURqlustb37wlKvlBi0OOAmzWaMO0wBGq03xJJDtGjXvB9IOJIB4kICIw/sKxSMhFD/DkYcuVMQqGUuXq1WWWmeRLz8Pt29aJhkfLJlTRWdac8n6CaoqEFMipYRVXwerePOQks0R7wM5mw4TWNArIsZtrQ7Jjtl0MrpR3tn+MfbGy994qlBRBz8K2yqC8zv1qAG4H8BcBVzREvDO7EEuXQq+/L5SS+gWYj9yksLp5dAciJczuipT10tCbs1TcwboMbyTfWy0fD68O35hju8BeGV/tzcVbgK2wq6jsXR/lGTiOAn2KGoGWpt9MNcVIOZ5w3gfqKKAoWa7PmNg/yPfvjjbI3u2R27YaRmTRPtxwW4cfPG25xl/6rm2R6HQdfWbS07f/TnaLQmSLfFExmjxYrnEAmgkBe/KWB/QwgKC6gAWGkA3UOJZF6PRChslnhb6plLa5Ia5WeZnWW8drmDs9o5yuRcnHuc84hPe5bEIw4dATlZs4yjUMs46q8m2pntnvKEhFD22UqU/2A6nUNcVWhtU67xDNZtWnCqBypJLlS/x2/C63DiRh2SAveMC6xbj4MKw3ueRTncIAXNJ3IgDcak8GyHknhkXJHVs4yEqCcUbTc2n2p69sfAb2/P3vxWfMeFKt7AB8B5H1kx2Ys9FrAOZEoNlhljHtAFhsFYGwqN5pO91bo86DxgSiwPo3vWRzWpD2OP9krxLHgxdUbKX5M4l6eOlMEyIzVXT/cAKtJwwCY6mssRRzIOR2mmqOSz2ev1WY8BYznhsLioC3tbmlMp4CqbVSIbUWQejVAXnyEpfNGrbRz9DUZL2aBcJUqHSEz/5MRIibnYAF49JqzPa9QohW6FbFrNdOVPVQpia/fE1BC/kjSXKPSW0LXPCKDE9FKpvsrEuqORxvBIz2m1tvejVOr0qZ4VwrSKVkFPCHwqkgMYVsfkZPiakcuS4Rf2U3Pd0q5/R1AdMc8dvHyk/z8rZRujU1gSvw5Qt3UMIUU27bbe2AYVRYoi9C3SEDGpvNkkxSvyyFroxuofyzr19O871cV0a/hmup/wnDOvLYOOzdWVmsaRQ0Q8b4xsdLFIm65BIG5KV7MVrQ2ms0e5lGLVmpIxruyg37m83Xqj/ZGcGVct8G2xuuSl7DsUIf4m3rBHfKNOJgos002C+rQ7v2Jk/HgMxGkvBerXFiXJ29pjjyQGzg5f4o3//+7hK8D5yefkRy9UKnGM6mzFrZkzuBBazivX6Ftttx+nlNV0Xabc9Ty8v+MGPf8afvPkmTe2YNhWv3HuJb77+De6fPOCluycc3z6kaxMPnz7mZx9/xNOrJeu+J2okao8m031Nfcd6fcXZ1RMqH5hOLNnUTKbUVYWrajQrPkUaVxObjia2dHFL6iM5daw3a9abFT54qsqjZO6cvMrtg2MW1YSv3XvAV+9+FYcl/Ie5hWZi3/Inf/4/8mT95+CsuMxlT24rlitoOyEn60RuZpnFbNBm7m2Np3TaaWDbRmJvtj2V8ei80fYGL3hndtOrFc+IGI7gyKQsbLdC7Av+4GGwuSJQVRVePKlLXF63fPAkc7UMxAQHx5HNdk0TUqFNBEfRpxU4WNQspgdE53jjdzvee2vOmZ7w1pMzPu6fcr7egBOj+hfTzlNMN0rF4X1mMl/hq8T8IPPKv5xSOWW6aHGu5+6dwM8frYihoW0hNi25rkA2iFvR1AfIYcXbm7/mW4cT2u27XHPKIh4TQs3vfvc1/vqvH3F0MOdwG9hsOx6+/4hvv3qfmJ6w3rzCZhs5XrzMZPKAdfsI0Qmim4KJRxQlZujThDZu2PQb+thzewHTSlgnz8ntr3D8vZd49cF3+ek7/5kufgiTnjp4VpLJXU1wUx7c+zbHdw/54f/9ff71f/PvaeqKp6ePWF8tmR8c8+DBPR6111T1DO8D25xYLi95fPoem+2F4Xj9Nbld0UeH65dM2iskvVhz+592B9Mvsz3He/ws6oovIsEwBoHPOOAW0yRzrtQcsMGFtiBp/69tWS0hwegMghbfPKNeoQGZOWQWoHRcOFWyKyyz5s1YMitlSALZla/yc6/Qg7YZTQJpCGD23Pdh8Ry3YbH98m3PJiB+k1z6/7cZ7ZYzSoUBQ8mu6FPkvUXMURrxy18OXR37vRgGFA5A+44rXMfQ1VKyFry4ceyVAHWISceAZJhF1gzvU8vTj3/CX/2nn3J9cUnXCVNxRDIxKi4ZAcDEVfjC0Vx5waOmnySB7ExA1pZlAyRDMNokpNA6OWd6TUloc1Wqwhx1bSKJXntq74h9pFMt1fLGvd+TcQnEN/Q50cWEZIevG1zcENeRVVyiKdEnZ/RP3hymqp7iw5JZD98+WdB1me9/uGXbCS55qmqDNoHL1Zb2pTmuvySlQKJDqh7RSNJMkmSJH3ypaizAtFeqSUXcWrDopCPrlF6wShPpIQWims5KcBDCkEgUUq5os8dEuYXsHL066+ZqatrNiomaQ7/uEpqwwDYJuc90JZhJWDKrCh6cR5xHnUM9VDkjbW9VfqWcLIUJuXL4tjV6GCf0tUdyQqPSqxZqHMhkqmyM72wzXG3pfvIB8VvfQL7+sjk9uQTmkkfh2d343AvEyr+58NKPnQlK4ckvLVPD6Dc+nhFEkRGYsYqlAS+5UT0uw9lsDoyVy1hwk8WeGOKtsKAcTxm4+r/E236nRwFaRgB1CFYHDEtevFI96x/cWAv0F/eRvZ8/bd14sb7J3uf6ov10HEXPfj4kN573q/FbccSUeP/hOQ+fXJBTJsZE3yc0C5oU1JVK0H0AUIq+gx0vawmOC7itiLErFN5uXKFILRXTo5RxCaS896Ob4P0gm7y7fqNC0HHuKFgVnVhnkCt/74PHVTUpxlL9b2cKVSClTMy50N5Zt5QPFVUl9nO2YhnvrTu0qWrIg46FUNe1dTKFQOUdwZXuJrEuCvE7Gq1hHjonBFeEz1MymqphrZOdq+ScA++IEdMLKPR6eRirWdGuIi5rttMF1bQDdHwmLxyz5Z8XDb8b43KHd/xKtl9H2qlfevsCbc9uLpaynGf2kfLyP7/tked//qm257lH/UzbM3Sna245/+QR24szgkQ0RWKKtnjqIAKvN0KIYW2zubP73UB3Z3VKBiIPybidTlyp6i3HcW6nfSUUWry9J6Hjs9DxMlAsMYSBL0O3kHMeBHIuHZHmfOKDMy2XbPc0nC8UW+JERl90oOULlXU/Dh0eJgpu2qSu0HWKL11JA9A7PlsZr9sFO14u5x0LH3TYXxBfkpXJRLaN4q/oXWUDsitamryi39b0MwCP0Tk5ftE92Hk4v7E9/3Db0FQMuYBxhaZtAORzHrv+KOMo55JYpeCT4sCVJJRqwSFKlzJDkZKMfmgu2ehhRG+3Ldp3OE2le6H4zBTipZIcr50jBCVoJognTIzOMTpHr0IWhzMeR9RZl/PtacXhvObpEmKOhVJoFymqwJ3Gc692eCJh1Nyxoj6CFDrQ4ulGxfliI3Im9UpK5RlEoW4UbSPJXYMTvBPbJ0d81dKePbFkc4CqvUbjhti2mPSR4iWT1OEmwuRAqBpM62zmcMG6B3LENJZao7tLClIlVBMOm8vOKxLt3frKIVFtvlaKr8QS7RGI0Sjcyz1lp/hNIky8YTmbS7IT2DwFEkFbMlPgmBS2zJ3yb785Y3W/5Z2nwl89zDzcOpJYItxGluE+wzK3i0VKbLGPn8hQ2OnGcafoTvOOwa7rmDC3uMXi/d1x85hlGgovBCGrjSwnUlgc9pLmZURaF9NwpF2cNaJXqqSBah+L6bWM+bFgbM/O5ry7Z8sXlS61Xb5/tMU6HKMEaHn4JYIUmrGhrjuN8d6Xc5tPPa6xDt5ZVbGJ2XSbh+SiCjkqk7qh1UyOLd1mxXq1YfLgJabNAhHPwe0Diz8kM2lmdClydv2Uj59+yGq1JMeOyazm6PYhh7cOOT46IUjFuu14ennBcr2m7S3hdHp2xo/f/zlv/vQ9QnAczCa88tJ9XnvwGrcWt/jtN77O9arn7PyK0+sVl9sNMUZyjmSNTDWRNEJMtN2Gy8sn5PNE8J7pZMZkOi/xhCdUE1yuqPLU/H4SWZWYelLsaLuVFeRKzdmjj7mKHdXmMU1acbg4pq4aQjVFgPXmkklQNGSSJjR7EI+kwGoJbSsYeYuN52ZaMa0rXOzMbpcOSUtaZ9qN0ckZdblhb84VHExBNJj8wKA5pgVvc5GUEtu10HeO2Ctkh5JsnjoIHkKKrNctD097Hj+taDuo54mvfDNTVabzFPxOnkIk09TC4fyAGCccfKVjtrimrjzNg1d558OHPFo9ps2ZMMpf7DBusAIAAGHLoH/ezGvT9U1LEDi8Jbz/YQtTD/RkzSQNqMaizdtycvsOf/vx2zyOn/Dk+pRJUBbrlu5xwwfvn3Fwe86P3/2Q6fHrLBYvc3XdIdtE5z6mn36Dq+WW+3dvcbh4lcvrN3eFXPSoevtCiWzo4oZNu2HTtcwOEotZYLWRwlpT89LLb3D33utcnr3H6aMfcX3xEZfrFVcbwesd3vjtf8HRwSG/9Yd/wPzeMdlnHj59hLt9m9n0FqerSyqEZiJsVZHNhsvH73J5/TFZMhq3rK/O2LaJKmUOtue06zVP84sBn1/jBNNznMVfxn8s1aTj98/d5dMP+Pkd1l8moTJMkmHbQY4KhWdWdtfOIEI4DNzCaCw22ZFSmRbsS5uMNI6wqNBpKkKMkewVnQmpVMpZBVFGggVEslVyq+Q24QrAZBUHivQOaRVtFVkrOWboMHxyoCrT0W37nM/hH/+2T/nwOf/ii7qUL90mMjh4petI3CBnTgn1zZGTAXgfQPWwm06DLtNY+T5Qh+wB61LeU6F5GSrjxgRoEW4c/iaNUENCnVHjxeUn/PBP3+TJoyu2a0Wzo0s9sY9oMg5wLxg1QrkdqwZMeG90UlkH6gmHF6FyyiTY7JUBxMhKDSWx1FHh6GJmHVsq8TTO4ZKnCZ5aIlVsTShWGxrvSbkzLvFQnHDnjY6pcbhoyeNek3UN5A7vlHoCXd8hYUozXeM65XdevsUnF5H3Nh7ilutNwFct1xeenz+tuXtrgsqGrD0dLd45+piJqrR9ousyOdeQe4KH7DJ9ylYFKDOEbNdB8Vmw5JpKJBEge8hK4wNV7YnRkSJUWBC1ii3TyRQryOvJauckC33X40u/UxBP7pVMwoWArzyhDtbtUBstnjhBeshdRHwBgZUxYHFeUC9FRFeh7D8NwkQcsXQMJVc6DHCkrCyXa+pKuP7Ltzl65Q7a1Obc2VH3VgPdFfeiNwIwkVLBXiqmx6pz9QW0TyXqL6Kdu9mFjJXn48HZV9HYdUDl8Vzj72QIsof3sz9v3YsRoi/Jtt+RLDJGrXs7sLe+2nN/ftLmJtC6q8y/+Yj2aar2P9utH8PTfv7xn9VW+bTNkjDP/82LQF4dIl/sXs+Xa3785JzttjOKyJjMYc+2864Pawiwi2tf0FYnZnuceFwIiAQUG7O4AOVn4wIfROelQJC2FjjnCD6UxA87ULsAj64IzgoZydbJJAjeG/A6PLekap9VFTlFQKiqiqyW6i8FwFRVbYkeN1QKYhFSqajNSckuW1FAqcoeaO7SOIeGe1GapiFjIO4A5Fon4g6AHip+fQGGoyopp/EdWReVM12BIbDLA4ASQIW0qek2M/pmSc0GJ2paVJ/X3Rze/O6f3bjU0fTsRtFzxs84eveG8ah/8kwxzvMoJJ+3Pa+T+Ndh+6JsDzrsqWUeDgCW2zvCc0C+T7U9/IpsD5/L9kBitbzi9OEZoltQo5kxp2pILu2urRgF+/9QLV7O48U00ZwMXUz2mSsro4xf8sz3lhD3fqCng7H7pzy3oYMSoTQM27w22jmzA6pGw+ad0dSlkoAKIdi7cg7vbC23pLSM57BD5/E+VY2Wd0i02zVYUrzIPO0SWFjVsBZ7OSSvBmd4/2f7m2Kbko6gzDA2B1ozQUdtJwSqQgUV84YuTUjZOri8OuJvbM8/3k0oGq1GT2tj1arWbY7YuE2F2svl8iolW+FfBryNV01aZmRZm+TmuxMMWB9pzsRsWbvtrVi1dJhp8WOdOE6mjm/dnfL6nZqv3a24PfUcTB2TClwQYhT6qJyvlY+W8JPHgbceKh9fRDoV5pOK24uadZeoNpEWq2gfiNc98PK8piYjORmI6ry5yKUKvk8ZP7C5DImEoqGGKqRE7kAqIPbE1co6YBzQbUhdtEKcLPicyHFLbLx1AGoiRzVwV1PRTcw0c0czyRZrOHAmumjdgCYGiXghSqaPlvBzWJulxIwmZ7FqpUb/60GSzVmXwRWdWfWC9BkXzbVxroLLiKSEn9TocoU7uIXUdyBHcvZ45mSpTXOz91STuxzKNf/86DZffzXwp+9+wt883NClkhIvNFxufOc7W2s4kBYdThmXOvv//gqVyQRArcNMZTwuWoqICjXWkB+yhEwZ5iVj6pGi12cFTBnrVMqlUMFivaG7yaIrXzq8FXCFESUXPGy32TUZtlUoRnXgThloAof1yIoQS9ptSFsBQ8JdSlGAUUbmvXsZ2CRE87gefFm3b91Z8DS3dDgarVm1a7IfcBfTYfIiTFzFcrNlu1WydPQ93Lp1zCQsymJoyTdbKyfcPX6N4+N7LNdP+eiTD3l6fsbV1TUPHz5h2/YcHMx5+f59To5P+MqDe+avp8z1es3p+THL1StcLq95cnbO2eU5D9/+CX/+1lvUVeDWfMGdoxOOj+7x8vEBt7oZF6st266jz5E+GzUdNUzrjqgtMXekaOwpF5en5r+op24q6umEUDX4ugKtIUOTM6nvcKLcunXA7fkBF6ennF2e8vT8fX749p8xmTTUzZTf/+1/xdHhzBhaBB5ev0+fbcxachvWayHGQMqeUFtCdToRGrEOn5StmUBIZAmkDJuNknNT4p9B77IU4uEKRZ7HEVAiuKJDpkLXw2oFfQTVgqWVQlpHpnaZvo08vYw8Pvds1oIE5dVv9UwnHcFlSm2fzQixxNh0OqcOt1j1mVde2pLFoe4KV90m1TWZHmMz2kWOlFnmS7KfrES1ub1pe9rUMg2HxLhEBKZNoAm+rIs253KZ7yodQs98WrPa9KzaDZtW6fue5WZLdzHl8rpnejDj5P4xV6ctd+8d0bYbrp9uEDmnn53x8cOH3D36Ondvf4WPTqe4vibJxpJGpchDNZOIpLhh261YbdccHySODhueXsDQQCTiCGHK8f3vcHLvW8R2w3L5hPOzh2zWNV/5zrfIsePgpbu4aeBseckyRl5Z3CbViZR6bjdHxKgIPauLj7i8eIeuvyLlHllfWCFCEiZpSdxecBaVjf6TTDDB8wOj/cDpRX+mN/b41buSA3g3bOPy+pz9bu5W2Fd3XnMB0c0pMcdCGfhdy+LogCqXwECRIEhVgqCgyFzQiUJhqfGVL5zmGakFP3eEieCnHiSR+2gLpbe/cRX0ncN3grvOsDVQRx1WHdMreauFQifhWgcrh14r2mYrMNGbFB2/ftuvYUDyBW5Z/RjgMtK3GABo1UmuOF/FsRwqfvbm0ajXpAN4ugMe8p5rqwxt9nlcimQA7AYO5bLIiGSjWBIPGpH+nPfffpufvX3Gqq9Y90tc6mnbjFfPpKqoNOM1QY6oOpILeO/x4gm5w7uME2OwdTlSB0cVAjGD+MpaghE8uQg+WzLIq2PmKrwrArQCqok+Kr1GqgTeefqY8GGolGqp60AIiU5bDm7NkemEdtmR2x7thc26JyUPSakaB3Vku93i+4z4xMTVfO+1hvP3YMXaqth0i24XXC0Dy5M5J9U12Weyy3QxkdSTXQCfC1WLs+pHsaTYdpXR7KibwLZL9j6H3IcGNFfWXR1M4BsN9L210btKcbmn3QYyHjeruFortVP6vMg1FU8AACAASURBVIEYmRKsvboA2c5J0WKxt529AbspKNUisN1EAgEfhMoHUmBsBdVklcV4yBHUVyTxdJqJyRFSRQhqFYM50whsU6YXh+SEFyFFpVt2bH/8AbPf+QaTb76GlnFuVXm5ABlDcD4EWeVnyyjZ1Y+JKd2tXSKggSEDtKv0g2EGGNzo96iT8s3k1fh09rtN3ejI72qRLTgTa81gP1H1pdz2l6G9UksZbcgANz6zL4wg4OcBXX9xPx3f834nk3DzuM9LWqXiZe6q628CwzcD9F9ciwYw2xUNo5yfCVgLyNf1kXceX3F+uSL1ka7tSb1RLVgHMxaMKyVZX8ZcZhRSN9q3CnHmcOjYneRxrjZgtHScpjwkWWxfJ76AwgaoeheKXsSOosgAXrPZGat6DsGPHaHDe7Tke1kDNOFdVSreTFPFO9M/Cs4bTWl5pr6qTDRWdzTEw7G987gBQDaHyxJYzmitbJ+SqKIkygqoLM7vzWVGl3AohtiNmQJ4DcD20P3ozP+zwkPrKJNYkVcT4qKh8hu8Qhr8Qj4vWLrzmW+AshRzszeEb1Qfy6DBtT+WZGdX9sb4De2BvZ/3txfNqZudl19yH/Lv0fY8m+0Zx1MB94b196btGU6svxLbM4Bon257zK/rY8/px0/J7RXkSIw9OVv3kpTa+KEgYqDgGkA4hsp0bx2CvtgQB6MeRxipl0qJR0lK2ZzedVya9oDHeylg6N7xi4acMfoVK+a90dSJG5/fSGtb7FDwDvFSJOcc4pVcdCe9c2MXidFlWifi8P596VAabNtYFAJmU9zuuocuJntfZkP33/v+/B18DUY/wO5VBt+sXL81iuwS76oZyUpFz0Q2tBpwucJR72JSPs326HO+/43t+aK3rIqPIC6THUY3Wx6wE0qLU+lkz+Xeyzqk2Yrk+q4neaWuPORUEpzOdMVk6J5VKxgrMIiyG09d2yFZ6WMkA5UXXjms+cOvLfjO/QkPbjkmE8G7QideZbwzPbJQmU6HFWkAbsrT5Yw/++mW/+UvL4g507cdmz7S5TQgKaW7JtME4W7j8aoj9Rw5kxTUe1JSNMKssq5+Hxwmm6gGJA/CPynjK0s4ORJ5vTWaL8FsQ1a0T2TNxL7DJWeFu2KJpSIyhCr4Bpo5uIlQ1XY9TqwoMWVwyarxJVn3oEcKRakhQWFIQIWB09Ph64zLDh8LPWDpCArBFwpDswdBM04drsMSiAjINYji6jlZt0iYIBJBZ7juDjp5GeQJuAWzk2/yX73Ucvtv/pTv/+znbHorBB3s4DhziiEZtI2kmN6BR2tM9DiDpZGMKwWIDDZp/Nb2Uck4NUkGkRL7jrGP7pIz+9Cz2rkHrajCeVI0lQxNGNaVHUKooyHamcqyAuZUgIUd/0QWe7dSujnBtANVyrHEzqtKsZN5zwIKIgOOZwNkWO2e1W78sm3L6GmpQYXrtiOWhtmsSo4JMsyaBRNZENsV1gVTQ4L16oz1bE4zP8ZxCCqst9ecnT8xbVVvNuOVl084uTtns1qyXG3os9D1idPzC372/gfkrMxnc46Pjjg+PuLBvSOQYzabNdfX92j7yGrbcXlxxcOLU85W1zy6fA/e+RmIMJ1Mmc8W1M2cqp5SVTVIRU6JHByVNnazqadPLVU/JedMTJGY1iyvzlEyoaqYNnOapkYChkHFxMt3DzmYXLKdfEItSybNnJhqMhPu3f8mr7z0VVK6YH5wwh9//3/gun0PpxUuRCocq62ni0JOFv+7YLZzvvAEb0l905Y1sMOJxT+b6PD1AkFou46cML+oGCkHVqyDGq0eucyvim2rbNvCWOFtXdayeIuAx3O1TpxeKldXnhSF+6/B0XGPH6h0i/4dPiOSqKopi+kRMcHkcM1s2pFSg+oVMXegmRytmE6KNJ8vtiQXW+9USTESs6IJtn1itV0yP7pLnwNCpnaO+XSOSkuWQJ8jKW2IeUuXt0ha42rPtlWWmy1t17PRjtU6knLPK9895pWvvczRwevkVebiyRWu2vDDP3/CN37nnzH1G5aTa5xU3D18nUlzn649p0sF3xy04yShWDfbtluz2q7pUsvtW3OaBlZrLWaooEAZVD2umnPraM7i9teYH95mfrhAuw0H0zlVCLx7esat6S1ee+Vlnlx/zDQK5+01bjEnn1/w+KO3WOYrUlqhq2tuucBlTKS0pd2ekuKKde85+PujyPsHANGfzdN87p33HEOeCbY+xdF83vY8OopP3U/1U5/UbgHT3U97cYyMPPmAlqoHl9FKyFWGqSAT8LWQfMLPPP6goWs7NCfcxKrmSKnwZw/8/lZZkiSCF+pJjUoiO2vXpO3L4AVXC76yCn3xxg+cxVrOZVYEureUDoFSW5+slj5PIU0SLEBWwBXoNltH1e4pPuep/MNs+8HIZ22/lpVt/xCb6zGKPAuoByHpPLqEcXQmzbruAyC76XxzLpUoXWSXqGWo382gfjz+0MavjLWxBegotUKacSmxfvyUv/qzdzh9uqaPQmgcbgOSM7VEau2pshrOnwPiFe8SAcUlmGSoJRuXvhjFWeUUyS1D8thpoHGOxpvXlcv19ZqsOl+NFs5hgZE4iBnabJ04E0BSh6aerJD6zGQBM9eQV2ukF2rxcNjgoiAZ2nWHZug7pV401NOK5fKC4AOpj9xdeO40azbbmum8J9WBXjPny8TjuGBWd2SXcH2kU0jqTIA+ZHrpyDEhEpHgSdGckVBb9QypMlFGdaiG4rP3gHHDu6xQOdpsibWFz9QT02Bpu9La7RLeOzZdS1MLPUa7UfvKHJBsnVxZxPRK1KEdzLDKtJyFTYxMXMB5IUwbquBIfY+K6bWknMgVdJpKwWUmtskCtibRHE5ZPbwiUaHqSreV0KdcNF0qdLvh8gd/S/PaPZhMKNEHu0o3A89H478byTZNhsCoOBg6rmUFbJO99U1Ll5+C4EvwU86jUEjOy5F3dEZj7bsOHM/D5xbsDX19pYGFL3s1ncruzi2oK6Ctu5nkGX2EF5j853YvyQ6kexbUU9vxOcfQG/s/e8xnz2Uf7ILnm79/QcfDc897YwcE4XK55een1/TbROwTKRoPveaCCiiQbwbb4xkHjnCc2XMXcC6AepwEAwZyITjNqSRlpOjMFNDQeQNdh4SRFPDWeaPUKUKuBnoLrgAMlVhSX0RMRw2jqTM8p9CjApV3VN6hztvtaDSqzNKFFXy5TjLiLTlrVFQFiC4JppxLd5L3Vj0sAwhbEgUYvZZ3Rv2gBeT2zrPvrmsBEQZb4Jwd24sB0jkn1JV76dMe8CEkVegdbt0QU0P2AS89Lxywf4ftWb/Hub3xd2Ms3Ry/LxrPz26f5WN/2cHdYfsibU8ZFr9wnNHqf6rtGV7j4AuPR/8lbM8LvPjPfJd24evLFdenF3jdEnO0sZ+HzvVBlH0AEocMyA782/9ypSN+1CwpVeqokhNIEVoSdgknV+bfkDDyjrEDMWcDNKHQ/iIjnZb3u+TPYIOM/i5ZEmqgd6qsyMVhbZNJ9+ibdJfo0mJzCl5sdmEomnHWHTEksK0gBLOdsnc/RddynKKuJMv22oJ2foGOY9C6TuxcuXCq5VyoePYSW6jitKfxGyppSNKRmPAb2/OPeCtYgpYEaVYYqJUBVPOYlB268tIwNsUq5cU7co60fSZ4t8MtzIO0/w8ibQKpcIY5NZ2nNhqdtg/Cy3PPv3njNt+9V3Ew8fhsCRspFFhZIXdWYAZiQOTQuZwhVJH7x57/7l8t+K9/+5Cfftzyx2+u+eB8U7QZ7T0WbgteaSpueSEouDJvFOtQ6kvlfe0dSayLWIqvQ7AOE6eDBlKhioxYf1QRBUrJqLM1l+JfBy4rHQ4XHX4amHhP0IRpVRo7gjSCC9aNbdR4DX1XOr36jER7B6ICalThnogmJSLUtUdSpvJKSErdlWfuLdnlRKmCpU9EjEIvVOYPeRFctA5JDQH6Dr28RA8SYTolayR1PVUSqsstuJfR6RyfIrWrYHrCv/iX/y2+/n/5z3/7DuvebOzA1jCYai2dPJTinEGnclgPreghWec71pFloZK9J+v2MusuGAtJVjumwPjzkNkaktw2xAVIe+PcvrMOJ8OvguyKt8sfjeca4ivZmUvTu6JcH3a/WXXUVRy0xxgKGoqeuemclkIjKbnG4jDqkJjNmYE+77OwxC/LtkzemExiS08aaoLJUUtjpCAuI67F1dAwo64a1ptrQhDmdYPTKUO1ZF033Dm+y+n5I3741g84uzxHgrI4mPDg3gn3jm4znx8g2bG8f4d1m2hbZdv1PHl6ygefvEnXRiZNxe3bC+4/eInXHzyg8TWbzZbz62suVmvOlyvOzs95cnnBervh8vQRORsdddVMmc1uM5/dYjKZUrsJ4gKaG6QPUFVo6cJOaYbGSNKelHr6vqfr1iA9Kpk+d/zWt/6Arx4d8aMPfsDHP/+fadcVsT9gXn+bB80xj3/+Q7J7xF8++mv+9pP/iKdFJROkQlKg3wgxmZY1GKtOCDCdQEienA0XE8kW64sj5UiMDsXjmymiLeQlJk9QGQWg+OIjFt9Gk0lBqLLdKH05n2oau20MQ3OkLFz3PdcbS0Q108xLr7dUPllMFUzXMpOpxCQM5s2Mxk/ZbDKvvrHCiSUma5+p2DIPCtqaHZaE84ILlqQhyrgSRYQeIDtizqw2K/JxwvsZmltAWMxvsdw8QamImmm1p84dKW7ZiuAqaPvI9XZL22dijJyddxxMr/jOv47Mqi0nhxW3D97A6TGry7v88f/6Nu+/+wnzyT1efumbbLueW5MjFpOXWC/fIxDIdGRqGgKtrkhs6NOUbb9mtV2y3m45nPXMJjWrDSP+A7a+mI0zH7H2NS/dv8Mybkf/7Xx5multilingual_clipj337wCj4Iry2mfHwFa9cx6becvfuXtN0nZI3k7TXH1Yy2i1xtrkl6TeyvcSQmIfGg7l84r39FCaZ9YOof0/Zs4DOAbMP3n++aP6vK89nW+qHqa/cnn+aAyngtrkBz1mDoSEW43qoerIVWsC4irRQJilQgM0GPPNW8Jk8i3FZyr8RWCT3IJJH9lsorMUEOEefNEScLuTchWu2BmGAmiFNUehLWuCse0yJpHLFU71MbIJOScVi62qEu40o1b7X2dF2kbyOh96RlIseM1orUCr3gJwITJV6BXmekp4D4Oi4Wo0rjP9ntn979WwWEDToRo/tRIiJ7AN/YZTEAJgOAuYczCNZCLkNyZucUDviDVZYN0NwuwGb8/QDKG/Vjdh2Cx7dnvP2jN/n4gyVp0yO9QpeRPtOg+NJq30cIrqaZ1wTXcYtM0ExfhHO9BCrnrB24dF1VrjIKKKeEoNQ+0wTIydFnB0kNhPWF1V4ziCeJ6aP1GXCKL+TblpAqugtJ6TYJ7zp8EIJLtL7Gz+dMK2Hit1ycZrRzxCy0EaaTislkQuo7po3Dh8DvfjVw9nZEJRJ0ijRCuxWWbcXlbE6TL3FktgTQQMw9XUq04pDQ00hNUhOATLEkYLo12k/RZO3WnoxXc8CN3FPATeidcHAb5hOHZGWz8igVPvSElKmbTIjWkp1STao8tfOmheDFLGsyja8oQvaC95C04eKqJzQTnAcNgrgKqQWpBGJHaiNeTCfLaAYjfZ/IOJJTo+y7rtleR9RVNE4JPhoXee3oe4h9ZLvd4Jxn+dZ7HPzzN2je+CpZ7F5VBo5vMVawUiX3i+tQAQpRBgrIkSpvSNgLOyHr0baWX+yb2RH85+a5SuQkojf1yErQM8gk65D6+rIn2cdIU8bqb+sU2dOkKD6BCbaXZPV+0FwONGJPJZAcOhBunmg43963N3wK2fMt5Dn+xs3EkwXjzwd4LbD9xQSg3Hhle9fNANE6Uop8eLrk8nJFKsklTWogy9DMMzi5z9yQjs+gAJUy0OYN3QDB7FQBt8R5fFXjg9l+56tCb+cJzlu1bfB4CeO7qUKgVwMSgvekXCpwRQiuMvBpWCsG5MvZaoL3OIQ6OIxx24DnQGVzpgBpWQu1lQ8Gaow/Vwy9R0PCy/CD0rmEjomxoRPCu4HWSm90Fuw/OXFGDGv0LZYsc87AuFCSZlmt2rqqqh1oh4KWoLFX4mZGqq7xLo5JhecMO7MBN/zW8ib12T33ftZhz733bRHkWBUsDHNj16E1XsMAknyeMEKfOc+X3dY8u32htmcPeP9U21PmvAzH2dmgXZPILtb5/LZnFwTfuOXPtD1GIff0kyv6zRVOSnLJxBTHr9368+wY0wEPHAkfpBQLDUldKYwPZhJMK82LR1B86SLyRcfIkksDRZ59VT5Y7UZWo5vKu47hENyNZ4gMNrsApeU5uWB6jxKx980OOBgq7E1TpXQAlA5K790IxJpmZ1npxQqw1FHoOt14fudKgomixTA89L2lYehIUxiKaUvHSrZEurPuJ2dcORAtWY9kgqPQnHXU2tFJZ6DUM/P1F23P/ij+je35+9w8GZytyUN8lNWSRyavUfRrzSVloIE18H4owxvisJJolQIMY9XjrjzsLDZWCqkjiGkuaZ+onPJ7ryz4g28seLBwVF7JKRKcWjdAL0hv2EdSS+SU5gckCMSEDx4q0ypSEQ6mme990/HGV27xe9+s+J/+5Jz/9O6aVWcGwaGcTANejT1gwG/EFn2q0jmtAkGGLkLLAEge1swyiDL4rEZzpKalhLNriZ0VtW26zKEbnls2fVlxLCytQU6l0CYGYgudZggQgoJvcWqRYs4OOtPe9mIavQ6FlPDO9HeDGLW6RMUHCBHEDVTFEBRCygTvrSZNwfVF+81JwYViYcrw5C5C16HNFNozcphCmqKXj4i5xtUHo78XZneZhDt877sbYtfy/Z9+TJ92nd/2zEpyZfhEXKnaF4JUNHXFwWLCdDbDNzV1XROaKQ4hxY4+Kf1mQ7u5ZNO1pD4TkxSNGdPxGYucSse67K9DZQ2VggMM4z7vFeypwMAEpVI6qnTX7eXGOxiO6cYCVUVKosuKCYYC0aEbyti6ynmGhNQQRhV9JrtM3bNROsZ1bs+ufVk3rWzup6TFlzH66kyR8HBCJlI3W06ODlh3CxC4uLygzYlelUYSIgFV8K4mNA33TpRt+zKLg5pHF1d8+Mkp77//MbVAPWu4c/eE1156mZfuvsRieoeclYv7J5xfXnK92rDZbrm8uuQnb7/HT9271FXg9q1D7t+9xz97/XVC8FxcLfno0SkfnT7h0fk5l+sr2rghpcjZ+Sc8Pn2fygmTesZiccxsekCoa5q6BipUTZdNUyZpJKeOnCKqiZhblttTjo5u8a27b+DSO3j/N0wn1+ToyHrG+eYR/+dffJ9t/Cp/9Af3OO3+L0IzI/c1qpHG1dArqy4b+6iWmIlil7xHJTFQ3QoW0iUVcnJmi1LEi+Ngfg8WE5RHpa7HWWehBJs/bkgU2/huN6ZL5yuQZFgYWBFAVuizZ7NVrjemV/7g64nppAfM18JlvGjpMIdJmLCYLUgRepe5dXeDE8f2+pDJ9oBu+wnbzUNy7HCB4oOZj5KSrTfWnQ7qlT4X+mIV1n1LTB2L+h59dw6aWNw65mJ1YSw12pNTpo8dMa6KDYXYCttVYttGutixmqxYHC7puogkWLoVU+k4On6Z6d0F3/vDb7C+rnntwYJP/uL/4fWvvMzdVx5wtHidx2c/QmTDPNznwcF3mafM31z9B3rdEt2aLjcsuytW2y0Hs47F3HF+ERi13EpiT4ZFWjy3T47RyvQ4JU7ZaOb07JQjcdzqVxwm2K4uObtcs60rLh//mE1+i+zXtJsrprFm0ix4ePEeHddovmDBlqvMyLT0ou1X2MH07ILxot32TOGvuvLnZoT1Gfs+31HcB232t89KMu0fZ5e72j2Tz6xyMk4FxDkTqEwOXEJzaTGqwU09ctBDA3IUYCaQE/hMnoDWLbnJNAcBvRLabOKKaeKojqakyw2yyZiGvdB7RXqBraDRqoJ0ITTHNanv8E6oao+GDN5o95KacJp4gQqSJnzlUFFC8HSbTCYzmdSoFyoadOPpLzr83JJY4sFLQDdKTAkOBNcINKCXmbzNtoqrH57sZ73NX/Pt80Q/v2abFlE/lzFXW4z2kR4hMIgGI9GCaA1kYpn+rghYy8hasKtYtA9ugBjKmJySgboEq+QzUKRUsxURQ5cEZMv1ww94+4cfcL2OuC4iremLSc6k3OO0okeZ1o5FlZnOIfiKQ4mw6tj2ph849ZkqiFHkaQKFKguVQFMZbVMQ+1KPJY1cRpO1IztvgZZIGkUNDWhUchdpXaIXAfH4INQTAyNFotEzVULjM5p7S8B5x/zAsV2bTtFmu2W1UeqqIsYtEiK+Uh4cOV49yrx7UaPVjMUdx0fv9jx5NzCvD3kwf0qsZ0b74uYQe1K+QoOVsaQkxGQVtw6BmIm9J2VrlQ7ZU/mIuExiSvYB8Y5IQiWQr2Cz6mmcVdpVIdGIwyWh6pWsLRDQXskuQRNsvxJI5ZQIQSB2+OxpmprgEyFUVI3D1Q5fVwVYClZJNXN0UdBe8NKZaW6C6U21gBdCEEQTfVZSVFSSVT1rItjDIKqjazMpJupaefqDt3jl668R6opcAh0TNS6ghlgQNoIpY+Xa8L4LqFSCmXG8K+gQYpWIR4ZBPyyWZX4MmDuwV/mnmHRtAR5H7MeVY5UqQ9URtPsVr+r/cNtgE8QSIOoGuHJH90YRNx3fkQhawLsBwHzOge1LLXHtAAbNg6K/82wiaZ/u8waA63a+yr4oO+Kf/x6ek1zaXZMFt4P9G252kGt8er3l/cdLYpuIbUI7kJLsJg+AzA5EGsAm60AqyaPSMm04ZOm8FOu2cQ4cvjgIlfFdxwKciAG+3vtCPeHoM6gfQC8xHoTC9e+c6aSM11Q6A6wC27ocBYcr4K91M5n4rBPBZ3u3XTa6zoGkNYjHI3iVojWiJpxN6RoYOBls4iFgNkmGrgMDq523jqtU1h5n3DQGTruxbIIxcSAelz2x7w0Q824ETIf1q/KOFDMx25z14sBvSQL96W02zZow63Auo26gELSLHKER3R8PDFfBi7QxZR8YesHIGn4pUnod825c66AZpVY5uaPDlRFQ2cHNBXAu9IR277+mftEXYnt0fLYvtj2yH8CMCaOd7bl5iZ/f9giGBL/ofb3Y9qgTLi5bnj4+YyJbUu5R7S1eYT9pIQZwMFgzG2tS/u+8K10HurefjTPnBso8IeBwWUCsi9KLjF1IIQQ7birV8c7WSuc9uXQHO5Hhdsqauus2stc0UIeW7sWsptM2PL8ioJ3yLhYVVyhmHIgvdgI/Joesu0pKNf7eU63s9yNNXkmMqeYiHj+828E/drvrLseyooA8UiEObAKKjsfwwYp3ck7WQeQgRXvuB92KtqnpJOLdhPSptufGCPuN7fl73JKqrXuSSbl0vCnglVR80qE8bxjn5otaYZxTJftCL6YleeIcGq0wosxWgjg0DfasUCqLIBlOmszvvXrMt448twDpO0scdQmpFLwSO7MJSaFyQmwVTUZN6VwuVLMAgdxFq+JvZkiOHCwC/+a/OOL3v7PgP/75Of/9//GQDy8TTRCOK4dPJdFcprDZhYGtrXQmiZCKnlrKFscEjyWbZN93y6ReCvVlNpYYsXjSeyHGiEfMLIaM6yKNhyYKnYNtm1klJRxZ/CE5YXQQGZIgnaLRAFznTPdKxm5Dh/OK92odWSkTBOqc8c58tkqsM8Q7qEWoGN63JZZEza+KgE8Wc+RsPo6o4l2FxogDQpth2ZF5aDR/0pGvBerb6P3vMPnaff6gvk2n/4G/evfntNGKA0qIglGXW+rFYqoZ08OKJjjm9ZTv/Nb3uH/vAV1/jfeZMLmF91OcRryrzZ4uH9L3Hav1iouLcx6dLXlyesXV9YoYlTTQ3fMMHrCHr2Sx+7Z1MZGdIurGNXegULW3O5T1lURnsWSurJ/ZWk2LK2jpJB2K9YZgS/LAKs1OL7ccBzdqEGpZq7PkPVrnYd3/8qNDOWdiTtbBNcS3OSLObI73itQdW7fk1sGc0HmW255NvybnjtPrx7jFHRbNqyBCyj2b9ZKsK+4cz5nOlHo24fbRwphnVlsulms++uSSdz54TOX+muNbh5wcnXDvzhEnx7d55f4doiqxz7RdZrm54tGTU56cX/PwySmoMm0qbh0ecOfkLvfufYOLy5aPTp/w5OKM1WbDul3TxZYYWzb9mtXp+2hK+BCoJxMWi9tMpwdUVU3wFaIQLVhAk+EvTe35d9/7Iw7CAR+t/ze69m3c/8femz1bllznfb+VmXvvM9yxbg09o0mADQ4gQZGWzSCloKUIhSMUDvvNf4//EL879CjZYYcfZAVNWRJtURTYAAiwBzS6u6q76lbVnc6wh8xcfli59zlVXd0AQYBgw8iI6qq+95w9Zq5c61vr+5brCZUnxYbgoMuRs1d/i2+++U3+Qt5mkAXrdo3GSMiZthuISciIYbhVQJOQkuC1QulRcdZXbyxSVSEOnpwjm9UNVX1EvZwT6kCfb4ArPIqQrG+lWtsD1Ky6ZkfX9WgCrQ0/HnqHRiFnmQLLoYOuF6q5cuelFsGawIkkkyp1QuWE4ITlbEnlZqxWQjhb09QDmjdcn3+djx53/PDJx1yszslS/BABRAtjdfRvrGCprgI52ppKWYg50/Vbbi0WZF2DdhwczpGH3op/ROmjEFJiEztqsRYEMlRstz2bLtL1keU8084Srjbbstle8Hj9Pkenjpk74bWv3mLIr3CaF+jmCZf3/5qmStR9xWH9dV6rf4/TcMKs3/Jw8y1jjUkiac8Qt3TDmnW3IscTDg4CofL0XfGSCi6kxa8Loebw7DZREoM6aIQ+dUjXcq9uCJ9+jN50fLS94GkUups1w8M/4830mIvcs2ojJ+ENHj65z81wTcobGolUAuoDWwIfdPXnruu/fYJJYZQneMbf+mxs89w/9o37jzzBFw7hucPL/v/s//NHQjR8OgAAIABJREFUH+v5ZNOP2/jz2WPsn+vF3xM76PR5JxXu0HP79BaPPzknaUaCQ48y9cs18qonnyR89vQxwkHELYSggX5j2t2uciSXyV7J84TrIXpw9ypkGYhdoR570+GvnCOWfkl+kaiOPcNcyFWPYFJaSsb5slGOpYbeZPFGmrKrhdoBmmnmjqHNtJst1awp2WHQhUclI42QzCvDVYKrhBgz0kC47eGgYrgY4EaRzhz+TIJJ0uzLMKaQ6ZfjJxwjW0l1rLocYYOxwmwP8JA0ga6yK7UEEbKYzvE4dXarcvRs96vt94876oIXR5A8/T6KENaP+d5f/BVPPr1BNwnfJ+gH6xGCo8qOWjKzJlD7SJN76nag8Z6YHdJnjkPmsDZqr1XIO+vfQQCtqEJN7YpTKookiNmTqUkuksRZM/qkE6VZovX4Uaz3Ecn+7USZNY5FMOpiHwdmC4/MM1TlPq+v8T6jdLgsVNWAuohEIQ4VmgZcqMD3ZJ+oRXnzZbi/jcSm56u//jptekL7QGm5RQqPUReYzQODesTVVFJR+Q2xi3Rrq1pxyar8VErVbI40IVG5REoCYY4EA25zLv2ncqZKiaYaqEOgbgaqyuEkgPbkWE8Vu8E7PIrmTJh56jrgVeg2PSlFC9woFZc+Wr8W70EcVVXjF1WR4xjIg1ItGvLNhmFQqsojPuOrGmk3uOxps6MSh1Oj+g/qGQahSZmZy3hv71w1GZAVE+07HzM8eEz41ZctqMgF5BuDEQCKDdWCvGGSFs80ZC//HPerMbAxfGBCvGwuayx7lbcgX3eAjQU2Mv1tzWj1mXMAPHPIaU19Wez0i8eYmBv/vQNOP2cvH5PZ8uwfJ+6LE0zjmGzW/vGeO/femBqxs2cWX3hNL7zYvfn0gstSSqX8eA0WMGfNfPLkmtWmJfaJFK2HgBapmV2F6DgFZJJ+Gl0yA709zpuMyyjHJAUcVQUKqyeECod/JrHkvQG8VQiIs+KT4P3UbF4LeOjYa1YvltTy5f14MWV91URVWV8lq8I34DU4T+UNgIkKoaoKU2QHXAfvqQqLQVDqwkIagQTJth+5AnSNfVSCH2WsShIrhGnt7uaJ4IvMH2hhI4234kwKEJPo0XJ/I7OJct/eOfueCk6C9XrooLs8pJ5fMnM/SsJS9v5b7mlvPn1GIuqLjvTcPBTdW0d7fvI0X0q5bt4HgkcfHJuHI5MjP38dX3K7Az972/Psm+Uztmf8998n25M0cfnoAoY14gZSisVf0ufYeGW/lL1rGPcnGdlKZQ2WX073qIpQmEqj/N2YtHEGtk+9lApo6Lybel+YXFw5t3PTc94llsYkj6KajbEJY/BHKJKXljjKkIyFOTKhKFPAeUuKO2fgoysyZGOBSGZkOe7NizHpOL1T6wHH3jOYnoVzO0A0PxsLjwy2/f1pPN/OjrsiW2jAUFZFUseiW7OeH4AsxxTFF47dG/ql7fm7GimBBIUMLmBrYuyVWlj0eWecLK4wfZNJfqyI7E37rhNXQHWTGUtamD+F/TRaBNHMgfT87qtz7s4SQSLJiRWBDfb7HEuUlhWtij/hBZw1kzcgMVLP5qSYqBYLhEhijUpF0IzU9wBlWSX+uz8+5Te/cpf/6X9/l29/uGERMLWEgvjbZUrBPqyILVAKaNT8AxHPRRs5axzzkmwujsyUqNKE4TnJ0hs+R3zx7VPWAso66mDFNMfiuEmZrlXe/Xhgg+ONNyqOak/uO1zKFvNFoEi35T7iS+9JRKlUCRlcVLI6khNCsh6+Xo2haUWLiWBSNjDenytGSw0Dsp5bgpT2UDkWKbfZCm3mVDFRb85QVrBdETUgIeNyZvDvUC3vone+RviVP+IfuYDyf/CtH/yQIY5iwAVbco753HN6dsDgEqvHl1x/+oC+zvzF/b/iK3/w35CO73J984jkDjheHnASv8ert75COHyVKjh8fcTRwQm3Xv4Kv06m7yLnF2ve++hjPvzgA7brbZG9s4Ieswe5hFrKyAUaWaNulN5XSy5ORRVToojyOdtoVCmyYSMeUZKyqvZMs2kTFVRiQrUMa/dTsYf9dGStB5Nlty1mkknVkgz4Rehe3qdE9tlaciQlFlqE8+CDUs8TfiasZMVy5rnt5xxtD0ginJ8/4fTglOxMTg61Yod33v8uP/jwXYa44uCoYXl4jHjPvZfu4Jxns+nYtIkhmr++Wq345PFj3v3hD3FOOVjMuXPnjNdefoW7p69w7/SU1++9xjBk2r5n27U8KsmkT7//Him2OB9oDg75lVdfZ4iJJ1eXXG62tEPHkFtSHOi7lpgG+rjh4uKci4tzqlCzPDhkNl/ivYAOJB3o05Zf++qv8hsv/R4pfZ+r7b8kdTdFhrwhOSFJxaZXfuXkdWq/ZXZ0l2V/C6mv0aGF7RNWvbVH0GTxUVXBoBBLnDAmdCyWL4Uv4hhSJCl028jFo8eElwLIjMwS1TXWuqDEL2XepixoEnJSNhvHMChUNuM3q0x3GKhmgCZSdgyD9do9eTlTzxzkCnHJGJPOfDYvQqiUWdUQW0e7Tbx2p0U1oWng+mbO4/VDNv0j+mGU8BNLUI7rqWxdOYsljl2e6i2zJoYkbLstvgqEOIcE1awmVBWuOiAl0BzxKTLkLS41hFCjWIKpb4V+yAyD0sdEKMUTve85O81ABLmm8oksEefe4tatmif3/4rvfvvbDN6zuOvY8AMetx8Q85o2XBNlQIGUI0Pu6Ictm+2aTdeyaBrmc8+2C3t1VmVXFWFxdAiVp0+DqWQMA93NNSfi8ZcXPL7/LgeLG64WPddEtpff4+zRA5780NpOvHF2h6e+5fHmIdENZCIbFe67ho6KrgfXNJ+7rn8KDKZRNmeCpp55meMNvxhwf94svugzPx5Qv3OXP/86P/OdPQfyhd/4KVco7ZzV548viKt47Te/Qrja8nQ+Rw4CcnZDfk2Jhz317Ypw6ogbpUqejOJRvCQaSeQoZBeZOaFPSnXH+pm015n6wNGvb6gaRetSBx+FfOHRHtxc0GViWGaas0A1h9wAKsSrAd1glf4Yi0SdGtAplthSn8l92XDVEbwBwd1ma/IJ0multilingual_clipmIF6j9OKft2Zg1psT4owxIRbmMSMNpl8ldDSwOznma/5m8+Dv83F/mhX4RchmPnRw5Uqo1yAPQ8EcwCFSULMiy8BtgUcimcM7805010yibzXiHgM2kcXESYN6qlys0w8Q/IYhYF9bnny0Q9473vntK0ifUSiotkhGgliDWhrEeYuE1Km8Y5aM0sy4pRqLiy9oy7a04W3QBM888YhdNQhU4eG5C1R5KiJZLJFLAjWhDFSKOUMUHp/ZBJdHEqfaocn0w1bNu2GEBzzpka9smw8rsuodiYvMSRoI3UV8F5oU0KyEgfBzZY456HKDNrTh4rTE7h9rDzZwjv/8QHUkOrAZliQF3eotGdgoI2ZIWqR07TAbcgD0JDVEbzSeKtGrOpIcJ6UPG5+QPYJnwPed7h8gJM1IWYWVUDqCpUFhMEqf5NDNON9PzEKvCa8OtIAuYKuG+8pIlmoXSAPmZR7XLMEH0jBc3D3FA5qJARCHxlu1iBQe28srFVP3PZMVZ0h4LYDNZBQq5iVQA5W2bsZEjGBS+CCyfSJQp8j9abl4bf+ite+cg+83yVCS6NXm6AGyu96wuwDIaBks89SGtKOLKdSTTnq35gueAGyRmBvPFYBC3bgYt4zZ/bhvKdfbsfb2aMfBzz6Uow9l+VFrOYX2eBnAN7CIniGhTR+R0aRTrfL0L3gWF90nvEap1j0ufG5hTGf94XPuGhjoG1mb9123H9yTdf2DH0kpYwm62U2YtSqe7bWCYgvrKXRdjoY+w5pQAiIlebjfECzJVCcD0UeNBBchXfWbyk4S/y6wrTYJUwNyB2ZCDBKz+3WyChn5ZCpStc7A3BTSTD5chznHZVzpU/cDpIXoBJPEyoDZVSpQ8BhPktOabomS0JVZFViKrXbvrCXKFCm5on5MUEb5Z3uQIad/InugdqKAVOjKmzO2QDwEMi6S0yJeBRPisD1jO6soV4Mo+rKC8YXzLfpOr7Yv/nCoqwp2NP9L7AfPzx/+ClZrvrMny+6xi/1+JnaHvvPl8n2bLct1+dPqWRDTkORxyuGp8wdlV0CWKCs81EmbsdWcuIKaFES0ciUKHaFSWi90aQkhO3/nfeFQVTYO7Ins/zcA7E+MLspLoXtMOUJy3m0FHTYj+z74hxenPl4pS/HWOTkvBAqb8V9QAi+/Nz6II2JKOccVVUYRakAdSNL0oFpBFKuf1xb43vVCaDYl4NjTMJjvoZJ4dn9mlSaJea02B7BpNWM1ZWZpQ0hbRh8BKrPzoHdBHlmMvzS9vzdDRUr6ArOWU2eaGGjlBUlbtras1oslVO2GF9KUrI8mtEXMF9SSzKSqVjFlXVpzObMMT1v+DXH9DtGtAMhk7qMk8AgGV960mimAIR27BCgS0IUR+4T4pR8vcHNasLhq8jpm2QVZPFryOYjk3WavcTXFt/jf3x1wZ/++w95+1vXpE0qRVz7+7DJcAPm+yq4XJKSTlj6ynrhSsJjEnWaxOIprN+qyxarqZZ7w/o/jonZJNDmhE/KgVrsGrwyxMwH77XoZccb94S511K8NsYEViDMiM0IBK+WeBv7aheJPCcmv2f6HyY9XonFnD4EJAiu+A2pJFdcLmzDhOkGVwJRcclD2xGkYlad4fUumTV+6BC3JUqNDlegP2CoTmhmx+jpHeZv/AP+sWZU/g3fev8dUjY73NSBo2Nw9RWfnn/Cpw8zTz5+zK1Z5OCeI/c3fP9P/mfuX855tMkkL7zxWsV/8Zby3tt/zsv/8H/gKweZ80fnrHzDnV/5Y+besTy4ZOk2/M6tr/GN3/oN3n3/h7zz/e+yutkgTkhxZGXu7EKmJBfdzg7qXoGAMfZ0soWTsZeRIGk2wouYUoYrPyt4gqJESjSWd7GU6D4ninIONxVRjEynVPo4jUVGlt//UUVDf7+H+e+g2d6J9YqRIv2cqefWeoMs3OgVm7ZjeHKP08PXIdcMecV2uGBZvYp3gTRkCJmDWwd0Q2CzHXj00SPUwacPzzk5POD2nTNevnOLg8UxTgKb7Yan19d0cWC7bdlue242Hd/+/g8gvc/BYsGdO7d45c5rnB3dJgTPa3dfo48Dm27N08sLnl5dcrNZcfn4nE3bkp2wqAJNVZHkkJQSQ+wZcs8QW3KM5DxYXCCBFBND39PFG2Jeszye80df/0NmUnE5/AvW6/ukmEn4iQUdc2LdOpbzu2h+hxCgqmfMtAbpGPot/bDCXAGPOPMjAHJv8ziIJV2z29nwkVPgiz/Qbls+/eQTTs5uUS+tp3ZWQdSKcc00Wh9Yp4b1xOxJGnG94L2jT8rFJYSFo55BjIlhSAQHZ7dtHjunJVR0hJJkcs5R1xWeGX0ntHHg5FYPuSXHQzabp3RxTag6crL+7VmTaa+oSVBqUV1R8TivqEvWs5KxaCTR9zcoieAWDKmnqmA+X9DUBwzb3vplZUg5ETXhKsWHhm3X02+VmB3DEIkpM5DxTujCQPIr68MmER82xO0jLrv7pO0p4dY3+Id/+I+4c3aX//t7/4pPHv5nNvkpUddAXxLZ5dpzpEtbNl3LattzMI+cHM64vDFzb3bBNuQQAse3jkkkYk64wYrP2ayZ9ZH2wQN83pDaj/DzK/rNmsXqEeuPMufnDUO95ORwzif6iEESlpN3IDWdOIY+G6P/C1rY/HQk8sbudpO7/Nx4oVNYogd5/nc/Bjj/3PHsrPsB1Hj8Fx1vFzz9TRIHP3myaXwm+mwgNfnzRdf3MLOUno/PH3PrD/8rmqrh0ff/hObQMZz2JO2ZaY1WFkw58aDCdj3gCWgVSH6AbWlI2NQM2uFwxMveml0HrLH2ANpG9DAzvyv4RiGAbyDXCZllwlmFawJ+mYmXEY15VCozPU213k3FR0QCKIV6OK/I2wHfls3RF7C/gDIisDheENcdqU7kA3BtQNZKXkfTuj0ox/TACkjPBx8/T6f+J50LP+74vMB+DLx/1uf/+zCmqAVzynKR+DK7sas8zc8YVQM6i0GeNN99eaRWM7Tfq2m3PIVJ7LjYDuV5mZlyPdunfP/tj3lylejbhA7W2cb7REVmmaF2mUaUBYkQErX3LCXQqOJ8Yl47qhwJOGaLGZVARWbRJELlSLGyzdsNMGRSDEiAIImkENXjUWbBFyZBUXb2RoHuS0VhTMlAYM24lPF9pHKOrsvEGBg6x2xZMwsJH1ukcuiyRpJHUqQJEbcEp5GUlTATNpIYQsXTNkITOLudGa4cvRe6XNFeKzfXHa2cIfmcGCODOpIIvWZUA3iTi6vEQ/BG9+7tPTZNQlJCpeHk9SUPPryiij0+eOr5hlz6Nfkm0mtFpkOHiGRXtI4xfVwXSvPhaHMke2gpknwdZ4c1m+sNUCO+ws9qZss5rvLIzFPdWqAzTwSqe8fk6zn56Q0qHj8TFqfKzYMnDFctotDUgbbvcTmZNi3KkJQ0JESUUHuGPhF7k10Q7xCvlhSNyvq9j8hPrpF7t2wu6thLZbf2d2CGm/YwA5bGDko7ea0pOKLMZfyUWDVmoNnj8RMmtzTtkLs1IjybNpqiGt3bv2U67hc5HF/WIfJs4k11Pwn37PvZB6WmXet54GsEDcfnrHmMUZ8FhMvIeZeMePY84/v7se/kBT7X3u/G/wqT3EECzq/XXNxsGfpkgWB6Bt8tN8mUMLICgd1xBQNnnXics43dyS6BlNPYoyhYEpud7JwxmgJ1qIzdozvt+7HCfWQIqCqhClOCxXo8jf1HXAGe7bkZW0Bx3pv8k6qxjjAkOITAECOVL71YRKhLbzzNFjygOvVk8WOUnA1crQTwAZczDpj5UEBvLVWE1t8JKZXMMgY7Ge8KM2uPMdL2afK3rNfKs+9ey7UAxBhJkqe1r+JJsaJdL1gs14S9uTS9pWkuf/EwcFx3dmBv/EjfRPfA2jK/dN8GwVSd+yIwd/84k3n6BQF4P2/8dG2PfKHtsUrW522PlgQtz53nb2p7eMH0ks/+357tySiry2vYXlFJb1JyuwkCe8CayOQ17oaWn4sUoKIwGZ0BHs6JrWVfEkuy16dtSjh5QhUK62dkTcl0xZbUs8vx3hubSaRUvLti9zDZqaL2ISUJZc/XgEVXmmSPdiinNDGU8IIPbmI4SWG2Wy8lY0tOfoAT8BhTtPRZ8VXxDMpD8sGXkNTuf5xFWQ3QkfJnnF95SGW/d0UazT6vBVtVdJIQTClNa9tSmULIidmwZdv0OLf4Ebbn89fzL23Pz25owbatm6i3Hj1YMsnmikly5pyLhKMxYkCKFPnuWYxx0yhDmMtnxj5ntiuZNO5R7nldVjSpQ0Oy/TmDDKNWRZGfxBJgzpk3a3u64h30KvjK2B59H3HVjLjqmS9uoXKCXjwhvPQ7eBmQ+pg0ewVJPVr/KtW9X+Of/pP/xNfuvcuf/ukjnj615DRZ0MLCcxMIafcWVXEeApmFAyclaVTuKfjd3MklZk0l2asxGYvLHGZzpWMu9iMz91A7WNTC60fCw6vE9YXSNZ7QWCGx2TRn7Q7KEzXVKSVFU64RoK4c6i1Z51QtqeUTwTsa76lECKoEFVOaKXtDSf8VNQy77xRLwacDVwdwDcEd0uS3oD4jy31EnZ2j3TKokvuPqHIN9Sm+mdGenNC89uv8YbfiYnXF/fNz7p4dEuqB7B5w00fWW/j4/JqL65bWCS/PzKW8vNzw0YeXPGqF5emMflvx/e8kuviEtz/6F3zt136Dk3mHnn2Vk/nrvH//YzQ33Ln92yzSJdX1/8M3futXeevr3+Q73/5/+eF773CzWpFHaUEKqQkIOIpCKRndFQVh811TURYp62bal0vSafLjRyxhKgg0tszUOymPkoY6Lhyr6VO1xFTZc7xaf19XTNVomnxhono8X+ah4xoZlJyMS+acUDVCPYep0NgLZKXfKE8eDaSoXG4yVbOkCjMcAVSp64ZfeeMt7ty9Qxc3rFdrK2Ijs9lsuF7d8OjpNefnK+azhsPFktOjI16+fYfFfGl9h3JgSJEhdqw2N7Rtx3a74Z0fvkdK36Opa85O7nL79B63lre4c3TH1n9KtP2WR08fc//xIz59/Jir9ZohDUTNuMozr5cs3VHBq/I0X5TEtrtm3V2yHbb8wdf+gFeWb5DTe1y1/4ptFxmykNQzJEUJtG1ms/IczY5Q/Ri0wksgVMboVDXSgRY8QNyc49NXaNfXsF7R1AHxCYm5+CdiUnnZSnN8sPcQI/Rdy/nDT1kcBw5PPClhGdSCw1nBobUGSFFY3ySGPiGluFuTcvEoUwXPcqlFmk6YHypHRz1SCmFFih8izphMHhZhSewc284TfUez2JByD1xTyycswozOC2lIZLEYzEys9aLN1nIKJVM5ivrGmEBWhIjGLTGtCNUxmsymN/WMqgrEPpF1IKsj5ohPGecii9kBT1dP6TtLuA29tX6IYv1wh6i03ZrsM4M4quqAOgnr/j/w+u/+99TNbd69/z4v3XmN06NX+eTJkuRrNPWgPeP+KmLtN3Lc0g4r1u2KnJacHvQ8bGa02ZFLsacjcHB4xMHxIZtubccCNu0Wr5Hh/AFh9YjaPyGvP+W16hF93vLkoeevHwhPZM69117hsXzCVlt8nUiSCShCIEehch4nnvVN97nr+m+dYBoD2JJG/xuOQs97bvzIQ+1VGzz7c1788+mXu/GzB+lLFYKUjb2Av5KMYaHOQAfXQHpZqc4ynz5+irt3l9lBpH34kPw40r2dmP/xkvXhmqyJZubpUya7gLSCdJG0MUC2KoFZPHGwScTeKvdlAKlt408x0RwJ9WsOOdFJL9upQ4fiAAWsQqYzyqmfCTpgDb11rB6yTT9HICrqhKAgQRjEFrirx/dbmtkWACR11iDczQMu16QI2UV8KLKAN0qOCjOPnGIl/9di59/37v824/Pm0I89fh5Jnh24+Is/LNrZ1aXahmBVpxhXXwRLHimq1j9DpVSWKbvvyVjNzeQquhIU7z7FdBxzsAvLY6rsLCBpbnn00fd5/51zrtsOhojTSECpXCbERMiORqH2EFSpnWNee2aSaRw0lWMZMk1OlrRpHLNamGWhCtb7hy7ioiDJ5KC0qRhyQrIQ1JHF7t/kPErlvROGBAPKgMkDOmeVGaqZmCI9Sq8Q6dFtJBOIQ0ffOGbB08w97sDB0jYpp0qVFHGJ9WrL0DmYN4R5pPYdXitu33I8+HTFkCOdv0UzH9jeNLTDEfXsMe020KVESpE4JIJrcL6idR09niPv8TqQs1A3c3J2pGTu0LC+5rBq0ZzIsSK1NUpAq5Zu5VEGQh0IWHNgJxVDNvBVsuARKnHWVymoyYMCKXpWNwk/VEgVIAizWpnPzNmvjhfIQUXKsegSJ/xcqJaB7AS9qaH2hIOWMMCwbskOqrqiT4ngMqEyuaxcABFHRHKPOE+XS7CalOhAiLinN1x//wec3D42FpMrs7PIbmgJVp5JEugu4tgllcqP9laTjOynUoFXYtsJo7FLHKtK7RxjILTfK2F/jLw52DUZR9nrjPDlHJNvoOM2oQYCFvvy2QTQDoz6sWyzjMmW8h3dNSEeA43PHEtenHiawAAdg90fcR0itnk//2P78jS/NGezhyVJff/JDZtNZ9J4SYtz/swjGI+ymyil8pkiMzMCtibRZNJ3JrnlCFXA+8rsrsr4IIp0nYHe3u/EQNwI7O4B4oruPlPWi7EWbL2MoIwbC5vKArBje2MiFUmsUX7VQAIDlYL3BGefEyfGZNRRgsESVt6Z/KZDjYWZLYEVCnjtS8NZX5hYuTCoxkSZE2cFOSWhJQVQVbXj5AkQHX1vSlKgJAkKgB5CwAelH6Ktdx8ZEujVEf2tK2Z1fvEcKfPps9Nm97O8J9u3D/L+JEzvCfB9HuTdA4M/b8hz5/9F8It+nrZn/xhS9oDxQkRecPyfmu2Rz7E9kNLAzfkTgq4wSdcdE/fZYzwbF0hZl+PPJ3bX+McZE1AQQihyl+Xzkx3eS0iNfYf275u9Z6K6k6uzd1I+N4YZ5bxS2If7IKQli9nJ2NkN2LFLQmhkUo120YeSUCoAoxNX5MLsfblgz9HVxX4WtEX2ku2aix0fr0Osh9doRxw7tr8TmyfTY9a9+SK79y6IJeCdWiX6eK8psWhbrufmJ+25C8/Np+d+8Nx8+qXt+dkNX/zNrDr1op28SrVeFSWMJ4klehBXWCjlHchoMwrjrWASuNFfLD5qziSx1NFZXtNoa8kiVbyW0qgMqo6MJbWC84jTwtCHFK2QrqocUgmSoO8NV6kZkMYTtcLfXONO7zKoQ6WC5Slpe40Lhwyn/yVNf0klFW/+/uucnP45f/KvP+CTjztctMJBndLWWvB+k/fzGLbjRClKfWW+W1zmEZPWVnumORfGVd7JMI7/tUfpyMmSPYdB2Djl3i1H7e1eU1SiU8QpOI963VuKYuoITvDBcBrvhKgZP1W/G7NJY0k4eRDJuOzNHUq6kxXHW78fb/5/GkPqLqHBcCyvDVV/C6cHJO/IPuBHOeFBCanD0SF8hJ5/F5mfUC2/STx5iYOX3+KPvvGIv77/l8zmnrff/hbit+TFnLCsOTqrefRYeHrV82Q1Y4iJQQLNInC2OOBqiDx8GPl01dIJbId3+cs//4jFyRFv/X7FJv973n3wmB98dJ9P3/3P/Pbv/S7/7B+9xcV3/4Tf+Orv8Id/+E/57a//Fm9/523ee+8d2s2GlNOevYaxsM8j9n5QbO/ZlTGMa2RMEpgtlBKSjf+WEnvZs8linzMJ0lKwkG1vLEhhSVhR5NAnotNkY8cYa39/+TKPnCMpmkyniit9uIRqAa6qMKlO8wtIsL7yOA5B5vjguLh4QHvdE26fcrR4la7bsrq8po0ty8Oal1+/S10tQaGPHX3sLBFc1cQ/gmnqAAAgAElEQVRhYL25Yb3ZcvHgU2rvOFwec3b8EkezY0KoeOlECoPM5Hlv1pc8uXrKarvi0ftvo6oczI+4c+suJ0enHMwOOHrtlF955WvcbG84v3zChw8f8PGTc1ZtR0rZ5Pkd1FVj/Z+dIw4D2/YKzT23Tg745uu/jZeGVfxfudh+ytCW9x2FjCersNomNp1n0czo9D5dzCQdcDRWHBCTJYIEw4Oygiz41a99nZx6To4/wrkfWjuJPEX+5mfgCEFp5tBtjX2ah4HNdaLfmqSjwyTPFSAnNCkpOWJUum2mbzOUVhdeYNsmzh8qZy9VzJeZIXkOTiN1AE0mqeodBL8rMGyqgNcZ2y5zuVKWb3QEP1iiXmoOTi45enLGVY6m7BActgh9WZ+FhakOV+18wrFIb3Rjek10w5pq+RL0NTk7i1O9w/kKjZYUzjERfSSI43A5Z/jE7LM4IUZliKbMFZNa8XDfEYmIPyC5itnshKePr9is3ufWyR8wrB6z7dbcOX6Vyh8j8hDFk7VgoGK2OqPELHTDmk1/wXqYc7jwHM1npN4xFAfNkTmulflww2q1sj3UwXp7xalA9+ADmrpn6FZ064g8VpbqeHDecEnGHS/Q5Q1X2yfUixqtzaYJrhSDVnhXsVlv2W77z13XPx0G0zR+EiP3WSdurAj44lM9y0DagW9/u2varwD8cT77hU6oWJVDcoJPgToqg4uWXQ0z8uue+NtbqjMhSibcXzP7WNn81TU38RKIcF+I/zHRfLMhH/R0leCqijB4+ouW0DnSNuPFKmTEObQVCCDRQJGUImkL/kBYvizUd5TZiRBmggvWGBqF3Au5tc0sDqlYe+vQoYA6iMVZzGMhoYxAh1UbjTiTr51pBA+Z4AoBaTRwalVGPmdCsF4E0jg0RqrDGs4q2vtXuFVCak86ddb78FqRXsry+SmAmPvo6t/7sRfV/f9g+Am8Nqkji6VzCdALSKGAlKpuMQqsk7FyvjT0nBxDAztFxr5eIzukGGQ3Vgb7CZw3nLOsDWocidA+5YN3P+HiakNcR0LvkGizsSIz18jMKbUE6soSFifLhgpFUqYOwqISZkFYiFWedn6gqYE+kyTgJVNX2SovsGAv6kDOgSEHhixEMipuksezxtOwGRKDWANc8AbIuHKPGlBNqFo1Sksm0hJzYC5KUmFQpdGBCo+/NYelI23WzCqQGfQJVlFIOXHQCH0euHU65+7tnk8eD/iwoW3mPL255P735tS/echN/5Ckpic9yuArHucrQqVotERbNQcXBrrrXOjRPboxllbMVkFn76uHIeMlU/maILHI3Diyy6XZtb3E4BTvMr5yNA0gSpZMTsKmy9TeMQuOUHnUO/phwB3M8A7izdpU6dQT0wY5XaK6JfeR4MDNAuFgRm4HXMzEdgAxgEU0UWHgfBAhZtABggrOm8xclzIxK+oDmzBw2DrOv/Mut/7BW+jhIVnEqhLHngBISXgKlsYZI3uZloNlpSwoMabGyN5TmwcqGIJt+hw6JqgEBA862IySIqVqyMH4ERslWTXCBcYUhPETX3YC08732PkCOadS3bkDK3d/9uzyftbu84ba50aZpTF5PRmecg0vSjC98FjTNqbP+CQvlriyg70AK37uu5a0yJLZbjY8udmaNF402aURIH3G7dLx2A4Rb3I4I1xbkv5Tf5XCZrKG3IVdJMZqchJK/yL3TIJpAmPHNVDAWC2Aj5Tq+hiHZ96PsYGYPptyxpf+UFMCyfsCEklRkdolmIIPFvCISWkZU4kpKTWuhDE0G9+FZi3nKVIfTvBiAG/wzqRORMrxlDSaNwwwzprxLkzHC96XVT+2S2cCw+3xWyVuLtJ7LniGQYl9j3pjssZtTbw8Re5efNbXHV/k83PjM5NFdh/7ApD3GUnoz1kSOyB3BHp30p7PJy4+M77koMqLxs/e9hRQ/YW2Zwfo7w4j0zr57LGmy/xb2h75zHctdhLazQ3D6gbRnpSTJZ/GPes5f9hk7ooMZtm3RgYNe3N8SjKNSR8KMOsEV2zAmHCRov9luTFb/7J3L6o6JXURSKn0Ay3PzO06TU9zfSTQT8nyAuqOvV6kJPbBkuo4mWTxXEkCeOdKAcr4BJmMwZTUGXtNORBf5osrLKik0z1p8YP3n7+q7thCYKxStaIY3dvrR9s3reHRpnmPpgg5otnoXU3uOFpvuDlJIHVJWOkzc2/PyXjxPPql7fmZjRwNwDV2nCVJsuzJLRfzMvrxmiEURpKWeWuWpPSFKcVvKtbbaJo2RV5fNXGctpzmLUqmkoxXtcpxZ8V9w5BMGhKxPS/vsTZMmYmcwQ+KVK7IPxvA6aVieHqOLA/oVxeEm/+APzuFw6+Qbh5DcDgC/fJNk+ObvcLx1wL/NXP+z//l25w/Hhj3dC3Ozuhpqzo0ZTu5E0v2OJAsyNhYB+tDYmzqXBIKUkjOWmyZ2eCcLU5zAmThTIULJ0SvnBwqXQtdtPP3Yowp55XKm6+iTk0ys0h45gyuvL+UzbcQVetDpUKFkv2oCmK9tLw4vA+4ypl4grPjxpzI2WQDTcXGIwO43jPrXyUHgbiBPqJDB8nYPyFHHBlkDZtH5MsPcdevoc0d8q27VMue125HvvXt7yHa02XP9nqgHTqWB8LswLG58Hz4SeTOcaDPkUdrZTv0PN5G6l7ZbhIXfUSd4LXnetNydf1/8Rd/9h2G2Ql9Vron9/mrf3fO117x3Lvza8QPvs9vV3c5PnmJf/zH/5y3vnHOf/rzf8vH779DHAaKsKfhXqVwB4ovK7sCAKT0ExvHZHNsrurU822Mr9jJG0/FfgbMZ7U+xE6lsAMhOPu+iiWUJBc/s+xhexbuS4Jhff6wvkuphKdCVSmhGcAnVM1/R42RkzrP5sYzqxeQhc36CddXDdXtJb20iID3gUcX53z3g3dJmrh7csDp4TG3T085Pb7NwfKUup5bz+YZnB0mVJMVe2Urpsg5crO+IqXIfL6grhrqak7Ac3Y05+zopZL8jvRxIMVI13ecP/2UvusQ5zk8OOHo4IhffeU1vnLvFc6vn/L+pw/45Mk5N11PnzOqkbbdojmheSANK1RXvPLSW5zNX0b1CTfDv2SzTsRIkfWOJCqyCMMAQxJCiAzpCWk4MSlhdYblxmisUw02N3Pine/9NVdXK37rt77B0dHrVPIxWVooTDgHJEkEnxE/0MwqUlZG4kQclKtL5ewlGIq4VcqZlC2ZFZOjj4luSKSUaTegOdHMHFmVoXdcXzhmc+i7zCunghclO1cUGij9MhNeHE2oib3QDRWXm8QbL3U4elL2eNYcnUbmckx73ZE04wtTPJd+6nHIrM4b0iZw9xuJXCTf7MqZevQOGbb9mqPDBSIekQgomiN1mJGGa5REyhFJCSExm83I/RiHWl+nIStdKsU8mlj3A13fU1Vzem1Z1ndpo3Kz+YjY35A3F3znr/+Cr7/1Gyxmt1ltPyTLpryPgURCtSIRkRwZYsu2v+F6e8XxrObo8IDrdWP8r2wqGd3jx4QmU/cRqorr9ppZ27L57ttId0Gq52TNpORZbRoerzPXnZBqz0uvOh6tP8QvhLDMDCp4vPURjJ6mmrNZdWxvIuun8XPX9U85wfTTGz8vGbC/6Xmfd4Cf/77LpRJPvHlkXpDbjvxWj7wJVaO4Q4ecOvSW5/pmzeLBgoUE4mFmcwnpez0ue/Lv1IRFhasC3cWafJnwKZBXatqZHqrGwU2ib62nSqxBl4HZYWZ2F5qXFFkoswa8NzCCXLK7AaQR/CCwVWvqKBC1wBnOXCyvnrSNU4NCT+lJjyBJ8RmSU8KiZlj3JhHlzVnJChIqZsslcbMhpR6RbMB+Beoc9eEcJ0L3ZEXuMnRQaAToJaYF/As59uGiZ8euUvrntzb+LsdU/SP7wfM+sDD+EcYqecXYIsLzMi+6Fw+a4yfTQZ8FVkegxH47VrAJQsTnlutHj/nggyds1onQt7jscarUKDMijfTMKmERoA7KwiVmeWAePOIdy5ljXil1BU0VEMnMq4zrKfPfpEg02mbuA8Q+k6IjJWHIGYJDUqli0gKaouQkiPNUTqiK9r0loSrUB5xTUu6tkq3IoqQotGIVdsMwMJ8r6jPpWqhTIPQev5yRDwdC3ZNvOmY4k1mZ1QQ87QB37jU8ftrSbTa0qwYvws1Vj+opMT+iGzJJDSCa14E5SgjgnTl0Ip5cKV07EGgIlaB+wIkS/IJBPLkqZTjZI9ma1UoqrIPscC5Q46idacer81ReqYISfM/BbEEtSmp72l7pxRpRh0poljN675HZAj1ekpoZYfAkp2gNDD061AQEWQ+404UBx3VFdIJWHsST+kjVNEiKpGHAi9CIg2TyHgkPKLUzUKNHiaXCcJMSzSeX3Hz4KQe/cWAA0ZgTKmCMFABpks+bALsCEk2gW/m36KRgO8pfKJTgf/dnV8MedmBTQaee3eJG5oo5cDuBjvGM2ZJ7X+LhRHamZVxHSpGsdBNQJ6XXyT7oJWrP1pU8H7u/JqVDV7T6bQPdA/nHRN7eA59skbePymQHmd71PuPkRXvD/vFU3V4D+L24dAxYyxZkPZdtnl13V6xvBhgEkgFMBt7a/dj8kpIUKr2PxFjNjBXye89LR/C2PGfrbxKw3iR2nBCsQir4UCTopMg2jZVw9vdY0e52guEGtDyXAM15FATbS8yIVfROYP3udZhjrELjK5yzvhTeeWsCLs4aZ5f3Vwfr2aJi794jBGd68SKO4KxyrwK8L6CxyHRNXqyvW0Lps1oCTxS8ZygVwZRkgmSdGqqPoIVifhMKSRURRx97XLZElPMmQ4G3IozV9YLju1c06ojO4YhkzZOt2Z9Hsj8vxnON00mK9ydlr1SbL5qtmACk9JaRiXBpAl86zTNThBlB3fFuxonFZ+b3+L5NO/0Xb/zsbY/1bp2cd0agHSiJ2nHsbI/+Hdgeec72ZFQTXdehww0iEcWY2Pvzcf88kyzXeMNa9j/svHb4Ii9YDjCymez+pPRe8vjgCN6XZ203b8cv9yB791uSQagr8p6UvXosbRqTL3Z1IzNpKiLYNzxgILFTfJHlc16m/kkiBRcpoLB4VxiXoKV3gfP2sp1IOZZYbDcm6xHzH7IdzAUDlCWWdVtATpPt2vnhquM+Vd57mQuu3OEo45jigDoDtxDHKI/jSTTxhpV0eF0yOL9nexSd+qPuntMvbc/f3ciMe6CSxaTqvNiembOz/VzNZ7YcqWPqEYqfpJGtP+5Y+LarazLuhxYWlBLInOkWP/aeUfBF5NlAdVuPmk0uzCl4bz2bxFvS0iWBUIDPCG7u0S7imoo8gDSO1CX86SFpuyYOGbl5gMuOdPwN3LBC44qBChfmcPhNjr/q+OP/1vOv/7e3uXzaWeFJWb9ZwDtPUiWVHoiOknyJMiW8RISYjXllSWWP5rLuMJB4TNYKtnY0GwM7CYQMhwHWgsV0M2NntTFDVoLP1BniYP2nXOk95Vymcs6YSw6qZPs+TsnebENo7LnOFhUHhzOqSmjmc+rZDB9q8DOcC+RS4DnEgSEPbLob2naL04jkiia+Ce4MEHK7wrc92mfU9+AcSRNOMmiE/hLWT8hPP8bPa55+8u/Y9A94+HTFh+drqtSxlobWC+s20cbIYllx9WTg/Dqxak1y+GIF4iMvvXzG7VsVw+OH3P/h2oqkMZbQ49Ulyd2wmAUOZ4HX7x1x97UjHn78fVJ6lXYeefniQ1ysmC1uc/ulN/kn//xN/vo7f8Zf/tm/4eZqhaZo/pZaf6xczLRT69GsjIWt49w1ezSWruaSZpoKjmxh2H4w4Q0yElABk6YU8ZbDK0lenWxbKWQoLTVGlhOMPuBzG+KXbOScQBJOFAlQzxIuRPPxJRmjUhNOM9vrmtwvcQczeyZpzp27r7Ld3HDdPuXO/E1CCNy9dw83r1h3LadHB8R2y+X6mvPLJ3gfmM8OWM6XHB6ccrg4oqlmVH5M0poKyqI5AYrUHLkUqLWoZrz3CBXBzQjNAmo4Wiq3T+6RdKDrO7q+5WplTKeUMiF4vvrSGa/eOebjJ0/59OKStu8mlma7jcRhQxw2fOXem9SyIMZ/y3X7Du1aiRESnkE9KgHFkbIr/ZLWtLklD5mcEjkP5GTMMMWkfkVM1i32yg/f/4CLy3Oq+g1+/VVXfKgMadwpi+/hldlCqRvh5sr60jov3DwV+taRDrQwNZWUIePQFOmjMXhCcKSU6Xust6QI4uH6yrC47OFgkXAqiPjJvxIPtRPrwyQ129az2Xg2ccud21u8QiISM/gD2LQ9733vmtldsKvAimwVcnI8fD/RhIqzoSL4HRPas2Ov56QMcVskxB2SHZodOSd8qAhiO1S76vn43Sve/PXbNI1JvKtaIY5zCbKSkhLVegNuB6XttxwezhiGNW55SMwHbLpLsmw5PFI+/PRt3nzlK5wevs6T6+8ifUA0k7GeUlCeMUqfEl3fsWk3tOmS4+Uh59WMmCtLljmL9erDI3zccvPJA9aXH5Me3CecP+Zo6VlvLuluLpG2Y5uUVXTEyvPaS0ds9SGDj5wsF2RN1GL9l/rBMa+WxE7ZriKXT3pWjz9/Xf+9TTD9vMePYifBs2D0/vee+cwYSbmOdKy4Nyt4GdxxItSCP1DcmeJnAeqG8PuedtnDJ+CzVd3780z7QY9bLPGv1GziFtYZ2Tr6IVlVz8KTSAw54r2nmgMnieM3HLNXHeIGtIo0xxCqscF8JiXTd81RSaLWu8WVPktBirSdTIBjPavw4mklw0ahUL5D5cgiGNVAiU5wjS1QCYK2CYn2KJL2iCZzYFKy6iQt9G0XGXSDP6hAFshWkYuOHFvkqAQZ1wl6t4sHfpLx41R7/lTHF53rxb/7m7DpftFGmiRMdkCmlgh7ijERxubx5rjtJJT2x4SV71X75rFC3Y3ayFKIPqNDqFjQBIJpZkt3yQfvvsfjT6/JXcvCOdBIEFg4Za6R+SjzkAeCCrUXFrVwMHc0jaMOmcpn6+uh4HxNzj3qxHStyYWGW2EN2hXvTdM1OGhcnqovcs7MfW3AIgkq423FmMqtKjhPVA8+IT7g/RInkVAYRXiH8wrao0NmvUpsOqVuYNFvqNYVzcmMcBxw80RVe9oVVCEhfkvfC9kpp6eB5UGiU6gXA7Gb46ue7bYhs2DVXqDqCCJUMtBVjlBV+KWQXYdWgXU7sGgClRjgECoHuVTWYRU4Cgy9ouqNQo2BZgW2QsUTFXLy1FQopkku0ZFjQl3C5cRh4xjE3BCJCR8zTdOQj2Y0d0+IacApuBCIT67pLq5Y3LkFixkRS26BIw8ZrSqaACn3hFmNi5msCfHekk8aCc70y7ts0YrkTF0afWeNaAr04pi3PZfvfszhW2/Se0/IhcEn+3KyFtSbXMcYxgiKK+yG0XaU6jt5LvwY19K4tmRkYIxDym9Nk3mSwC3feIblQrkGGTmsfOkTTGMF+jMM6R2m/2xC4tlvTR/OqQCx+yDkKBWnu8pw9iumddRwf9av2CU/9lhNn7OdPM8CeDETfPfzZ349/Wx0UE2m5mrT0feDJT7yKO2xuwzd/5/PXJvNTZFRxqkwl8Zr0L35xMgk8va3G//eS3IWINhAVGMRWaBnzveYdLdXKFNze+t/sLu/8W/nZO/NlWb1TkymQ0viqgDvggFcTsYEv0y6/GN/hiAjY0JKBZ6jKmCmw7T9x12t8o5UNidfmASSUzHbIxN3hKd3oK4U8E7EYb28rZG4FvAqpUTwu35rdV0Tu2jrPispOvoszNlLKLnP7pz770Wf90WeSRwUcFfHa9gDap9PdFAYNHn8/ChTtZs3uzk83viL/KC9wpNfoPF3aXt2JujnbXt2+4vZHgP8NWeG9QqnHVHH5JLuH2rKBbzwTHvnmWTxpmTS+PWd7zD1M/Ku2BxX5DX3PM6StIGyposk52grx5k+2RZxaE57t1nOJlhiaO/CpwS65imZpNODGo8HMkrLlxsfwfnxPf1/7L3br2zZdd73G/Oy1qqqfTu3Pn3nRSJlUkp0MSBbsS0gMWIEyFuAAHnPU17yJwUJkCfrJQGCyHai2IklBbBiK6YiUhTFpprdfe57n32p21przjnyMOaqqn26m2xZNMmmOMnd59TZVbVuc445xjfG+L79d4mByzUrVXP/1b74qiEiu86sIkb15CaavOpf7O617Cyo/d/tqc+nyZRLse+u8ymGQM5j/XgmaE8pPc4XEG+27ZYNfmUu8XPb8+MalpRwuy4hBahUdvYgDpNxoCREPaqC1OJRFNRPujX7zp9pD7X8pN3c4zJwlAcTnReLcybf1Z57MWaDYLB9FsGp1r0tG01kMYYHq4syam0Vh8vWVe8TjE4pF09wKuTxktY3jCen+I/+ED+OSPtHyBt/jzK7T44zhqOvcPy35vz9Av/X//wNhk2Gks27FVdp/Ao32bF2cDbpnzp2XUoTdXmZJlfSXRJJRChqGlbVPQcx+imt1OCicFfhEuVarAtKnBg9t2AFI1gSqRTFD3YsFSVoIgZH8Fa5nxBOGpjNHWd3AvfuNCxmkaaLSDRDkwS06orEEFEXEAk4N6NrHfPmDneaE5TAMK7ZrF+Q+jcoEtFccNsbyuoFOgymYRsMoCdlqJRUmgbGi29zdfF7bIePyOtL/vTbj7habWmT42a5JtxfEOct603GB4hRGTZAgkEUKY7jswXz4JCju2xfbtG8BgkkhVykYm4FzSPzJnJy75T56RnOg64fkfPI9VXguNwg6W3a/GWaozf4pV/7h9x58JD/+/f+J86fPKv2PE/ZobpKLM4pYnEnKjtNzyIFioHzE4meMBXdsbdbemDbmfZzBczuWoN+peKr80emohHZn4sydTJ9Ct3x52hMyVpxQogj6voaf8a6vYyoDuh6zurZHNVolNEpk3vHUXtCGZOtByyCffPBF3jj/tsMeahFZ/vu51wSY0rcrJa8vHnBs4tHRBc46o6Yz47oZqbp5H2ofkBlEhDBuaaawwMGkJ1PZc/RS8ui7Zi3J4CS8pbl5pqb1TVPz1/w/Pw5fUq0QdAwsO4Hhryhz5ckPYcw8PDsHqKwTv+U5WbNdlDG4hjVkbRBNWLFIB5XApLXFKxjyLbFAjlZJ7GCSME7xceK47yEi6drvvveM77ytgO1uKxI7VZVMYxFHN2scHziWS2FoYe0GhmHwMWTwN2zKYklaA6ULKSsjMm0O2Oc4pnKylD1JLUoN9dw9x1P2wbUGkatSMdD9FhnpW/RsWXoW65XnrYbWBz15GL3O6utj5vtDW5WJ5QGa55AjT5L4f5bDZsXFeer69JhSTXBKIFFhZTH3ZpSEuMwMCTlqFsYxo3y+Ds3/ME/2fLwCw/wHsPBMR9LvNmhgOFxrnhSFrbDBiSQy4CEQPCnbMdzNsNLrtcvSRp4+ux97tx9QHhyhPPnFh/m+lywziSyI3mlT5ltn9j0PWftNbP5CeuxqXX4Dj+bM+K52azJ2y1ND4++8SfcmXm6XFivrrm8uEZyQgNsYsPxl96iPfX8yfuPWdw5IjSFWEbuNpllH7hxRwzJsVxteHm+ZfNkxC8/Tlk9jR9BgumnwbDddv6Az5Qg+oHf+Bk/u3d6D85gEvQTcAQkFvTNgvtawN03aid/5BiPBO0i5VoYVgOxgXKaKV/NMFd4FpivBkQ844Wg395QfESip2w8DNRqHjHdpIXQHHvCWaF9qLgzoT1N+BMlhEJohHYhaFBSzuhglRkUrfpGtvhyFT8rAAFCAPGOlAqaEikUsldCF0xQLVvlWHGCz9ZVoFW0cHH3lH41MG7XyNZq3F2wFkNEkegt690XXAEXg3UMOOvwyAW406Li6MuyJpkEroBPp378KR1/tbWyqx78mzh2VF+ZohYZi4wYTDeB7pPXVW6DFZ/0dVAdQcdUVSlYddxUj1gOgBurys91o3WIG9hcX/HBe0/YXo+E0ZxnRyEGpSmJmULrhOILMUZmLZwde06PhTYWYovpNKG4XKxyM1YxQoQyJFyK6CDWiuqx+a8BwdrEG2d0a+KdUUSUeh1qVfZIsW6mYpW7RYVAoQmtcdxKsg4BMRHfXEbEWRIh4emTiSFut4V+TDgvzIae2UZo7zTofEM86fFBIBUayWTXoCXz4P6M5XbAdz2LMONmk3i56lncvcP25SWqGN2dCmEYEW8Unf64Ydn3xFmLFkgyWLV/2xC0Yy4dZbMlDYlxDAyDdRAkZ/SaYylAwLmGhLfuBjfgPOCjVcYWz3pQNggut7hsnVRaClmFbcnE40h7/5ix72nnHeIDabXBzWboxZLN1ZrZ8RwXA3m9QboWlzPRO8aSKONAFyolhQfE4xtP2hZjpMMRA9ZeLYWiShRImlknR94KSzdQPnxEul4i90/30PeOW7BYZV3thJoshN4KVKYfV39X9otgl1Q6KHN/BbQz0e8aFFYengmjvAWsaO0R2YEIdo2f92DnE4cYrPRxiqoJiToEhGsSZgoWqUCmMz5nC072fsqrYwpcDqnh5JX3HgLBn0Tn8+kA78c/Xz/wse8HGFPm4mpVOcMniqrpTfsg+fZ372Pp6dwRqZpLfkdnWe/o7r46760St5g/MdEz3toFD16Iq10G030oZWID3b1XUOMJFzumk5r4KRCCJ/hQ40OrzN6Dzb7qPLEDS01HyRJg1GpSSsGL1nJ4pTKqIlg9ayNCU6utvdTOqwpAKQbkOW+0EForn0OotJbOqsa1WKA0nZtIraavoIWrdIbTPbCPWgeBVA2+ECMpJ9ODGALDJpLawZ67sqvKNzt1ey7b99pD3QfV3Jp/e9B2P38/qUBmqtTU2g1wCPL+lb31V0Dhn9nxN8722FmXNLC5ujL9xVw+/pw/6bG/4jJPCRHr3pF9F5hMyRo7/nS9RkmolX5u1wPJq6/cwWd25+wO3j0lLiiVQs9OxnlrxfDO7XWUDCm05yxYAt5u+g7ocNBJqegAACAASURBVPX8XQV8bFc3uzMlnHeXL2qUeMFZd5Kd8J4yrybDpCbARFy1cWpdqNT3VkBous9GW1iBK7OOTB1YiiX4QaoWjWAUUpXaM1nRUNSRMKzJTULFH9geqbbn9jyBn9ueH9fYxz2VHplK54jiKpAqzpIj1hxmYPr0bKwC3YCwqdOtyIEvQE3NqRJQ7pbNbm15xLrYnK0zrWdQ1EB374zWsThhzJkYxarKXRU2zwXfNpTBKuzVCRJnpLSiOT6ta0sp6551vsBvNhC2SDhGckHf/z+IZ1/E3fsVtvPXiPGIe18rfO2DS77xh++RpeCxgCxRQBw3ybRCFs66a4oa9W6p8ddhIr/25tlcq13Iuf5S3ERHCOQ6d1UJI7wpjo3LjNWncl7IozJqIY/2PueMfrdU6sGxKGlUvIeTVnlw5njzXuB44ei6gEdJuZD7AZ+MAriMSk6CRGVkwEnCOUcIBU+LYyTGBY7IfPYaR/MvkcY1m+WG5ctL8vULKpuUAdqiiMtGV9X3aLemDI+5Of9XpLAE79kse677zNk8sBk9EWWzXrJZK+4o0swjoWlJGxOR942niUJfwJWGqw2EB2/Rfv+cTZ+r7Zzmj9CPsEmJsV8TS0PXD8zDmrwS/uTykhenwi/8wju8Fha03V18mPPgnV/nt//zGb//u/+Yi0fPKGoFOzuehnoQn60bwxLz07wuMHXb4FCqfRMrwKsmkakj3VWbZZSptmE7LGmqdTHuujiRqpeoe/uqoGr0uVI+HeT9XAyfLbnUgm+MwixXWkknCjIgQ0t/ccZmE5GgjGmL90bHuF5f8vjpn9P5e+hpQnCMY8/l5QuKFmaLOYvZMTG0TGVhs6ZwPLvLrjNaTQsqpYHl+iXL5Q2I0DYzum5B183pwgwnflf0IBPfLfu1vvs7AIWiI8G33Dl6nTvHr/PWwy1Xr5/z0fOPePryOavVFTc352zzJX25oB8+xPkZi/YYWLIa/x82axhGGJNQCGjxFPGWTHcC2XG9vuHkNFAMGLakXNmimmye4HAOQijMOs9SCzoGnj8z+QWnShFHkqkbUGi90frHAIvjzOLYkTMMvbDdKN/9VuL1tyPpnpJESKMV8/UjbEePemhmU3LdEi8waTqaBu2D+2K4lnhwpSZpAq5iZa1r6deBIUVuVoV7b3u0BEbtjVa8wIffbvjwsdAcVeyrUpPbJgKFzMnrhdgHQskU+vrUAkhgsho4V6kKFZOYcGz7TEhCcNHiQs3kc8dv/tYxp3c3PHqUyepQKUhQJASSOhpXcGrsSkVhO2xBAkWtA7brHrIanrEZLtgMSwot7z95n199/W/TNsest8GSiJKRSQxDQRlIecuQBrZpZNUnTro1J7OBy2VH0WCdlyXx4tFzTu8ccfTml3iWMx9ulqwKxDSwaOH41HFzVbjKDv3iAx688RqPn3wT6SJtK3SS+NJiQ9c7zlmwKYHrVeLqYsX14y26VDripy7rv3aCSeTji+zHO141rB93LD/7eNXVrID07tpe/c5PMOoC4PZ0I3cy8WsN7hdBThIJISdbWNJXpzw4dCX0V1vIgm6geEjHCZnPmG9nzPyG7fWG4ftLmnfv0HeQ4xrfgT+BcLfQvK7MX4Pm2OFnGb8AYia0ld7BAbGKR2fIYptjylP1nVXU5WgLxg1Y+7oTki8wQt4UaKHrAhlFIjBSBetBHRTxhCFTlgk6h5t3+EWBcQtjofQWnhQvhFnAx450UxguNlASTjzZgbiMtIrEGeobfO4oNwPuWI0b98JbWzw/CWH5wwD61WP/qAHWaf7Jv4fv/ukcjgREVGsdgIyYYB/V8XIH757AdH/wej+moH+37Wve/cu+UnEC1Ks7pwokVKP9aux5/MEHPH9yBX2h0YLXhNdCm6yqTYLRrUUHJ3Pl5Ei4c+aYNUY35R2EptYiaDZHhWxtuFlwpQE8GhUXjZe4lMCoalRtQMaRxZzxxkmlkgGvBlw4AR8iYzL+WdVCKp4ogVkokC2RK85bZT9KHjLiqgZJFOuGCplVUdZj4Sb1NCN0a+XoQYOcjmQZcSHSIKbNlpWj047maaLPhc12RTc7BZ9o3YzUZwhCnz1udMy6YJ1HksF5mlmHLw4/jsTSEIAHZ0fICL4I58uR5ZraZg0SCt55xAWr2ouBrAaW4DJeItoGJELTwKwFSVI7PpUgnk22P8UHStPhZi20gW7eMd6saY4ahtbRLUdOvvIO2RXy1ZIgjtS0iHhKgrxOFBcouQYLpeBcYJRCbls0CZIHKFZJZJVvZUKUCUB0I56Elkh5seb6w6ec3jtlCkp3q95JTTZNNrvudbuKX9nNYwELbCahvOmbdl0QFYDfjbI7htF7KTUMtu+VvR7FBMyYCK3u19LPqI3agYwHlc/7Yddv3T1TteLe7uzBrsrL/glJOFer4il6C+w8PMarwOz0evp5tYPg08YndV4fnuf0HoB+GLhc9oxD2k3ZabrJwecmH9AA072vNCU7fLU3bnL81dX74HYC9t5bYsVV3ZMd+FdKpfiqSZYpKSNm3yb09rDXZ3csqjaluNrNZJpMfgJ9FUK0RLPDKod9CNbpcZCsMX0WZ3S/TpiFtlL/7CmvgqMCbY5GHK1Y91KL7Gj+oAp+13OZADgRR5FKu+Fqxao4xpwqldPURS4wiYW76nvXZzXpvYhI1X2w+5eqNqdzgTyOaPYMmwbu5AMg7yAjwW2gVlV3nfiHc3//5+QH304yHL5nGmXqNqjPlYNj/FXGlBj4WQJ4P238+G3Pq8/tx217bE4OQ892ua70NBNofZDBnY53cI57V25/brvkTO24nXCH/e8m6rjp/Pd3tkb0u+cwfWYP/LH/ZX3r1HEpWCJ4d5987UJyNWGCdWBOnYb2err/xWyhTPbAdC9xQmxqAlr3QNB0b6RS3kkUi+6jnQ81uWQdHw4psktoT4VWzk8MAfa/nMruOid/AjVb4WSyuPvEg1NLiJkWe00w5LJL6o8l4zURxw1FKn0nP7c9Pz1D9tNdjeo1JZuTmUKovbcKZGWXUAKbzyM1toDdHiRTd5qYWLmogf9dGZiTSOIJzrQ/iybbR6fO+Am0V0MJTfrTXpfROp6KFKMSK0JOiRAjpWTyONLd/wLDxYfkm3PwkdyviHGGek8piX7Tk/I1vr9LiBHyiOYb5M1/QPJz/PwtvvSbv85f/vkjXj5fU5IVkwgwusxpNZtapGrq7OduLhM975RgoOpDlZpMsmRaSYpWerdCXZ+VDSABszHylg98j8QYbMVJ7arOWPfStCYn3TmncPfI89XXPfdPPV0n9V4p2yFVGrCMz+brqFdcsO5p32fysEGix4ugrVC8J9Agq3P84l3ovgjjDU4K85OW+d232Dz9C67+4mVNjgxWdZ9rRoVMHq5Zr54xdluKa9HcIZsti6sLPspHqB8ZPKQ2kHJhsyqm6aIj4j13FlagtF4nzl/eMFyNzK6W/MKX3ub+Gw/56P2P6treE9PlAi8uB84ubvj1L/eQldW1sGVGcsLQnbL8s/d55/x3+Prf+W9pOSamzNmDr/L3/7P/it//3X/M+ZPHBFVSpRCuxsOee7WTFjdpTR7V+VkTT85N+1JdWNXW7bzjaa/ZdYpWH+8gUWG1Szo50wfraIrLZEdP+bkdUnBR8U0BZx0k1sA1oiWRc0CuztB+Zom9Ajkr2Y8kueb5i5a+XzGfd9U/EGJoGfKWZ1dP4UI46hYcz48IsaFpZnTNjBBbgou1yNehXmkbYTa7w72zkVKsCPdq9ZxHzz5iHAvBNRwvzjhenNA2M4Jv7Rq07omyj31y2XC9esJytUZcw7w75nh+wtnxHRazlnkXSWPi4vI5y+U5vT5mffGU7vhNo6ksL9iOjyvdnJByQyGAJpwWcvHgAsVlXtysePfNGVJW1jSQhJJHsnPGyCBCCErjjTqzcQ3bIXN1MbAdFszcygqb69krimtMnzqPA3EmLE4C/aCk4klbZbMufOfPlC++Dm0spFJIo9KPsN54XFC6heloaVFSEfJotN1FBfGZu3caPCPZJcQrPoSqwaR4AiKRzZAZRsdm0/Pen8Ebr73Dr/29byMIpXd8809n/MZv9/zT3zVqV9VSXcUaL4kgTcZ3/W59aS0CKMUwRi/gZcRJArLRNqqwWg/MyhQ/AuuW03nLa78ewW8Y1glNAtGYvJxXEsooASNRFFJRhnGwpBpCygPzoze4fPbHbNIlrjRIXtOedtw9ep357AHXy+/ipKHoiDBWXwkyIy4PjHlgO/Zs+pnp1rUbuuaEtXp8hvv37nLx3W8RL0dKG0nDS+598Qs4HaA/J49X5CGxGmB755jj+3cYbi54ttwQjxcEXzhr4ITMqixYjkcs15mb6xVXj7e4m0KrQuM+PY30I6HI++nys27BcZ953I55pF6TOU9y8KZXW+Vvg9nVsQ215e5NaH9NkDcGxlnGtwbgagk4DVU41faUwQWD97JVMeAynDjy8T22/RyXn3FWEjerxHp9QXxXmN/LNA+E+EBpTiCeQnfX6O2cb2i6jmHoTeeoKM57Usqkuvh8PXbO2KZYMrQgjcONLbqE/nqLjIrDob46oH0hrUfKCFRQNXggV32A+pOXI2u5Jh7NCF7YiuIbR9kWPJUauECMDboAWSW0z+jY4zurEFE1UXFipLmzYMBRlhujBBwLegMlTYmFzFQr9Jmeef3z1hP8lODkkz/56qc/7T1/naGf8ufP+vCopl2QjTYYLdA+AAbMGd/5ZLXuTiew20DMHYXIIXAisnPQJjoo6uf2QVa1A9qTlhe8950PWd6YYy5jxmelAxpGOjcyi5lZVzhtPSfHwnxmbb45FVxQXKu4MFUpYVR4o0fbCJ1HtgqbVEFDT84w4ineAE5SDeJLMjFEdUjwpn+WDEj1zqFFagW7Gk/vYNWjZcy4IsQ2giglG+9tJiAiRC900aNOGHWglcSYM1ejcrkpXG0Tz9eZeJI5ui90x4oLDYpDoifOEt2isH6Z8K5D4sBqGFmMLUfHR7y4vGDRNRQtjFlZdB14R8FR+ozzAZ+MRm/RQho2lG3HsB3YDEJSSMWjDroGQhCkKE2MHB1Fch45OmpoO1idF7Iq3gVaX5j7TBIh+oZxgFKcBcmOnY4SyaM3A5uU0W1m219x9MWHjPkSVwpxMSNfrXFtQ+kCJRU2orgQ2WwTIx4Rh48Qc4JkgF2OjlSKVdtkxUugZA9SKC7jgzALjjSlfMrI8v3H3PnlX0CDUT7sQLOJnqRWs+1yOghord6s761/oXq+B4CQ1O6QXaxUg/iGKtdZu5XsemQH4rv92pJpTU0BXQV80J9Asv/HO14FeaVyc1NBPmXqHZuA3koPI1Plr3ziPjMBV4fHOTjqJ57Lq3RWr/7bp33mh4HAE8C32mzZbAZyqvvwdCqvuFlToDtpH01jB+B6j3cB7wLOBUSN2i5IwDcN3u9d0Qm02gGzbk83F2IghIBIrVRzB9dS57h1G1m31FRJnV+9fTuQ2Z6Zd0L0VsnmZBK5tqfosI6FnBPbfmDedLjQEJ1DXDi4D3XtpVITTNAgtAhhl/ixhLp4T+9q+rZer/OOWPVTilq1/QTcClo5+aVKp9wGWm/9fbpvTLox010xOqOShHHdkMuaIJge22QudvDMgS9kX/6xubk/9jT398/vk/yn6VnsMpSvPI/PMm6d06vf/Tdg/Hhsj+zmQj3qJ57LX932TEmfw+7Z2+/f2x7o1xtSv4WS9jRzn3Q+MpVVcGteWTJIdglsV/0ov/s3q973k27SdP4H89jsT9Un8NbxqMLOPu7vstZ1Z11KzsnuOipPFrWIndvAIpb89ZXm2VUwHb/b1kXMtxvHkUYCEY8EE12eik08RpGrZCQY2CHTT728UoqdGwLj3kbsOtb84fKs1zcRCVRKacuqU4HcQ9tzeM/25z1FyJZwU0QzcejZlgEn7YHtmUC5n9uen9goxZIeuMrIrIZFFMUHK4zQCqh7EbxOHfL7TjuZNDvVvmtPIWuge6j3eqGD6ZlK1YEWWweAFZQ4SxrV5l9yEaKbSkl1V7k+2bqiBXyAbPuoC3PS8hntyVuUm+eERUQ5IfU36BaGcYn3CkcdeXmDBjHAbfmI0JzhFw9IoaW9/xW+8B98hYvf+2Nba0VRZ7IC4rKReIlhGXaepXbyTfN+t7HWRLLpZeeaaBCVWghov89q5kKrjSglswiON0X4IGdG78hJybu41ZLCYwaSchSVX36r4cuvtTQtIIoUITvsfuJIas/H6DitS92lgmutG0SGKl0QAwS1OHwcKbM7NK4BFD1+E9l0iAQkLph/+R3i2Ze5/jf/hPzyaU0KZBRFgycXZdSNUQ0OW3S8huWWr9/1rN+/4tkQKacdeicw3KzYbjJpUwg+MFtkHp61/PH7S5ajo3dK0jXj2PMkOs7u3cE1z0hDFZtX89emhNvNyxuePZrRtB0F4fJqzfHdwPGDI7Ynr/P++XeZffN/5Kt/+7/BNcc43XL28Bf5u//ov+AP/tnv8PLpM3xmB0gL1KTmVNAwZRqNF6VIIUxYYDUNDsetHFA17nsMaorO9n2y1oHObs47sU4Imbqh2O9VU1Lj8zpCU4hdJpGsoEQKXq2A1mmgrO4i4ylNG4hhQCWiqac0jhBaTo5P8M1bBN9h1PBWVPbw/tu89uBNoos4FylaSNm0kbb9DePqJd7HWtghtHFG9C3eR5wzLeno5zSnM+6dvMGQtwypp4yZzeaKi8tHrNZrmnbB2fEZx4szvG8M49FE0Z4iIyMrhv6aj57/JX0/Mgstp6czisvkcs16eE6fL5F0xfkH17z5S2/VRPUTNmlJ6RVJtXFBAY0YijrSek/nG549e0Lz9bt4eQ/yBikdUkrFk121KRnnHC8fDYRZQxsKy5dbLi4Lb98vaAlWrIwlpMXDfOY4X9pMbVuj2ROo/oLjw/dHnjzrWDxM9ENivVHOX3oefZAZtxCcN4pTp4QikD2lV4ZUaOaOo6O9/4TUghSxxIUTTx49262w7R39kFmc3oH5hzhMkeX6pcOHwrOnIzmHA3dBcElImwY3T4gEcIr6Speu9iPU/cc7nBpVXs6W4JYC1+sb7uYG1H6/fV547asO121BF6yWtcg7CrG15y5qcZsVE0otJhhqesmKd7rFA8bRs9neIPoaw+oF49k1qd9yNnvIC5kbQDXpDFe9wwkXTzkzjpnNVln3ylFcsmjuMmyNtefZ5TWjOMrymrm0dC7RnNxlePmIYbmlv95wtS6cl0h3/y7HzYz3H3+XTXQ0QWgCLFzicn3G8/EOz5aR9eqa1dMV7VKYuRYfHfO7R5++rv+6huFjvtXBhvr5GK86ybtQxYZwy5F+1RmVXTBWX6lAq4SvCOHrCq9lNBp1lneBMii5V6MM8B7U4SUSnWPWGS3TNvfQFtpwH1Q4vrNg+MIVy5NEOFXufCniX1PCEczvCeFI8EFxndIeg0QTiI1+hq4dZZPQIe8EJ61ZySgJFKNpGfpiCaMEbtZRugV0AXWB8aNr2qLViwLGA+wyAMG+y6NIrs6MmE7JsBooKVuLfahcqxE0KSVD3gyo2yCxo5k1DNsVZRRcExHXMAxrXAF1hRKFcNaRopIvh/2zuP4kBOmHjFcrEP+dxyvz5d/LmBC9vznDGmiNE9VQvmIJlSmoZuJbr0HJ5PhBrQA7DCQP3LjDwP4W0KLmlLCvxLcNYkvJhZvnT3j20ZIxTYKT4EUJJBpRugDzDs5OPIsAXSgEEUoZCV4IrbNYfTCNBPEenEejQ0KwdamCU0fRQHEtzMANI5IjmsFpxjtovAVrfSqQp2pWj+LJya47RqpWSCZGaMU2d+cCZEtqeLF2Zy8BnBA6hzR2vxvUgjwJtGMhbkcuh8xNWvPiZaYZPUdrR9s5xHsKQpDAbNYQlgP9Zk0Wx9HdMzbDFu86NtcjZbuku98ivmFQA0lcUaKPRrriwHcJxbG6cZTREow+RGuZjpkYhHkX8d7TDxnJge1NwjllrVuGjbWwz5vCvBlpG4+PDeRCzoL4QhDrgPIhoA6aRUdpBB1HmuOOePeIdRoYlhvcLBpn+jAQQ0RSwa8SWTJN5ynbbLNQlb5YJVvnPTpYYl8EivOMxQiiRQoxFpwateNYtGq31Eq1khieXKCrLXJ2bCB6EQoelan7zlUbtq/gnfavCWjTOpNfgYIO5jw1UNmVYtYk7rRm9gmt3ZD6bVNFNMKkgcAtUPLzPF65hglYkQNL8mry5wD0EtgVIk5jV00vrs6VH3IGH/Ohfni19W3qrE9/z2c9ZimF6+WGoQbuWkGRHVB3+wJ39vdw7JNLEzVV1TCqf3ofLBnkPRRnFAQy0S8ZUBBjQ/Bup4OkaO1EOgAjp4BdJ3thIf44lt33TD/7czYb2cS4WzO+nmvJNcyfhN1FiDHSnc4IODzWeTitM1dp/7SAeKPGaxFaEbopySZCDs6CvWBV4VLtbD6YPxMw7ZzsqPeKKqWAC57WBVx25GycNM77yiZ4G1ynBk4TuE4pSLIu4DQa9Z7zWAK5PrsJcP7kCXJ7rrwK8n7azHq16+DfeYgcHOOWV/6zA/L+VNqeHx7WfTbbM53h9Odh7HX45VbstrlZoWmcmDIPALgJgptm7Me/Dywx5GTSLrr945x1FbrJrogld9yBTbGK37DrltzZX/E7cfbDJJOIgYCmy1RpLOt7jEFCXjk/wQej+FTRXaeVXavt7VpvXAietpkjQRBve0FBdzZMHFbVLta9JBFoBOKUXHR4pfrUfl9Yguxip+oF13VmHVea6zpTE6CPUayTO5ed3SsFRCyYnIDSUv0G07VyaDLgqAAuj1CSAfw/tz0/NSOrUfo40YkAEaMfn57xBG7ac861pWMqyPDu8F4rvvqVVnxSdvMiUDjVEbA4T3IBX2qHmRjdUNGqpzIVbTiyM31bvOENsajFYMGE4UseCW1AS8bfe8B4dYmUp7ijI2TcWPLEQ0qmU1KK4BJozuT1Br91+DbAX/4+evIm7t4X0Nk93nz3lD+Ngc042hrJyqYU5tGWmEeMhmk3JW2mZMCr+SrTjNEpQeAcCSF5IUvFTDSYxlINXZ2ahkfAcyrQqfJR2nJetUfUBIKrPpTjztzzG283PDx1OJSUa2Gasz2/lGR+uwikggajf9OqZUUZKG0EF/HbgUykuIFy7wswe5s4f0jpXkdDR9QGjce47g45J3zb4u99kbN7b3H5L/4H0tMPKhWg2TFLLg0wjghK3mbKJjHz8Ouve773bODPnmxZvPMub/xHJ2zXG559Z4377jVfmc94//0lx1EgtKzXmbYJzKPn5uYG9Z7QdWy2K+tww5KMwdnPelv48+8OHJ94ZkcN80XD/GhO1x1z/OCrpK7lw0f/ljff/SNmr/0nSNuQpWHx1i/zd/5hzx/+r7/D9cXLqU/JijxFa4eNwxejpbe9d9J4AdnpuEiNk8w61l1hZ0NkWjN1fU3k0dNckipnpZi+p9n5yQrV97nPtw0KTaG4RAGKBlQGgktWXLU5QrZntDOPc8o9bdmOHilCJBFjSzdbMJu/TefnjGlLGzoQxfumLkxve5MLNC7ShAVTtkYpDPmG86snfPRiybAdCdIwn885mh1xtDilaxY41zJzHV0syMz8jeX6GavNNe999G2ur25AHScnx7z+4DUe3nuNo3mkicJ8FhmGgRAcSMPqZsm3vv9NXqzO2eZrbvqXqJ6zPr/g+mLk3jDQj1uSv2DbjwyjMKiSChQ6i/tLpiTzIWKEx48+wPMmrf9TlvRI8WgpOx2pXJkgSnFkMq+9AUPOrF563ntv4AsPZowy7mKsUjvtFnPBq0dzwXtoW+gbi0+yFiQL3/i3W+79Vsdqlfje9zIfPhrY9IYvCYZzl9rdlMf60LMyPxXmnVpRNFOnVcBLxgpcPdtB2A6O5RaGwfPFkznvvLWlZIdo5v0/n3F0P/P+d8QKdwFxBYqwfhF49h3h7PWWe19sYDsiJVN0AIw6GpdNP08c6iLOzRlTYRwEyY7r5UDJRtGqK0fMHf5sJBHxRC6vNxSULtqdy1lxyWQR1Gm1g5BKpugGJVPySNOeUIqw6S9pFu8wvLjkav1d/vAb/zv3757h/cKYeMSjxSM7rfGEypace4Y00I+ZzQCd29CFK5yLDCmwHApudsew9fIc2TzjaNby0Ycr0s2Gm5eZy7Xn3q/+Im+9+ybrp3/BikxwDQ6hizDScj4c8XIlbIeB62cr9Mpx3HawCHRnM9zs05s6fjQdTBz4fz8EAPlJOWM/6NhTF8Qnd7/8oPOtyQXbIcCD3it0v9rAVxPljomI+WyOej8WyrLg1tbaXBS0h+1mjUSPSE+MC9RBnEXUbxmHc25Sxn+h4L7uiK9l2rcC3bEQSLStEhtHEwJZR8IMsvf4MEf8CU0ouFnD+vw5xaxTvSplMO1Kw1AKSBa2N4pLIzq/oTs5oTQVU6qUeuav2DWXQq14UutkQshVywmTPbHtb7Dt1wRflTwmnIfgHHksDOsVsSmWPQ5WrZeT0rRzhtJTxoRIQrWFLtLNTxj9hvHlyvSexgIrrdpXn3EcAmRT9SUfB2l+8sHDrdXFD56PP0tjcp6moF6xal0DKfcVpEbbgCZMm8m9ku8zwP/wK3f8rLoPhlCtVeGVdqQC55mM79c8+v5HLFcjjFZNGyI0WuhSovOOWVOYtVUoUMSCIByalLEfcUNEXUSjcdLnHqj0UGXdm1ZbjoyD4OYt/rhhXA2wDQiBIQg9gqpnyMYBLjW4L+JxPtg9kkzjhYDxnAtT5WHCh4AXo4ew6vaCcyO5dk3qekR7R4rBAN0YIGaOOqXrIicp8HytDJsll1eFi23Et4WuFbogbEfILtDrYIyxOXN5uWK2mENwxG6G8wMFCyKzBBgtcRibjph7+nFgTMowRppiegDb9UhKwkhgNgMQspshDpqmMI4T3Zbd86zQBaFrpqn8zwAAIABJREFUhFnr6OYz1kOmbWewXlee3UJ0BcgE39DMG9rTOdp63CwyOmjbGeN2ixQlRE9RJQVH6Aek8RaMh0hiTROU5njGsN6wyQOhbdHQUHJPjALFkUJmk2GblaMoBMHEMTVTto7sIbuELgf0csXm/JrF2Qm+1K6FOo9vaSFNLxSmUmUFZLctCeomHQXdgTgToL5fGDYfK6K1s31mGmuEM+m8qN1nkf13SD1m+Zi9+hyOXYBoLyaADSaw0B0AuAf2hb21NpWKwxCSnWD8QViIHH5wev90T29nw/cg8qeAua+CqLcu6fA57T9w8OFbbwYgo6zWPalXyjjRCxWzMxUb1MmeYvNimpgqQhFPcd6S2uIQ8btkkFDpqbxRPpastTLT7pFUWie8Mz2Rqrcmzu8B0InaqyY3nZvmv9ROagM4FXBSk/iCVV8748BHlJyz0caIGF2PmI9Tqh6Cm5JhziHZdNNCnftOBV8TxEKlH/aeVhyL+ufEw49A6w0MQ4RGHINmRhEGZ1XYRcuuU2kCv4OHVEy02jmrPC51vavabQoOJuqVMZdaIa1Eb10NLgplqD5XSaSspNIw00KhWPJpVzV0OEt2aQ0MTql0yGql5UWmLkrZJTomjZNpzt4CeV9JfOjE8KfyyjrS3Xfsq0Kw+beHX/bnVXUsfvL+2l9z/FTZHjmwPfV4t+zLfp5MyWM7zGe1PZP/fevNYCE4fb/CsaVopcibzvJg35m0TfZXZnPDKbUCur6WqbPm0Ea63X22XI0VNDk3fY9j0ijybrJd+8T3/q5pvb/VF63brat20U0NW/aP1nlQr7lUAJpqDy10cmilv/OOSpFn3RtG/VC78h3gS31t27dzlmDynUPDtHTqM3JWeCMIPkAZFbIgYwW1J35FxY6nUotbCmnECo5wRqXo974CVa8JAU2lTldFQm2JkgBV00WzUEqhKHj15i/sbI8ywau3J8bPbc+PY5TpEYjFQodFeHbzym4tOYWsCal70NR/AXavJy0cV7Wc90wTyqxkZtWXzMXo2VSsQ7Bg+18UK7ySYnplRgsGKWNrAMNPGgXNhieYPtQGCR558n1mr32RfPMc+oEhj0RvtszHBnERcUIae6PHksi4HkhJKX7NfOEYnv0ZZX6Xtt1wdOeI1eaidrGYP661yyuzT/jubpcqxducEydoFEpjsdWmcWwVtgUGHBpCpZ00KzakZNq7SYkEojTEMKdtZrxVlHBzyQfPn6CjVs1J4d0T4etvBO4uFK3aaVKsg1uT2Q3dpS6U4BwpF1wwEDeNGQ2gKeGPImW7JksizN9Fw+sQZrZYhmuc66DtkLjAhxkSrOuEeIR7/Zc5/Y//ay7/+X9HevZdhiyoUyQP6JihjGZrJp8yg0rh4ZknBM+zbz/G6RGLN1vefrvh7XjCB99c8sEy8eC45eky40S5GwU/b7i4WlK4sSIEKbVI0RO952geODrucOJ4fnEFC0cnHtGMawLzu68TF69zfPoum8fC1eW30PaXaE/fosw6sm84ffc/5Nf+7hP+1T//39iuNkzlDaXaZ6jJHt3bDUEoFhzVpONUHGZdIYd78DR2Xft1HQnWxVGkdjJJrdqWUv9e12RNqGn57Mw9P5XDZw7tizjTiGYzh5u7dM2MZpYIIRM7Y18pg5JS5mgWeXHxmGG9Jb51xvzBAxo5QRDSOHJ985LV+obNdkUIga5bsDg6ZjGb04QWBKLvuH/6gPl8QT+syRnOX1zwwaPvMYyJ4DzHx6fcO7vP/bP7zOfHVqDqlbaJnBwt8N6z2vQ8fX7On/zFt1AKZ2cz3n54nzdeu8d8NqdTz8vLG15cv+DZzSUX65f0wxXF3dByyeWzK0SE9c01V5sXPGx6xhFSglIacokUN5JwGCjr8L5Q4sjzq6dcr9+lC+DKwKgRMB3XrgmsNr1ponUDX/7VSAkb4haCKM+e3zByii+j0WurrzOxMOuExcxxs6qsMBFCrEXYdd49f5L5P/9gSx6Vm2thHC2eIgjtvOPy8ZKxr0Vy3opXHEI3m+KburtqJFU8ytc53/eFoXiG5Ok3yr/4Z4+Y37/PP/hHN5TR86f/xvEb/2nm/71waC7gHKU4nECzEI7vNCwfFaLzzAPkMaHeodFoSs2fUwKZ4Av4GWkc6YdMv16yXq/RAqubzPf+tfDlrwWKDKZ/XuDqcmV4dsDmZTJJi1x1JwMZTU3tbs11jxjwLpJzZNuvOD2eM/Rr0viCl6sPcDETQoejQSXg3FjjOyvmFs2MZcs4ZoYx028zvd8S3BXRHTHIDNSjzjG0c14sG4YX54xXVxyd3eGDpy947+UWae/xlYdnbF+8z4vNc7RtmXywYQycDws2GyHnzM3zJRd/ec3J/JjZa8fkxkNwu7j7k8aPJMF0C1A6LHX7YWVvP5IxoWs/eHx2yrPD7zwAy16tzFPBq5DFARkC+Dc88Tc9fG3EHSsRRx4gr2xvsLVYM8lZYUzICmRVaoVvJvs1eVaQWYOcXLK406Ozke7enOZkjixGjl9f4NyWMApNxKp/yOZkNRlQfAPiM+REYcC1FnjGGBjGbNU1jVA2pQZR5nyFxqjt/JBIm3PKUEGjWs1mYIttga46jd47hlHJ6kGyUX9hcUUXI/12rB1LeV915ysNTQFXlLTZ4JLDxdpVkAfGvlb9qnVAictkBPWB5mxBCA29XsOg6KhoXwOpg63+h0yK2y//SnPmJzFemZM/w0PxFC040s65suRSqcC3CSSb8KU3rnpqUFzYJ5GAg3JNQFCtVIqyD4usum5Pz2LBqbW+puU5H31wxbYfKaMSi9AUR8yORiNOM1qM4Mz5gAtStc0siJcBXDTxxIDRmeQi+CDExqFjQYpYxZn3xNFRHq/J4hlxlCz0sWXTBMbeqqICCcVX6T+IVJCRCSyoiSVRCp7gjKpAa4mUijXrFlVEimkTESwhNiajk2uUZi64NuCc0Bx52oVnvg68d73kyZC5Wq9I3uOlwTXCZuhJjLggxFlD6AJJR/pROX5wzGa5gRDwjcdJITolimO73Rp9TYJGPVI8Q68oI+JNXLHJnlF7igTGbEGujoqWkVkbKU5JKgSJqC9k79m6gPqIHM9N5Hlbe98EhqQUD91xi3eeEj0sOnQ7WkfFWUucn8Llis3LC7qmo2wzKoESHG4s6HogOE/vBdFSk+jZuNErWFMURE3IcnADfY5sU+BoYS30Y4GA0AhkgUGVslmzfPyU4y+/xegqFYhM4Y0FMxN4tAO5nKuaD5Npk4MEUbVnOxB5Wh4Hc34CeA74wI36xDqbygRWvWp+DnGg23/5nI6P7QQ7PPQwefOqS3BrHNwmu83Tq1d3ph+8R7lPSBi9Skf1auLp8H2Hv3v1aBM492lPq2hhtU2kYTR6vE/cD2/Bxkxc8lOXwKSxJLuupKphsuuMO/ysfc4Hj5N958B0DdPr6Z7swXD796LFqql3Llv1Q0QMsJmASDEANThBittppmhRowmu4HOMwbqHctkBCE6oei5mf7wIQZXWezyukrI6Ghytc3S+UiE7mPRCnLMAS8RAs6LW7ToiBOesirtCGc45UjFaC68GPJfyqm+i9Xps/WfVnU6T92b7U9Wx8d5bN2ZWxlHReLhPTv+ZgN7DI0y0EvV4ky2SfQfJD/OX7Hl88nt2QDHUBPhkgwy435/gQQHJreM5RA73+c/r+Dzanul9+++UV5JS9ptXjvwDbI9qIW+3UMbKhf/D/V7ZXafbzUuH7JJru06iw+TW4ef5uF7TlLgQd5DcOzjvXWdT3XfR/fPZAfRTa0PNBos4XBBEKsUnZlumvRuxZLrWhDNar60mm6bEh3MKTnHB4abaKod1OQVn/36oZzcluESsSLACoFOnkgS3LxxQaleIVhtuz7robQLcyb46HwzUnnyKarvUY91Oaq/JZnvKmAx9+JjtsfTorbnwc9vzYxl7901rDGGQ96QVWrR262BAOWBFGhRjRFEFMk6qRtPOblkVNzW5OSPhpeDIlIn+1noXarLKYpwi4DG9asSoxuuhiMGq51M9x+iEnEEHcDGyvlkybL5Fc3xCExrKZkV2StO1uOhJwwaGgnUdOqRr67Vm8vWS0X8PJJEXL/EeFrO+aovZ+bUquKrtMYqxUji0VsLX7/SKO43k+x2bxrFOme0A/VgYgeRsPeU8GoU55muUUguQU4akRomXICchiydr5GoDgUwXI794JvzKGx3Hc+tmzsViPpes4EXVtJ7QCqY6Z3ZHgexJvWmh5WT2pIxPETy+acmrJXF2A7OHRnuXXhKbGdrPcZtLUjcn3PkyLi1x24FxNsM9+CVOf+u/5Opf/vfok48YZEDGApIp0RJ0WkCih1hwg/lSbfQsxsLTf33B8z9SNrOG8/MN/Vo58o5h9OTccxoddyVz//QETcLVcoXvGkpRFvPAg/vHtLOGrg08fHjEzfmK8/WSsR+4fjnS+mPc/IQ+JdIw4I/vc/dLv83L8/+F8PI75GFDe/eLuKM3SDLnnb/1mzz63jf5i29/FzcKSgbRiS20rgXdraEp9VQtLIj5eMJep06muE1tvuwKJHadSGZvps4l2xb2RRa21dQCkwOf9/M6ik56oLrTh47DEW55SmgWxLnJDIgDJwnvl4R2RJix3DzldPwyr7/5BvfunpjfXgse2nbGg7bjTrnDcnXO1c01T18+5vL738IVhayEJnJ2csKD+2ccHx0zm5/Wc8n4Rlhut/SbgacXz3j/0fehJNo44/T0jNce3uHkpOWN+X02/cBquWbWNrSLlsfnz/nwYsn3np8jec3RPHDv7Iw7J3e4Hldc99dsh55celq3YXN5xbAphCCM62tevHyfXzg9YxjNnk46RpaaCZUBoRBcIjZG5faN9875xbc6hGssC27xzayLuKstqShEmJ31pMHh8SbRMvR8/8nIl+4quciu2MD27cLdM8+L64H14MELPhRKgjFDGZQShMePIfdCWg+U5JjNAot7M975whm6HXn2aEsNTew54mi7YMUIlWby5ZPCd/4/x6/8pufePUs0bvtCn5RtX0i90M4ib7y5YbtxPHvPcbURXB7Zruemd+0Ab9R0ORbufzVw9U24fNIzf72BMaBxwIvpzDlRQqVz9U7wEthslmzWW1482zIOghbPN//lOc1VR0ozYhnIDtImsNxsCcESZ5oqQuOENCiEQhBHiYmcEkUHi321oGKMOuOwYXbWst0o/z97b/ZsW3Kc9/0yq9Zae+8z33OnntAYCZIAGCJphWlHWFbYCsmWXhy2n/wP+A/zi5/84vCTwxG2FJZkUwoJIAgCDXSjG923b9/5nnP2tNaqqvRD1tp73x4IUAJNNoTqOH3P2eMaqrIyv8zvy6P1CuJLnl91tG1Ho3OGAnurYlALCIptSXmgHwbWw0DXZeZ2Tae3WZWZ+ztS33d0l/D63+PZs3/Ggx99n8cvVzzeKrdmhZePfkY5TzzXyGYYvRXO0KA2hxGKDFw9W/Lo/Rfce/OS5njBYII2kdC0LLrTL1zX/94JJpEJ4rK9s3gY/fylkdCvY3x+sPBXfv8rHzHJbx2Mz1R3Sq3eTZgq+tVC+PsF3kg0s0DeFsateXXYYC71NBbKGvKAO/TJnXs5CqQIoSuEoy1yMRLvbmmOjcW9hB5Fjs6P0HYkzDPtbEVJG4K6FnJt2YK2ggWpFXQ92JIgUIZtBZvBpLgjY0qp1WbZ8v6M2wm4hTQUSnKqeo6+oUqpDlDyjc90kiODVJ34aMHpgJVRMRkrFb+OhRqYikH06rdJisEs1wq+kXGdXFNZAHXN42CQxwELHRy3aJozDitkVCxnSMJhNdVn7rb88mDkb9c4RG//utfS354hNrpbJVo3n5rYrGC41N9tYjbVNTw1iMZsV92KwSSv4rW9LiGA7etinZrt0fW+GtYTwdfPP+LqSc84DpQ0IiURc6azgUAiKKglQph5M9lxwHrQkmHMSFLWZUvbNF7pbgUkEptM3CbEAsW84nTWmlfSSSSLMpTAKA2lBEqGqF6JH7VFNSDD4IGbZT+vyqf3JaOYZKJ6MsdKptBh0pBLIYiDs5nMmJx+7dp/6pVt4GsKReYddtTQHXXc7QPNC2H+/IafX2941Bs3/YrN1lkPQZRAogwbMkoODZvlhmauhDaSaKAmvSR7Q08VsNIz64xmzGRpGE2JFTwpJTKaYeOcBvVIMkSsBIIGLIgDK+Y95dZbB4uP2s6lcARKUGTWMKwTWoQ2ikuAIriyODTiYE4zb9mMI918RlIlxpY8ZkqI0Lbk62vy1nseuexVYMwZSwMBqw04kyfSs5A10zOSFYIo22yczFuC9EBD6kfUMq12ZMuEceT6wSfcHxPM28rOLAcazMIrZbc6BRle8CAyzXVHizwG2idT99J6FQyb/rBpH5e6bqb9sYY5B5XAe6zFS7Rr2QFfdjv16b42O5D1FYD38Bz/6vvJZ+XMPvv89N1TU/nD7/50L5ZPH++nf/+rHOqUvCnFWPcjKedfec/0QNgZla5jPrEAKuCr4j1PTGuvEq09TsKrCSgqQL27/tOnswP+poSNVVv+6X3foCadAtP+KfX7pt5QbdPQRO+9VJJLAQatIGgN/HcJpSq5JTVBFlVoJNCYFxOpOSupUW/u2orQBpcfpfaUMHHAFhGCGg2BVJwdHgAJSqosirKHVkGMGCMp10KGel9LvSzTXVZVQsTBr+I63XlamSFQLEASLAmpFAgBiiCl7p8V5NsFNLa/ljv6+w7m8EKPnYztBJr8e45X5uwuIfBZ322SIPvc931Jx5fb9rBbp4e/12/6FCj/+WOyPVYyadt7MdAOUfulb64ggSdbtbKFJtsjuzVMZQXVtVyfc7NSk80HKbp9IqP+zWfvk/8y/W+SuTpMrgGVCalTw+1GCdEZILnkCsZX8GHq2ySH57FPqkjwJJFFQyIQan/PIN4bIQhOf5K6b0vNb0llSigSQbMxFeNL8N47qrIr/pt6LWoIlJxrmH+YFGK3PpXax6k4M6GkPKl0HhQVuJZYLjVTYPzW9vwtGTrFSTYx0f0WFbwINASXrqNKujrzxwGvZOZN2Y0KgMreR5325grIL0gozvrNFXgwmSIznyOlVBwigNVrm+sxiLkMkaiQMMqAJ3gapeRMGgYabWgHkKsrSr8kNg2WIrkfCaHQ3nmLdL2E1TNyCGiqSeyoXuw3rGiO7jEsH9PNWi7uCfmn9VzquWczCLjEn06z0gjHSrwXsXszNkdzVkNme7Wlz7V4TMWLFydGnNaG9MWF4Uv2fnOTm+9Ji4IEIZSRhsSdu3OOFyfcPWn43lszTjqXYc9jYrvqWd2MlOKJbzMIUWus7FO6pD1jSlDGPBACWIJQAhmwfove+x5p6yoXhJoW6ZeE2R3GpiEsH5HbM/JwTbw8wdpTcnNB89bf5eS7v+Dpi/+Z3A9YSog65uM2tqAR4iIQEsiQ3H5L8WThqvD06RaRzO224eh8znsvtsSgjAn6WOiuX1ByYcwFUmI+77h/94g3XzsizmeYCcchMT+Cxb0FL5aDA/RHJ4TFGf1myWZ4QbNqaM/u0L3537B58Ziyek7JxmLo0fPXGeYXfPsP/4SHv/iYVVrXeoGD0tT6t+Iykz7Xa08y84IhV0edRE+FXEotimUf19U9cpd8qv+vFpxKDMV7xvg6oMar+iU3P6MV1Kr/SkD6SLk5o9Fj2iMI0QvojRoLaCLlAdHMaIn50SlnZ+ds05pF2tA2blSmexSk4/T4NkdHZ8yP5pxvjtmutnz44AEffPSA5WrFMPTM5g23b53y2t073L17i9OzU84v5mzXA6vTOZt+pO8z1zc3/Pzhh3z/Jz+mSOLWrSNeu3fJrdMT7t495vR0zu3zU957+JiPXjxikzKfXK158Px9VN7z9RgKpltiWEF/xfWztfetawtjv+YXH7/DH7/1J5Qcqm2IlOLKKVFlJ3VHLJweJ26Wxj//wbt85f5dsBtKTmARMZh3ga4TViOAoREay6hmUKH0yjvvLnnj8gSk9z5Y5vO4UDiawZ3LwGYsjD3Mu4bl44HNqpB7I3bQtEIbOsaxkAfj5arnyeMVsTNe+8o5Tx59Qh5dhrXqhxJj9Qt3vaWNj981jk9a5n80EGaBbS/0g/df6oeBq+cbhus5D9+d87//L8rttwOra2PolZJAQ3HkQ8Wx6iaRzchjhiLk5MxYrf5UCLHKkUPQFkvGcnXN+ibx8fvXrJ50/Kv/4ynzq1O+9jUhWyJnKCVw9Sw7O3YWvBCi+DwuAcbBMTsNQlMmj3IS2jQgk4uSxi3tzPtyX11dcXl0m0xP0QWqFwhPMOsRnGgxFfsaA7ks6fOC7TBnGGYEXdPqkhhPyFlrUVBtOXJ8m9t/+F/zdDPj6T/7P7nz2j3uXChyXnieEn0P2xFiKyy6GaEoSGFzsyHf9Hzlm/dYj4VehKZtmR8tuHfndU5Pb3/huv41MZjqOAwgPi9w+Xf70C94/K/Toh58th0+NDm9btiLFERh9q1A/kfC4pYybo1hSIRQq9CKMyZKNkhCSgVGAVOIEZ0pJQzIcYaTDJfG4r4xu8iIFrpjMC3I7BqJIxrcY29m7szpVIAaKoiBPzakG5AVWqLzKysuOCTXtVGrzl0DYRYoQSg5o6NQGncgGSpztS5UUds5jQLuwJi5U6SF7jSSB8GuEto7qJGTV/MQPKjQ7NIVZYobFRAHXgjuSJVSUGm8mibbjsUkpeCdPQUkulzVxYLcZ0rqIQnc1IDlCyLSL1dyaRqH5/Il9yR+5TEB1e5aeVC/r2ycJEQcySg7J48qo0eVStvPBP9tpxH/SiOxfYWnkTjcBMK44dHHL1htk7NlUlUlwTcxCUoXs/fcyUq/yaR+g+aGAJRUyDlQCsTGEw9RoidORoixSi6FgFhgNUDJEQ0NRYUkEWmdbhxCYBwybYyghVxGtFWyKRIiTfCgvtSkkBHQWBDL5NIwf1Owqw3ad5Sqz2tWSAmESPDF6dTi4M0ZYZIeGUEVnQd0PuN2q8xmwtGJMn858LNHIy9G2KRCQ6GTEW088ZKLsbpek65autOAdMIsCLF4N5NQRuax0CUjrYyY54xrr1bKyUhj8Ya6WciIO2cGIQQWbaGMI+PW6NqOEECbDLUBcc6ZYbNl0XSkkihZCF2k00AkexKojDUpZNAnclDKmIjzGePVklwSoU9I0xBPZpT1imG1QrdGM2+I0WcUAbZ59CRi09B1c4ZlzzZvGMhsSiTniBRjFOPJk5GmaUmtVxpmg2HTo/M5UgqbR89JNxuYz4BDKyAHf1eQvVbRmWS8H4JAmSSA8i6RuoNhDsA/mxp4V9s4SeiJo0n7KvXp+6eE1e4YaqJ2Kn/+kpuow94Zh+PzQCTZZedeTeZM7JTd3xWonQJT+dyL9OqeNQG5U/X3rlr+c8DNvaShfPFx8ik3Zvfc9GH7W2cY4zjS9wP7RDy7hI/VQ3VGwO6T3WHXgFRJqSm5pAdyU1IllbwHWsDMHWENWhtXV7+mXrepZ9PhuUyzWZBdb8kQQhVMrb7GBObWWa/UaukJdFat/pMDV4QG8ARwLtQ+ELGyivx8A967TosRgxIRQoFGlJbATJVQK08DSqznnzFMHeSZOIiq3nQ7qhcjRAneiwF2UlaV9L7D2JFImppNO4rNxLaVUK/5BE5rZVQZ5OxNt1MuLoeTC9uVUc44SGC4LThMMk/SLjtgd/q+Uqb2UPWxcsA0+ezcO5RJmybcKyCtvDopd0nSw7l78DnO9vjl6/PLNn6zbM9036a/fJ79KrYnp5E0DPsnbQKXPn3O+7MR2K3vKbEi0/U4+FH1RFPQMO2AO1s1zf0p2T0lqKbjkGo8vXLcF4CzaWoJrNW5uev7BJNB04m1qLBn2NeeTdXgiVfawHTddb/2JNR7ruaFiQEIeGKpwXsvTWZSHYCfdnKh5rkPLvzEdirJk1MyySxZPQ6p9t08ptrt9RNYIlYP1XZygLsoRRTRWkw4ZmeH5kJOhTSO5HWPnVa/ou4hNqHpv7U9fyPDZEociatAhFqgYVDqPBTxAoxJBtL5Zs6AEdOqiACFTJw2rmp3VECtcESC+rnT3AzCbl5NxX9JhWieuJwSXiW7fxkBMpRQkyh4AlYBHY3SJJIKpc+0CEohUCA2WGxJ149dtk0KJfWUEWLXkAFpovcMs5HUZyRf8fpX55z+aOT5kw2WBQvq/ZXMC3BNhLiA7isz4tdb8ryjz7AdBlJJjOqgoFAZeNWnStN8F7AS9gzBYjv7M+sy52cz3r674O37R9y5Nef4eEYTtPaIm7vPH47cfNnAdmi4fp549M6PSNuNFwoLeHyslWttUJInrzSQxpEgfg8JSlkv4fmHlPmc+Mn3GaRg8wXd0QVDKkgzx5qGcvM+QsCef4CunsKdr5O7C/TNP2Lxje+z/eG/hGRYMMd3QmVlRkVmgUYijQT0ZUEVogidCieNkXKk0cJ62bPsM0EbRhtJocVmkZO28Hy5IefMrfM5r99uuHcZaI4aVn1goRsWpzNOzgI3P3vO3Tfv8Prvf4OhZJ49eJ8Q4HhxwjisebrpOW3OYbxBhp548wmzvCKev0n7xnd5+5v/hr/4wY/c9pc69w8SQi5Fv7dXVhPnu14/1cyouMqjTYWxti+AOizg2xmlCpQ50qb1Hlbvt86lcOAffxmHIaRSffTcwvUxyhHNidI0BQlKxihF6h5ZGb8kMgNtDLQx0pgwpCXzOKAyqz6tX0eVFpXA+fE5MRQer9e0jXJ2cczx8YJtP3K12fDTB8/4s599SAyFo6M59+6c8ZXXXuON+69x5/YthiHz7FnkeD5jddbz7OqGR8+u+OlHP0QlcXF6xP3LS25f3OJbX7lNNxN+9olhQyDnjjFt2Y4bynZLG5d07Q031y/JBaRxJRoR4/0P3uPm73wPsxOKPUcsoBYoufieb2BFaRBOOjheGA8fXPNv37mKNiEaAAAgAElEQVTPa0drUh6RrEhRuiCcHzdcbYxx8Akc1GX6RYwihZc3G376wYxvv2FYdtxGSsBpo5nzY6XcLTyVwHsf9Nw8TZSK5fab3jEX6Zlcm/liwbBa8fLpwLd+/zaL446bq+1OireUSS3I9+IY4N6byt/7xzN++qcDm6+3zC6N7dboN0oalTwU1tcjjz7q+OjnZ/zgXw78d995k9XL9ymj1pYDMC1QbT1JNgy+qPpekMHoEKwoQYWmFhVJ8B7lqReeP12RpePdH615+KHxos383rcSd77X0J2uSalgQfnowRJUaduGJnaELJzMO5blY4YRGguksZCys0sDLYUlIg1l3FDysvawM2aLI7bpGWlY0s7PKXlGo7dZtEvW/Qis3emxvQ+fSk+fN2zTSJ86NA4s9JpW77AtEStGrntK0IZ2ccZ3//F/yx/88R/w4//1f+Let5d8HBPXT4V1L2hsmS/O6RrfM7fLLWU0ZuenbHpBo3Jy0nJ+a8Hi+Iyz4zNy+WLf59ebYPprG592HP+6nTnZf8cUINj+IepGraLod+fkf1DoZls2Q0IaaKMv6n6dKGvBVuI0wlplIw2YFGw2Ei8D7WlAFon2TNAz6M4j2pQdyOJN1Hs0QNsGQiuIVNA9eMBRikvj5QSoutZrzgx9pgzuAOcDiQUbC60KYwROZjQc0ZclPN/4Hlcr5rK541d9Pr8TXiaIjEYYQXKhnIAdC2VcYOOaMgy7ojMzo+kC45DcMS2+ETvz3oOwGLyvgAZnYLhu+dSYWBnTUJ05l8IpeURpQZTu7Jh+lSh9hgHKtoBNCYq//QmlX41VdTj5vvzBzK826qKTCqRXqYbp3tZQ0V8qB8CYAeKSd1PvJjF1nXgyNgHwu++ACUF0JpA7PBmw9QuefLLhelhRVltiggZXQg3BkyA07hxdrQpZIs3Y0qmDnSQYhoJIxAaXb+uaQCPuIDQZWk2EkHztRqEJtdI1CITgkm+l0ESnDJdS6E3pYiSUQiyepIJatZHFmyUqjFmBSNeBXWf6mwZyRmOuOI03zoy150mxQi5edVXMmQZSMpoDbDL2MiMRojQczY55uwmcnq85Pcqk99b85Aks+8yJFsK2R3slt8aqLzy96mm3wq3TlmJuX2YRwmjMCxxFJXcKfSbHhjF5tVoyRUJBrUVCQdqASYs2HVo2RCKtZbpY9ak1oJJpu4bTs4X3WxlGVIzeoDSuwV0SNBpoGmcGtH3GVAknM2ga0mpL/+yKrmnYWKHNheZ6TaZHNGKayFKYn7T0T7fkItyUxGI247jxe1PESKVhHApSEqGAWEErSDxaIVVpr5Q85NDGGIceblasHz1hce+sBjETZDYlfPbA/wR8oYGJxScTKCPTOrBdYgDibs7vf6b+HrZz+iYwb7debHqb1b0JhNoTgoLwxXq8X5bxSuX5FwBHr74GDhMs0xCoLGc5fGPdRz8HDPvML5//va+851fYO16tyvb/OYYnu2TN/jzYbfS5FIbkco9WqlzTK5/76uGKKkHCZyTxdv8e/tRjUBHvOWRCDJEYI96r6dVqf63V7t5HyWofyP2cRLwyP1Tp3Smh5DmY4kmhIMTgdrNVJQatEgl7hpJZqewglwHSCWSuS6Rett17gghtUGahoS1KK16849JclVFqDijkKinsbAUjxmY6+MqSciAvioMVaQIb6jp16Zyy6/dh03yQ/Tzw5zMTWyNPYKhIjU38GMZtpr+pK3Y3F6hB4r4qt0yJgwqJeKNZZ6eXkp3Bbsbuok9z8gvm4MR2P5y7U6Lgi8bnrUeRfWJx+vs3AuT9jbM9n/3jkJH1Rban5FwrcAvFqi+3PzP2SaD9sUyArErl0co+vji0Pf4pNdlUPy6oEmrPMxXZJ6E5OM66l+pBomy3++pkPyYwi91eOfWQk+CMJYlak0rs3HnvFTfdV92f47Q2qgGSai8nQESiEBpFG5f7NZnOe78O7cAv9sSKFyvt7Pb0PfX6eRIHnPVU12tlVZVS17lNLDa/Rv4e20kDTwkgYfJN6twzIQ8Dtu5r7mF/Plj4re35GxweXlWpxHpPfQ+r97JUdm/t4eoAumCqFMt1EQsyFSiJyy1NPiUiHEumNWfoqBpilcVMdqaSeewVgn+OmVAo5GJVodCVSqb750tIyakQzBm5pU9o8qrtIIpYIjTCJgSwzCaOrIOxjYEsgVkWZgNc9Ik5BfoeGL3IbNYwpMLCel5/K/L4sa/pUjJRIZpisbB4K3LyuwvyRSQJ5DyCZl/jOkWUfs6VBIYVL1jJ2RMNhqFFMGtpYubesfK1yyPePGuYd4WuDYQQiZKQDLkMlFJogkv1ojfo7A4SbrGYN8Sv/B63fuePefbOv+Xpj39A7gePpRMULS6Xmw2pKjRqAVLtGxQE67cIH9LcecPlB1/7HVSFfnuDbf+C2J1T5neQtEaP7pBv1oR0h9nJXaSdw+yM+VvfY/70J2yfPsG0ULK5BJN67ycNgdAocdHQZaFLW5pNTxsLbRC2FQJIqZAxGhXaxnt6JlO+++3X+fmDH9FF4eIo0OlI0EAXFG3m3OoKbYDZceB3z14jnJwhJ8fMrYWm5clHz9lc/3POLt8ixXNW4wV/507g3vgJIb6FpMLs5intYsb3vvfHfPDTn7Jc+lxX29vpKbmtNtmMWtRRzYInYqd4TLxoyPbvm2y2sWf/2g5sqztNxTVs6kFd1xoi7it+iUcTIiYZzZG4OiHQ0SygaTMaat/RzM6fdtUl7zNNHhAdefjgQ7abzOnFFd3deyzaWV2riWcvHvP8xWOGtKVtxYt9Y+b8Ys78uGG9HsjZOE9nXJ6d8+J6yZOrFzxfjjy+/oQ/f/dj5l3k/uUxb92/zd0797lz/5z7JXLr5Ql3lqd88Kjh0csXPHi54cOn7yL2Dkdz5fLinFsnLc/Xie1YsNBgJCxvkZIYV1f0m94ZisFAA+TIL957zLuPHxDLXYznHoJL3PV/E/MGCQUhaOHWqTKmyL/6s2f8l388Q/JY+ywqYoGz2YzLReFRPzKOkIPLtyl4cTLw43eWHM2OuH0C5EwyKNkZqkaiwbBx5Pbdltvnc549GXn2ZKDvAyl5r9jFvCEEGFLP6fkxTx/esLop3Loz5+a6r34OtXip4nkmoEpo4K2vG89/bmyuleOTlu22Z7uFkj2mKlvj+//0kkefPKRfGX/x/yrzW7fJ5ZqUMwH1OCZA0yplGejHxPm9E5bLAd0EQu076S0aPM6LokQiq5stV1fK1csND35+RTebsRkypWsZdUCHQs6ZEGd89P5LbNsS4oL8rEPGzHf+49/hB8+fcjP2KC2SR9QKrc6AQLEREPrNynuOlxOMQLtoeP58y3Z7hXanZA00ekTDXaI+JZcthhfSqAmokRgZy8CYR/qU0bClled0vEFv3YHPowQiQVtijBy/9hVeX0S++sbIy+WAXHV0Ycbx0SnHiwYtI6uXW5Y3hZ4WApxedhyfB07OAiKZUpzwkkr+wnX9a0sweUCzN5i/2pteDX5+neOvDLz85S88+B2o1eryHaX5Bxk73VCK0MyFokLeFFgaulZk6455MxMsGLSGLQQ9FrrbMLujWGeEtqWdGRIG2oU3jtQqUxAbaOfBdR1JWHKKYwzqlUVhr5npx1h2m5UEQVuw5CiHZTwQwKUVcnDH2wZl3l6wbkfyaiRmP+9MlcbDq5usGJaBSdIuen28JE8YHV/c4+b6Fzv4M4hAqKBKdNkXA8ge1O30uU13YE6u9MUshtSmfLYS18utAU0eE1EakhS0CbTnx/T9C28ymwxGh5h8fLk33wMI7+D33+wxaXbXWeyPTaC2TD0xaqANNdjJVWKhTnSYyhxx+Y28A8UniYIJtsf2jpyZg+RqIzdXj7l6ec2w2SJjoive70hV6JqGwMAwQOoT/QA5dDQ0zICcfU0EUdroyZsYvGFekyDQsC1CiB1G5yzAGcw6r65VE9rQcjNmzi5PCI0xXm/IY0MwwXLCAjRtIADJBMnsgVIc/FQ1Qh5ZXRm5REJJxAyZQFB2AKaaM1NCcJDTPwMkgS1HJHXIKlGiwbEStDDXDjHobq85W5yQfnjFv3mvMFjLQgak37CxgdUmkXJLG2ectNAFY54LdrMmjwZN501aS8s4OgBSipGiNxbIyW2ZNOJNY6WQbe3ypBpQcz11UUO1R0Ok61oUIY0DsRSiKXMNpOBOVRs8uRQaQcaRst4iOZP6AT2eU0ohApYL0jSEtmHz4oomVOZFk9F2wfXTZ2w3SmiVxWxBiyfwe8sUEW/saEZUo+hIjkbIC7L0kANRfG6aKaYZ8kjMHeNmYPXxY06+9028gu0A4D9Itu4EFer+KxY9qSres25K+tgkhCocNNWmgmV7oGj3FbvfzQMb5+w52OXNYxyUqhIQk23XT/VQ+I0f8kWcgEOQ8OB6fgHIy2TLPuepL/JlfhkYPb13//SEfPpxTwmK/XP7c8rFSLky5D7vcKeoeAJrdQKLJnC2spQ0EDTyCqOAPRI6PeaSeWF3HFMyJheXogthXyFdz4yJkzcxkqagfoKRQ+1BouKfHadKRxWiCE2MFWz1IKPkaguDolWfXA8/OxsxBBqEYA7sKBXQDtCoEvEEvYPSnsR2CKkwlJGckwfHXVNBVpiSuzs8GYjqwIGb6Amok928ooKfuVSZi+KVam4PPUEoVdZPLbgh90Niu+7ZrHsvIsATiCTY9iObzZbNZss4jBQzQmgQjTRNpGsDXdfQthENzqaaJsdUv7v3Q2033b5o7Oftq/N3J8P2BX78BPDuAH19tV/XfzDjb73teTV8Onzw821PBR+qDvcr8+ngMA6wu10SSadK1HpNVF0yLkzMvsPjFnYHJsredsn0VbVCuhTX6q+FG47Qvjql3dLVoqfdRawMIfafrUEJTXApuuCSlap6EKZU21Nl+3YmUqUu9+JMywhTv6XpXwctD2zIlPpSXF7X/JpOklmxsjWZ7MrO8NTrJFVV4pXYd297d9PpYF5Rrzmmu55UnvAzvLLQ7/l2u2XbbJjXpjZlZ3vSb23P3+CYWMSp7ieCuZy3Oqhbpt454nJ4eBclIsI+4eOxh4mDjaA7FlwpxkwLKqWyfrzP0LR/IgEhO4hIjcaseG9RwVk9+K0da2IxBu8fLQXy6OvazFx2rVFSF3h2FHl6Gnh2MuOmgWUH1gg0ZVogzGLLzBYsxoH7a+P1Zc/rG+XIEp0G0jpxeiqMzvfZJRLaU+HiOwtmb0XK3HuomnkStOZGgLpGrbYLmCQpp/hWariqykmjvHW64K2Ljluz4r1zDca1QT8iTaFpAnG4gRhpT85hc0WZ30WGTLQebTs4fo22QDl6jbf+4IK7X/19Pvr+P2X50S+8Z5AVSqYyJL0A2orHe1ZGwkwApSyvGFKPnl0SNs8whaZco4sT8vw2IUa0PYPtS2JYUDafYOkpzRt/l2ZxCcf3OH7rm/TLa/JmRYmKFfFkeBREPOkeu8BCOlKcsU5XLDaZ+QBX2WhEWBW3H6lkXrt9xri84fnNlq+ezLk8bXj97hG3jyKtGsMSGDOXZyNY5roEdNYxmx/RXtyl3zzFaJm3JwzhlHd/9A4fPnmHVelIYcbJP/zPuPzqMcPyCSF2aHdM2C65dXzEm6/d5yfvvFc1VcqEGPh/ZvUxqSL8Bdn5bTU+2sVelbUvHk95om8qUNAd6uGJV93PpZ1Z239z2Tu8X9ohJgTraPtT2nKCzAuxHasaQpUerPtbygUjVwaOMG6WPPnkERenl7z91a/VPmhbwIurQmi4vHXJWJY8ePSCDz9+wsNHj3ixes78qOP11+5w//Zdjo6OyEVYrbdcXpxyf33J8+sln7x8Tp8yYy784tGGDx7+hCb8mPPTOV+7/yan5+fcubzg7PSrPHx2xruPPuFqtaQfNjxbbXh8/RHBMtooTRddIYGEhIFoW/r1xvspxUgMBUVZ9cKwyfzwLz7iO998jcQv8F7jCsWxq8JUTKoEhVkDlxdbXixH/vw9+N03AmJjFST1hO7Facc2jTx/afS9kNSZTCV7kd92m/kXf7rke7/bce+8IZVE3wvXy8LNytj2ibOLwN1bDQ2RYez44IORq5eFq+eZ5Wrg1t0OKLx4kljerEgD/PTPn/P1b13w4Ocva08hdgUnhniLF/E4LQTj/luR7dIYt8JmVRj6TLZCN19weTfw0x8/oJRE27T85PsPuff1Y5grloxsvm/FxmOxj3/mCap+LPSDMd9CN3rxX6jJJSUSaMlZ+Ojjx7z744EH73vB8s11z91bF7z59pyc12z7xGprXF+/5KMPVjz+sGc5U4btDccx8vxbV4xJSUNkvJlz0dzmhMS8vbUTeDHJ3Ny8pLeREBtCiHSzlr6M9Nsl7WJNlCNMZ+QSaON9tsMK1KXysJEiAcpITpmcBsZU6KKwtTWBG6KcUSYnFGfJW10PzI8ps0tyfkpcKPOzhkbP6NoFKgM3L68YzYingXnb0c0bmsbVgTQUbBRPkouwK0b+nPHrZzD9u1byHAQAn3XUPv2Zv/w7vtjZmy7Gp0GwVzI0n/qO6khacDc2GuGbLeE/Bz3bEE8FnSmSGvKLRN7UDWNu6IUgC2ceJDF0prRnxvzWjHBUoB3RrqOdH6MyoLomhOR6/MnBu9CBdiBUeiSZNgZP/GKk7BrZWoprcivoRGG32jyynpJT9cSTPqaErkWi0q82UBbooiMtPcOad1Wygg0eVakJ3vi6VrosWugiw7MtvNwi6SGCVxihniSyWm2cc6XYH0Sygnj/pdEdiCxV4qwkYgmUkths1mhssX70BToFV1YcODGBWUTPZ5S8wTaGJA8+vtwu/zQ+J8L+DR+lVBbbQdL600FcjVtqFWNNaVrt53NwqYrtKeW7a1j14L1R5rTWJ1aPAJmQNjx+suL5VUEGQUpgRk8X8X5QAmlIDNvCmDpyUqImsgijeaAmKjQhMIy+eTZa6EelEeXkSBh76AcFTXRRYAyeNDajDUIeM5nAy+uebt5QtEM7pVMhWiSVzGBG03VISt4crYIUll2GIo+ufy3BHZRA3IGSjZTKDnIgM2dnPiIRy0bpBQa/2JqBNkJScs7obI62idlcECu8NRv47/+TC+6ebfi//mzJi42iVliNYNISToTvvnXCnYWwEOhKz2ZjhOy9qUppkJEajBYKimggFLAhk2wkLOaMZnRNgFIooqRiNFHRJnriKApt1zCb1aooAXJ2sDglYhNdwgvFKuOpiUrebhlKJidFcia0LSE2mEALhNoXi9VAkExKA93inDIGaCNjGgil0FiE4prpUgpd1axPxWnKIiOjDUhX6LMSZzOG5ZKmSjumZMwE2ly4efCI1/qCzSKGa+ICLidqU8BSK9kMaplnrWzzRJxZ8MBEDpNR/rNr2V2Doz04dbgXTqkjD50mNtVUcT1J7R/qA/9Gjk+BTr+sQMUOwd9Du1WmZB8V2NUpl/6K/zTZu1x7IE1A6eGYqul9exekWAV4DiSkRPZfP9nBya5ORhT2pM46SnEQYqpUdz/ykJGktT+CV4w569FZRBICUb0cJIgDj36e/iUuUTVJOMquL9JUgS7muFZoPHFjioM2db5RD9/KFHp7QszP77CwpFbJVYmqGGtfN/XzmCT0QOp60npE/rjWuoOgU1LMqyijTgkm18IvVfrOQl0bRQhWk7b1EqkojbVVI8UXzSSb0oRAkUKiguvT/RU8sSvu09WrswMbHDCW3c1z7LxW+0uVGlRnVSEufT7mxGa7Ypu2mDUoxtXNkmePn3N9s3LbHhpC6IixpRVn0eYS6EdlSEbYFtquo4mKG+0NIgktAS2BrIcSVK8siumOM/V3mY57P0UPNm+rKUTbFydZ9Wl55WW/2pr80o7/IGzPHpK1nFHLpB3UPPXGhIkx4rJcVhkTUntR6I6N6Afmei27ZLjs2UZ1U9yxJPfn5yAf1Ueg1DVck0j7Qkqfg6J1zR4kZ6Ykkz/mjE7V4An0ehw7efNX3Hrx3MiOgmW7BJPbSWdCEaoEXpWpc9ak7nrZuI2crrfWHh0uMewCz7KTKNPgoC95nzSZzkMro2mqJzkEzSd20+66Vds88apFFStay/o9zhtHY73tGbsBIxFMub5Z8vzxC65+a3v+RoeIy3qp1rVkEzN9kuOCCeE2c4kjFWcICM468kvjk7qYtwGbEk5q0JC9alz9k4NOYm2KclgJLe7vVrlXLTuhdHLFITRoBRNd2SQZjCmhTWDVKE/OGh6ftDxuA/3MsYUskBNIKFBKZfzX3lGqhDm8e2TMLhsuBvjmEr5jx7x59g3WL94nlWvGUpi1cPZ2w93vLLAzvHhWM4InRs1gUm2sS3HXP9WZfZNd9GvbCrxxesTXTmcck1EpDKuRJFqLKQujGGEoJB1o2og0HUO6ZkahkREVSJJpmkLcXiE5084v6U/u0nbnfOO/eJurn/0/fPSv/xn9pvckobpPELuOnBKSE2aB1LsijqkgNlDsCdY2yMkFqZ0RZrfQ5g7j1Q9pmkfo8MwLg8++Sl5/gC4uCXd/H+aXyPFdZnde48XP3sOGgrVCbtyXk9igbaBpGnIXmDXK8WbO4nrDPBXO8GR1UaXVQqbw4uYGRsPGDcsHn/BH3zhjcTonRLepszbQRWEYtmxNWG8S4TRwdHtOefGSeLxACnSzGenkhHc/3vLeux8xpBGNLfr3/4g0e5tgme3qKaE7wmYzbCh89bW7/PSnP69s/moNd6GS38t8sKlNPrUvnerv7mTEFY9ytSpL7GO2qejVDvSRdylLm1aY7fZs+7Tz/iUbMztB+jltmhHnEeaj9xjUmkBT92ndH6nyZ6qQlZvlUwrK6dkJmZ71ZiTKS+btHcRaRIS+7+nHnrZpaLuG47NjUijcLFf82Y/e5wf2AUdHDffu3Ob11+5x/+4ls67lerVluX6dJy+XPH5xw4vra4bxGKPn6arn6U/eI+Utsw5u37rg9Tv3+f2v3+fRs5c8ePKU5aD0qaGkgTRu2G6WdFEokgiyJG9fuAx5VTDQNjBsO8YxkraZP/0XP+XOnbeI3AbrPc5QSMV9+oCAFC80jmultilingual_clipChxnrtcrHl8fczGTqkLl6zk2gbsXc5QtT18k+mTkrJTi9pFgDEPgT//thrPFSDfrCM0ciRuOTxIXxzBXZVaTM/2YuFlnbr8WuLqCq2VHOxPK4H28H384kgfh4UfXfP0bl8zahrQdvUCjFsWV2pYiELyoT4TTW/D0w0S8EJZrT4ZlK4yS+MZ33oSh5+MHj9guBzQH1o8Gjo5mnJ3BVV6RGqGLgTIom1VmTMLNyw1tCORNw3iT4A5gkBxZB4zrlyMffNAzWMPXvntEGJVHP0uUVSakY558/IT5Zc/N0nj3nRGZzfj2H15y/ajn5umSk+MjXt4M9MywIbB81HIrXXBpytHXjyD3qHQEUZ4//5gBCOEIoaGZeVuccdxA2hCazDj0zk7US04XievVz0FS9b18LeQMQ06MKTOOLSI9nT2hlXuUMGPQqubhFT/MZx33710w/P1/gr38iKOjnjfCGWM/Yzv03Gxv6KMhJxCD0DSCxrzzpcycPeqSqxlvK/L54/+fHkzT41/kgO2qkKaXHQLJwudVBx06c79K5dBnP+PQVZ7+PHz+1ecCkIMRSqbcjrT/KXB3JJ4F2lMl5cIwuIydnEB7R4nHirVQJKNEFnODBuYXoIvA7GRByWtCO8NIiCTixEzKRs6pVsYqEma04ZQxrZB07dU/2K5KDFVnJxk76bkCTPtTyfsAAXFwMJVCiEpmTmnx7Pm1V094vzKrVG7DBYT3AYjhDmPuM/PTEwiZdNNj4w156+wrCRCikCpcgx1oyILn+pIhGWcdGWirSBcpYyGPGSnKmLcuR+aIigOqKEhy78gMU0OPO6xPyDZTtsmTTF+C8VerfPtynNO/75BpLVrZs8SL7Jqbg1Wd6gMpxCqBV8iVAVX78Ey00gqFuB3yhKbLe1VnzRwkLzh1MPdrrp6+oF+tiUOhIzMPiWjQSMKGDcMaNmPEJJKrFrxlKsCvhIoulhpl9MWPNxYYDKREJAiNAlLIFkgpEQRiahhKQrqGfoQhD8zmLbNZRGKAnGhSIY3Gdkw0UQnNJFUibEomVPDFzPvBiQhDENQinRmhgqye0c6EaJADKY2YhZqMFoo02KhYypglZqcNOa1ojgM6nzNvI10cmOcN/+SPIl97/Yh//uMlLwbhg4c3zI8bvvXmMd++ULoYmKmRXwpNG+k0etX/mImqSDBSzmgIiGVmTWSTzFlMKZGzUWKlS1Pl/aja+CFgKoQ2ENSYx4B2LVtR+vXWe52MGSESQ4OqMcqWWbMgj4l20TG0kRgbJETWVzccLWaMQ0/ZbF3iLjYs1yONRMbtwHpt2NCjGDoWUvHm5M4rK4gUv7dSKI0ybgwrG05PTnn8Ys3VuhCLuoQe3qegH5I7SMsNZdMjs3aa9TuwycoEINkrFbUAVmXGqOwp26EoE8jic76GJ16tPIFi0ytk2hYr6F6/d9KHRzw438vSuG2XQ6bVl3B8Rk5pF8RZrcyuf5cqkVmv1Rd82Bc8Yft/5ABYNePTQNUkfQbed+zwGCeAAqtAzvQenXqnvFpI49/0lwSj0zSp+/8kj3e47Uzg4yQD4nKXk2yp7ADdV+WpcCZTcMZQoFbvQ00uhX3PkcIO3AxR3Q4ExXSqDK0SjhXM0l2fJnayYFM/FZGa7IqRoJ78or4m1O/f9485YDDYAbNKpB67yy5Ecam9aF51570Y9gmoaY1Oqas0JW7Fk8IaFOKUoFVvNht89WjhFZht8tf8Qtl++6pghF8/2TVC9+/14LuUzFRdO0kjFzPGMrAaVxzbmpQaHj38hE8ePkZpaNoZTexomjmxndE0HU3T0jQzQoyEEGulrSeqxlxo2nrty2ZvYqat9tPza3qBsL9e+wzEzo4d2rPJVhlWwbvq+9qn5vEQ3gYAACAASURBVPanbOCXcfyHbnvqosYsO3viM3Gfv6y2CPrMz+HEmyTzJnZlqD9TpSywS0bplO2ZkmAqe5skzqrUGkMezks9vF82sZamI6kVuRq8+lonlpPsrs1h76r9+z6d5HH2k6NqDqwzsZeqX+mJ6CnBxX5OHOz54LZ2YjRP9s2mZJxyECSy+3dXmGX7WHw6QqnreFfKV6/5FIe6LayJOROGwVivEpvjgTH1PHz4hE8ePkFp3N781vb8jY0pDnLGrK/7EJyRJBLIxavdxYRc15dW/xN8vyniNkqsFrkZB3KJQqu5+utV2kl8R3eWk9sQJ/hU0B0HSCm+j1vJiASSZSRL7UMt3pcwwDY0PFtEHh5FnneRwcR7RGQjq6DqErNFjZBBmoQ1DvgKhdAtGMtI6Rq2C+PJaeAHw8i304d00rOOwqyD+7+34PJ3AmGGF4aMUEYgQrZa2Gte9FKUWmQ79dopzgbz02MRlK/OZtwOkbjd0hcIvStleYFY7TFs2dUlVBg2PaExSrxP31+zGF/Q3H6DUITS3iOdfAVKT5eNOBZMA3H+Bhe/9w+ZX36NB//if+Pm0UNycul5097jhLF6H6ru32cvUNQhU+JI3qzpFi1h8wJ9+w7jzYZkK8JiRWyOPD46+xbj8iV6fE0MJ1izoL04pjle0D9f+loRgQZEMhoSTTPDtCG3wtE6c3zcsQK2F/DiYobMG87XmfHG2FwlNBXGwfjh+4/5na9ccHlxxuW3v8lm9RxbPuXpJ0u21yMW58R2zrCCMa1covDBmnaxYH3WsuaS5vgOQ/8uJRt3zyIX+pyyfkY5/yqmMKyXjF1LM7/k1q3XaGMgbaf+SS5SZviePNX5mZTJOH/OHlZtP5MPa+xlxmGqoNrZINWdT743antDJ7Wo9ss8Zv0dNAlhJsS5kaPvGfUqMzH1U2WyhcoAy2ZI2nKzfoLo25y0J5y3c+bN/cra9wszn53w+t236eJDNpslfVmzOL4k6D1yKqw2A9c3ax4/XfHxk3doG+XkuOPenUtev3+PN+6/wTgYj54v+ejjxzy5uWaVtpQ8wHbNeljz/oPnvPfhJ8RGOTs9opvNQaHJDZveKJIxgWFcA1tm4YZ++9J7zocADWgTSKuGkpWx73n44SN++OdH/J3fP0FkjeGy3rnkneQ14jFAo5C1UBqHcx69eEk+W3AaO8zc5miBLkbunB8x63perrashsw4FiwpMXRsi7IelOt8wtff+Dr3b825uf4xJx20OtJKoKnxRDMkLi9HMpnRYCQ7pizC6YWhOufJRwna4MUw2Yjq7VoQY+xrbz5HlL2npRrtkbFZj+gz2GxhHApIYkgDJ7dBGclNZPlIefrRktDgGNzoJIqmVaQRyiC8+Y1zuiYwvCxsb4Sv3H2NlT4l5ceMJRCK0GFIzjx+vKXPxte/23J+npGxcP/8lJsPOr7zu9/jnY+3vHz+F7y8hjFn/uBPIrdvB9LNBT/6vwPpKtKUY/6H/+p/5M9/8q95unjOeD3y4Tsj3/jDrzGs13RHLaVs+OT5QzBh0Z0TLEBQmrZhPaw56ZfE+ZbtACF2BG0RO0W1Q8uavCtiypiNpJzoU6YLisSEckUoS0KcVcw97Ny6EJSSMvf+o7/L1b/5M+6GP+N6aVxvVvRlJJWC1QIo5wpSPcbqJ5ogElCNIEb4S7JIv9YE069EE/8Vqnx+FUdtB2wdVucdBGO//Dh/2eteRVTMWoQt5bil+RPFfmdgdgdCGxhKhgDhCMKR0t7qiCeBLJk8DITUoTJH50vaY2W+aAmzFm2gJMNkg5WBEF3nMtcgJ9YgToMym52Rx2O6WYf1G6QZPLhBKAo5ZTR7sqYoSANZzSnbBTSLJ6AwcvadSovLgEHDYn7G8uoTxs0GzF+jQXabZimeOZ/Cn9DAOBoMhfXHL8ijERPIylkLqHkDWTOkHldI0/vVm4dmp7bXIiVSNm+Y3UQkQBq9+aYUwBJBXZvdqi1KtiXEOSVVYKlV4vmCPPbI1rDrzI669dvxpRpaqb9Tfw4MhFx/r8Gdgcv+1Epxm6pLq5Nc+yl5DLQP3t2Ry4BiJewAwV1wiaFlpF+vuH6xYtj2REvMZSSWEUoij9CXyHr0r0q5MBSPpCQHQvQmsGLikHvxyjtRN/ApK6lX2hiIJqShkKI3cTSBWTAYCxKga4zQBojK1rzC9Sg61dV7lqUq5zQBmd5c3rnlvjhyvQ5qVNkk895p4IGPBCBBvcaGQRwZSgvW0p4o0hjD055ikTL3xMV2vaXjGDqXIWgETi3xR28Wfu/NC5Z95NHzcxKRto2UofeGs6bIWcM2ZRprOFksGG96+lVtrCsBRFGE2CmzEOn74nJ1EikWPIiNQkoCFlAiaQQa5Uw9mEslo1HJQWjmc4Z1T05OMe40/H/svUmzZVd23/dbe+9zzm1el/myTyCBQoFFsKpE2gyRpk0qRIU4UXjq0MADh6ea6wv4M9ie2TN/ACuskRVuJFoNxU5kicVCFaoBCgkg+9fc7pzdLA/WPvfelwkUC0EWVSBxEA/53m1Ou/faa/3Xf/0XKWVC29LnxPTaAal1+EmLDBmvgcY5htWaHCPoQGhaVn3PcNHjpxMWj87YLFb4mJm7gqaIU2N+oFq5OdYvoGggrgsuebxmLp4uSNmT1ZudKoWJmJa8pmINcS8XrM/PmF2fIrrX30i3o36HuG3BOWxsa50jlfvJ3nqplUU3woT70cuuL8EeaDS+rdmCJ3Yg2Q6aqMDAFxxoeRnkheorjKz77XvWMHmbePucx/g82+657YHAWyxw996+ZJGZAku07NyZnwBI7z5hMEgpVQ6ILWB79RrG3dXEv4zN6neAqSV+XHVIfQV5fZWsM/ZL/ap9r4K7ojuQeKxsMoxTr4KyY8WCjECyScRJDdCds4TWCNSG0NB4qzrywVvz+vE4e4D4toJJpCbhbf8+mOTTtl9LhQbEXJ7tfXFB8OrwVXrVeWO2SrVfuGLrgRjzOzH2Tds+Pl6eRbZOSU0emQSqhvrsxeQEDbypsjuVhDSOiaLFfM6QWHDGtfyC9773MeuLJZN2SuMa2m5O03aE0BGaEeTtTCpm7JHlPU58rcocyDni3AzRKVkXpDJsQfJXB9fVFMPLgO6ngby7+7H3nn346v35GwDy/m23PdtjjsntLdA/Atl7+6qbk71ET/3smFwaZbddTfBsf9+OQ9nubwSy2O5jfB7j9e7HmnvHkd3xxv0qtTpjzx5673HBoBSzSaPk8/6aW5dyN9rFsXIEpFY/bft7jKcvhf1Eoa3N9hAsZHNVlsn6yxUdk+9i4GXmL3wuWz9aahW1COK1+hSgeUcqGa/F/I86PgqAkacuLgfWp5esvvfnrC7WW9vTfGl7/pNu1tNE6kJTiXeKVfBZJmdURa5ch5FKJLXiuEpFllKlEs3P1zrOgxbmJHK2frJDlVYeY7KRhFqy4rwloLa9D6t0XymjJI9UG2GJGA3w1Ds+POl42gpLcaR1Mgk3Ozg+QHGK89n8hhqXURRJBWlbinq6pkEaB94SYKup8q3Yc/DrwsnxLe6erTm9XnCNohV8KMVtAd/sa/XSWKFcDAfJUuPABOLNht90Dfeko0mZmAYShdYpyYH3dt1S7UFWBY9JEoZAKEp49EOkcWya18iXK+S1X6ad3CM4R0iFfPOXcRoREnl6DfqG7qu/zRunb/Do3/wznn77jygpkXO2pFKtaNWk0CjFOTR7+mSV4G7IiCS0FLpPvoVMbzE8fQ+XlgzlnHZ+gW6eI7MTaDyZjPRPcdNTprdesHq+MHKEQNFkz1atH500ieKEi3vw6N4Rj+aF5bwhtwnnG2ZFKEW47qc4hUk+tn64zTf58OGHLJ9teOPNr7B4uKRPPepbem3ZLBMhCAwFdR3qZnxyNnD+w4+JzUA7PWQ6m3Hv6IDfeucuXboknn2Idx3d6RsoSrp8gh7dYHJwwqxrWG1SnfMVT6zzQKnJHpVtNfzY13OU1Rsr9oxHVe1nTbJu5UyrRCV79uZlcsa4Lm3XqC/wFtIM3yaa6YBrCl6MuBZL2fYFzEVRrWs6bEktWTMXi+dMGs/Fi2dcrDbMZ+ccT+5xevIALcKTZ5+w2ZzTtIWvvHGPt8JtcoGcC+v1wNnFJZshkhFKyixXG548f8F3vvcJf/Lu+xxMPXdOT7h35w6/8kuvk4vn/YeP+fHTJzx3Db5piWlDP/TkFHn8bEHhGSFA23W0bSBKsc4dWgi6QvsX1mey9r/2XaCUBtTUWUQDJUb+9Pce8tXXbzLrzolSUMkmnx1N0lsZ43krGAhJkSaTCzw/XxK7zLzrzJgXIakHKcy6ljYIm1jYxMxyBc+fOGJpuHXvAW89+AXcNBHTQ64fFaZe8DKhraoPSY1Ed3LquVgkfJNo20DaRAItXYAyV+ZHwsHJMavzRMke57A+fl7YLAAmmD9rCUWnWLLNO86fReIgptzlMiVnnl+8IC7Pufw4cvkosxkGrt+cM0x6LtbmzMwaR+McOcPBSeT+HSUsptyevMb912/y/kXi3fOPidHTdYKoY72JPH7ac3rngONrSlOUSTjkzTffZHrvCN1ccufmbd7/8z/n4Y8jJ3cVdY/IuWd2dMBX32l5/l7g6w+uUz78LiftBfH6mpu/dEobrvG976/4xglMjgKrxTnPl09opg2H0zsoStN45tMZZ88uWSwXTI42ON8BQt8PDL1nNrvPOi6AnlQ8BU+mUEoixp4hBLzzRFYEPSfIdTJNldmsaj1tx/l6Sdw8gRu/ztPvP+TDR0+woVfX9OqzKlLnmam3lVRJTiL4Mast5ZX5vJ3XPzOL8XmcrW027id95NXk0Wc5dH9RommUfHnp1d257P9dtyLZQNv/zON/JdLeBH9iEgVeAi44Qus4uHGI6wIxJzq1hpTedaS8JnQT2rnS+sYaMGupeqGZ5BLdpDVwN5m0FiGjBWIptA7CJOCbTMKBd2iVnHPek3Jh7LghzlUJloxkbLEDVAo+GIvMZYfEQF4OaHhmztoik1fRWqp6qTrhQFLIJvOEghQlGz6PKwKxWJJIalm7g5yzgURayXaCNWWtPZwcjiIFvDGUnBszoWqMmaqNzAiiIvgQGHJEtFR5GqAknPPkutjIxCNHAVYRVtnkvb7cvnBbqQCfSQtY+equ0XO0RZg6xqnwgI79OMY5rjtmaI2WRoByK5GpaescIpYEUjKhRBbnC54/7yk9uJRp1JIvpYglMqJV0KQsbFKmSIsqhNHxw1I2KWdKUYILNBoQFC8FLZ4+F5IWQghW9pxtLkgqFWQIlCQESczalvms4WDWmqRbMl3iifOkGGloKDlDyEgpaFYgoFKlPZ3NXd9YtWIoDhkdlJRr6les75t4UvZ4VyCvSM8cEgxQzY2npEAjc9Qr+RJkYdWHYRbw0wEXbV5OZz0ns4bFOpFKJvpMWiqbkpAGysTjNlPyYH0Bihdyk+jVKpayOvpNIQRH5yEm8CGgas0FXXE0YkzBXNkxwU8oDkrwuK6j5IQXpQnGcizqiTGSarI6bjy+nbAZCu18iq/9nDT3tF7J3kNRhoslbpKZdAGdNIgUQsykTYRiz1lQ8mANi6eTlkOx+9lnxWmyYF0NIGrEGgXnCJItoN5kZaZCjoU8ZPyqZ/V8wewre0DbmMwR2K1bYH2SPmNNrICPzY1SJUb3oZir4N92ztS5pIz4nmk5j/NrlJrZg0NfEZ/9om1XqgZe9iG2voMFkOPa9JMqrMe/X/75PNsWFL3yXd0Del/yd4o9G0vIXj2WVc7A/lPbBcnsItdxn7s/tyC3G+XutomZvWsb/xtB2L1kzbaXkarJjBTBBd3KRY05HtGriSULMF66h3Xf+77aPsj88lyw8919RhVCqLrmOxS53m/PtrdS7Vbv3JjAqoBIva/OOSP2pKoVj+JCBbNrolc8eFU0UvulGLBlEsZV7rI+kVGL31jzO5njcc4piniHUwW1Sq+sNUCTeinOIyXVJKEdxyqdMst0wUoe8+LJQ9ww5fjgiEnb0AUDdcPeT9dOCM0EfIMPDSE0+NASfIs6IZaenJWcErlsQGEYXhDk6r3fzSW54lq/3M/kswDeK7+MQPFL+/mbsP3ttT1X4y+lSrtcidNsjm4rI0fIbZel2XtvZ0/GRNFIyFNsTpmkci0F2u5/9/nx7yvVYlfuJy/FrWPAvR/P7n1nPOO6plr/mN1xxrs59mWS7XpeyRx7F7SfCEMELXlb8WFJGNn2gNrtP9s5F6tKqfjl7lxlD/CsYDm1iGxbTKZVgnSMzZyB5uKkVsiPt1Nrzyfd9lPNWVhcDpytBs6efsx8UA7nx3Rf2p6fj00xmSTxoCY3qVWuq6hVGnm38xOUYpUEBbZ9ccWIS2WcaY46PhydFCZqoZvW45m0oyJqPnOGChbYuE7VhmjJ5Fwooz+gDl8yq1ZZHjcsjlseHrZcjj2mN5XcFwQl4yLQKr4XysQSW9pU+cmq8tI0c7REbtz4NUreEHWD0yWHszdw0pDiBefH76IvFrgnG64tF4QkJFGo1QlJa8uC4shZKNmTc6wA366aWFW5rp6b2ZssnRSymO8cA1CEXMCXjPceLY7celI7IcYVXX0+UR1FpqgKw2JFuFiQ9Izw9BPmb/wmqWnRxTnt9KbZY9ehfk44esD93/7vCO2ch3/4r9G0RrLZhOLrM44ZDUZCdE4sthSIsYD3uMvn+MMGpKMMIGFKv06U9AR39h5l82P02tdw3R3K5lv4acJNA/0m4ooxoXOGOA2czYQfdRveJXF27Fk7xwbAtfQZ5s11hMTJ/D5DVlo/59b1r9PgcUSau9dxzSk6vYc7uEd3/qcsHn1EXK2Rktks12RaljnytB+4WA8M/cDq4kccHR7y+lff4gh4cL3F9ZcmIfj8R0RXCDfeJqc1w+IxIbTMurDtvmRjk63EneoWjdiaGwW2+oi4SizaTrkRemBb2VU/K3VgegpWhGeylaONlv2Y7wsukde0a5qpIE2VxkbpU+0PVPK2enQkdeRtbGpzabH4mN/79/+SfjXhnV95m2tT4fDgACcBPFw7OeWH7z/lP777PZ6fP8E1mVu3r3P/zi1Orx1z68Z9pASUjnW/4umL51w7OmS57nl2ccknT57y7R885ts/+JBp5zi9dsTdm3f4pTfv8Px8zY+fPOFyE8CbHJ5oRy4JzQN937NenVEZ/XR+ge9fsNksiUVMvrsJlDJhs2xIAzaWcqJE5cXjNf/2/1vz9//BDbycUbRHXMA7RbUquqS8leXuBLJ3JglaCot+xXKItL6hdS2ihZKUmB2bwXG59Jydw+UCsptw4/Wv8Patb/C6P+Hx6gf0k0tmM/A4WgRXKnEoK7kmhVIWYh4lxT2XFwNUWeB23uBa5aOHZ1ZlMwvkmHFOiEMhpga0qeMbcoEShaZ1nL0oRKxKtLiIlkw/RA7kgPPLMw4mLQhcPhvw82IEghbohP5SefCm58EbGVYbVhczNK646L/P4Y0F85UjDQnNLaU4nj/tidpw/Waga4Q/+1eJB7emtN0jzi4uuH7nDu11ZejtupVYe4X2TLpDvvb1O5w1A+vzH/Lhk2dweMB8doej0yU37za48g7f/d13+aXQsMjPWawLN92bTCb3icn6Sc2mHWd+xZAicejxU0fJhSFu8GFCIw+gu2TZv4+rRPCihSEn2ryhT60RKGWDyhk+D4QwpzgToLU8hXAZe3746LusLn7Ekwg6b0CtR2cpamuPG9U+aoVlEeulvMUDqkzoS/7W/vZXmmD6WTF4zBn5/Pu+mmj6i76/Z/HHGyg7wx2koL/YMPkvM80DT3vDo97RzRr8NKDBcXh8zKSdUIqrjJCIOiWEQMzP8drimoj3magF74LJU1cJL1zGi5jEE46YkiVjGo9vC8KKTToHTTg1FmuqjFgVk4YyWblCKw2qJrckCXKqbJq6zpkSQqRsHDEPuPIYNoJPFkyYRpexibJVS5sOclLI9plRE9kptGrBYyoRBUKBtCm1zFtIKNJWwOUiG7DthGY+g15JixVhXJCHSExq7OIKouAbJHQE9ZShR3NCCFa27/MuoAwO6QQmgkw8Ouw7/1eDvp/d9rOZBz/78/752YwxWJlxMsbsYwCfUM2oNgb8yRgF12BBR0DdGZhfJe/2n7+M867+bVHRGAIoJfacPz9jtUj4XGh1IIhWBloNHgwZZBVdnc+KF8+oSZqKLZZSpZi8C2gJlJKqc+ShBHIoRBTvLfHksqeIUhohiHGd2tAw7drKhDLtZg0FKYpIpgngUrJ1v2hVrbA+bSVlQghWZZAFwRoFOm2s1DZXhbwysmGUWKALhprmnMnqKRrQ1tF4j8uFpEp0lujWLLSzgCsRH+Z08wYnCSmezaYnuI5N7NlsMhHHsIQgE0IYrE/bUEgJtBSyRksCZQNWvTZQLBkkOeF8TzL1N5w0iEbAQJU2FEQSidbkpmIhOKFrA24YcK2jLxmq5JyUCAmGtaOZ1u4tfbYeTxQ2/ZqySGxiZhgywyYymU+swahXfC4kUdQ5W0wlU0RIqZgmuVO8y9Z8tsBQMsUJUQWXFYcl4rM6itWhkUq25GD2+JQ5/+QZN3hrC8zpGJ0bGm0JI63Egq252wHS8pLd2wIkFcATynZf40eVMYKpY0l1jPlr8FPBwr35sw+A/03YrvgzqtvExRgDSqn3dq8Z+qdVVH8aoLtfhfMXbftVPD/p8/vvjc/YQAW3PT97+Sob8pU9vgS02bC7+vkdg/5VwM16fdnPtr/J1r/ajY+RDOOq7JPzFchQ8F6uJJT2T0HEJOvGY22B93E+1GM69SYdLGz3ZcNaqjSWVOk4doDpq7diVwlRv+MqAKNoFYSsDqMzO6BODETzRmgY+x/Z9JA6l4TkjKFZzKWyZBJ1vRi7gevObxtv/ujrjCBDLmVPDq+CunIVc1BAAmjOXMZz4DGNDMy6I7rG03hPU6vLgnM047/e470gTSA0DSG02/4oOE9DoBRISVlvHGFWUEnk/nzP7uzfT+WzzMM+0PtTbTKu838z7M3+9rfd9phE96vv79jae8mcuhZuY4BtHmZMdNf7s7+f8ZzH6xr/HaWVxW1lJfWV4xvL340H3O5zl9x24rfXeeXeiex6i+4ltl6xsfWgUm2U1IuSWvW543cImm1f3tfPbFPjeyu+yUBsK09EHZrKzuiMWME2Ya+7e7ZNQMm4GGzj45LHSrNahzLGaxU51fFk1YCSy8uBBT3ONUy7hvZL2/Nzs/k92UbbDGgSb/26TEFxV8WoWkwtpcp7Fa0kCjcSA5U8VrmheNOzp/GKFocjIJQteAzZFE0QilNUameMmqBUF9hE8429ZD5Inh8cB9yDORw3lCgMT9fkta2prgHrXGpxIbGyrzVAV3Ahm4/iGnKbUeeYyCHz5gbHx/d5sf6A09lXiHlFkAMmB4fk49/k/Nqf8cG1b7H86GNuPTqn1VjPs0oGYuDtkCrwy0gYMdKglsKhdhxGq8RzzpGzWvwYLPFcasuAVAqDC+jxMdo42uUlTc64LBRRQjdHfcewviTMblM++BbpjV8lDInhu/+S+d1foDs4pfgZTVTC9a8QNJJmt3Hz29z8R/8Ef3yHh//qnxE3a0o2UrIWAy5DcaZrIQLBYr1+SEZoToEuP6VoQlyD14xGBS2sHv4R7c030bimaQKsX1A00xx0XJxFu+bO88m1Cd+/3vCJDJynyGUOSOmIuWddIq4N+PY6FxcbNA80oWU+ucE0dPTDmrfv/n1izhy3E2JK/OKdt1ne+XW+/nf/MS8+eJcf/pv/k+/96R/y/qOes8U5yx7WmwH6NUet534nnMQlt4eet7/2Nt1JQ5o4ijriZkP/6F2adkaYX2M4+xF+fpPWjzKOWv0zG7sgiBiZx8n4zKuNrlV3YzKpZvptmsmePd/GVCCaTdjCsq4mjYZu5fBKqevNqF7xBd6aWcIFA689UitTLUld1ABHm8e+krHq+umErJnnl49YnK24cfINDiYTcu7p83Naf4KTjuA9h0cHnJ5ew7fK+fKC999/zrf+4/tIo9y6fY2377/BO298g6PpjOlEuHF6wMXliutnU04P53z8/IxPXpyxjGsuHp3z3R9/gneFw4MpXTfDSSYEQX1LKB0pbYgUq9SjIQ4rlBWNnFP6c6v6lVDx3Zahb0l9R4obSjK75USgeN779jk3Tm/wjW9OCG5jqi3icc6IHA4jR4NVMzs1Iqh3kYQl6lc5siqJGDPDoKw3hcXKs9k4UmzwzYwbt1/jcHbC4vFjfvjix5Trjzn92gYh2bPxIAlSLKSSiEOm7zObXknZkQukZH04fWPqMnffOuD1t044/7DnB9/ekCVyfmHM/zgoaXDbilfnICP0RSkBzp4k4hRcp7hOkBw4SMp9H7j/9h1Ob855eL7hP3z7A0Ra1rogtA7XFEIonNxyHEyE4dxx/jwjr0fS7ILsI+ILaRC0FNbrzOPHheNbE9pO6YLjtXsdmwuQ0zVplXHTM56en/H0eY+beCNI19673fSI4+NT5rnw/ve+x+PlwEd/cMH9u7e5e/+E1cXHTGeO1YslH/x+w+r6R3zy7hx3fJvJP7zBcjlQOGA6P6SZLtgMPUN/wcH0mJitS1QrDSRP092jaxf0/RlaanWfZoYcaVKi9y14Jboz2nKOc4eodHixXnfee4bVhszARnsQT+tbhryh5IqjVgLouEqPlcajf51yIbixfvmvJcGke/9WwHZ/2zKuPsUU/mWctD22mF5xfj4rqVRDAHn1sLIFsCFoR/RrJDdAghOY/L2O9p018+OWld8wPT7i+PSQ7DLdpKVrZjQuAHMKwlAeIr6gesm0NWDZO4/zwRg7ukLIIJmWhlSSafXW4EzNtpiRGM5w4km5p/F2bamYU6dDojhXnT+MMZ8yBSFl8FGJCuICJTiSTyaRVQMOl6D0Ge3BeSE6pVFznd4j3gAAIABJREFUMpSdNHcRamm39Vii9k6yEvDqfCr4vLu3Gs0xKWr9YIrWHjXVGWvw1mQW61siANEQFx2DQ1VKzvhJAFVyHCip2DlIIlPAO8R5NJnWqcwCOi+wURhG5mJd5P9ati/2gv+fetsGpozJJq2BtcPChjFwrVVJFFBn7ApGcM3gP3vuDsXXwL2gmkAqNKg2aaTYaFeFOPS8eP6CPEQaEhOXkZQo2foDpWSsjSEpMQtogxMFIuSAukQuVhMUvBIcoIUiK1LxoB6RAXFqGuEqBKDDZP6yOFwqdA1MvdK5AiTUNdA4mtYjLTQC5XKFZmc905oGJ4G4iWiyvicujAwXR5BEO3P4eUs+z7CqTqrUxT1Z9WDrAE24WqosUcniQAO+xDo/O5KAOtOkzwn6XJhOPG6YEIIFkpPS0ceMXoLrPSmYtGjZBEuwScfAhnUUYvYUF1BnDoqI0HSOFBMxOcQXWq+EjZVNM0m4iRBzIZZIJ9Y3IRRBY6QExyYpjQ+EZEmgxmVjgdX+Ct2kw88a5HBKaBtUrWliaKycODfFwJCYGZYDm0WPE49OPcOQiGrMw1SUzgVyGigZ1oONMZchaGbiYZBIoiOVgCsml9DqwEUBfAe5YcDThsSAMndK//wpLns0yJU1zuaG1ARQDXn22CRS3xvZdcZ8qwFRfV3qPuqeaoXf3nf29lWsuV+1bDanwO2OKda/72+u6as+xbbyy+0AtfETnwLy/lVs+xUEu2MILx9iCyybJtHVJBE/3aMZ2euvVD78RFdyewZbWbydPF7txyJX/UKBqz319t+ALftd3avyIOO1bmWeylVAVGWXoHK1F9/4eVcbi4uIJaDqfXJjsond3DEg2Ygx1selnnMBFaMu5DovvPe4xluSTKp0MaXKBBlgblKZWiVzDJbIUvFdlfqvrXeZXcJ/ZHEiNSmmO096X6nSJI1H6VPAGcN2TAoXKaz6F0w4Zz6dMGlbA29dIIiB1GH74wjeXitiSb8QAqH2RXHeI66xit5ccF7ZrCPBT8lc2hrLS/NA9S/l7v/t3f722J5SE8bKWK3DS8f+7M3JfhJol5y5eq51HonbW/+unqNqrbz5lHLc/UT31YB2b1FltD17xxa2NuZKZX3d6d7HxgzY9tqlZrSkrsuoIGUE38Gps6RW7fNksl1QFTot6VST+6KY/SpUaV7zB4ynpbs5WteBMrISR4bJ9np39hJ0S14cjY/Upziy8ktSFusNue2ZTm7QNS3Nl7bn52bLWvbWSluDvBjYVMWLjAxFIdT1Xet7VIBQ3S75qGKLnhcjPnlfx3AxxQGgVuHWiic1n17FelATalVuqvUi3pIzKReW4viTjSNm4eAyw2DErdQXcixGNBUb46XKuyWM3R4QHJ4yKD4IkhPBzXDeceBvo3lgsfqY+0e/SuNmlHBJ645RGjz3mJzc4mk45Gn4Q3T6ETd//Ag/FOsDpYaFGMgqJrmVTak8F0sQTNVz3AcjLjZK6Jy1AgDAvk+AXOE5jeDOz2lQfKt4GfvCOUqMdG2DnL6BHt0mfvD7NOeP0Fu/QOnPWf3g98jv/AO6aSQT6J69h9z6O+hkQsYh0wOu/8Z/jUjhx//P/0HuezRHjDajlL4QKxm4SLL+UgJusOpPZU1oGrRkSpNp5icM6RLigKzO8WFCTAskJTQL7qClV2V50vLxV6e81ygvSkQJ9INJpg95zcwF2jhh1l1jdnCfi9VTWrlGxzGBlhBOOJm8xnKz4v7hAw6m13C64elqwTvX73LWR679nd/i3tf+c37xO3/M//o//498+J3vE/KKN6eFo6MZuRSOJ47Tief2acfNAyV4oATSZmlV4qtLmu57hHvvQFGaix/ZU9JqBmW0lSa1X6jqFxWP8Cgqjlz9NRlZQSMpChukumdLx98NjZC6pMh2aaniE4wxm8Vmf1241s9mkyZXH9psjNOGgEncB5SCkXJz7VvlsR7DKja/nHO4EBniM9aXGwJnzJojDlvDeFLOfPTxI56dPSPpwPxwSjeZMJlOuVws+PCjcz748D/we3/8LZpOuH37Gm/cu8XN02ucHF/jVn/Ia6vrPHm+4EcfP+bxiwsuNkv6tOH5Yk18dmGJJKdMpi1tMzWctxgZOJNQjTh6SllQ4kDB+u64RlAN5NiSs6KjGkICiq2HXTfjz/54oPNz3vpaIbg1sUScs2pCX0CpFbkFQGsPRLGeKUWqykphSJlNVmK97404pHEcHdzicHJkNnaSkVuew9sZ3/SkzQYXJuTioURiyQyxsOozF6vE5dqRopCT+QjtpGGIQjP13HtjjvOFbhKIm0I36/BuafclKeuFMjnEKqCjEag3KTHkCWfP1vSauXEjkDvDh2/MO65r4cPnjzi9ecQ33jkiOkeUwLO152yjeIGDa57ZtKVtMv4QXnurpTlaINM1fcz0QyEWoSR4scz0Wbh5UvC+Z+Ln3LsrrFvh8EHP8f01YTLw4z+65HKRObllmGEqQlZBfEcOSnNfePLdFecXU7SBHDc8fO86X/nmhHf//COeLBoufxg5SjPKRcs3/2FH0wUefbhhkyZ03Yz5pOFy3ZP6JdoPNH5CaUya+Hy95LXjr3DanfLBo39NX8zPKSWbQlCKRB9wQM8lIb/Al9toM0XF0QSPamaIK3LpyTmhyUiQQQJJEiIecdl6mlf/s6gSxEidBSEl8CK0/GQ68V+xRN5PONQIFr8UlXxqwulTsz+y+/xL7L6rh7n692fHWXLFV5bt6SsUR3Q9ZG8lex00v+Fov7lmcrcjl8z05BrXbh0hPtA2M6aTGWjGBWjawhCXtLkgbkXOg4G04hACBI+Iyd+JNKSiVgabFfXWXDbXgeNbCI1jGDYV6ABC9eF9dUZEyTmPvbHtnGMxvlCtoBBRCMKAQ7sWXQ8Q1YDlui/fCbEvSIASizV4tPhlK0+m2QZjSUqJ9ntVMGMsfKKxsnGJDhmK9R2o+o5k65uivX1/db6wKKiUKiVeQVSoTcbNqQxSSJvV9liIMYXFWfPPXArOeWu55ASZNug8I6uCxrrfqyPlswbGK+Pk829fRjF/6U3HXi5KHr0tVSw7OTZ+rGxtFagaodv578Te18zY1BhqgM3oHXq0YggG7mVUBlwRhn7D5WWipMhEM40KiqcvA7lAnx05OVK2+Dy4aAF8CSR1lORAG9MpVSjFEXOx+V0lZMSBK4pKwHlPzpkBaKXQhEIQz7xtIA0MGwheKRo5OGjR4k2GgYI6Rx4yLnSWcB0S3jnEFRwRQkcmQyl0Qa0U/Kzg1UrSpRi7tODwwfR5czSgQnMhZWOnmP53IUdliEpigODpWhCnpI2a5OUigd/gZ4HcJ5wLhGsdZZVo3QGFwsEkcbnZoDQkyYjCUF0xpw2tswB1iArRpAHssTliXyCp6b33keJMdlCaYNcgntV6zfHpMSU4+r5nSJEmK1LMZjkzMOAcKRbEBdqmIS5WuFJorh1A65EQ8M6RFxGfBlpnvbaKQB4Kw7onDRFyxBez31qs2sl5h2hCY6bg8UHoPLhsDZQzUtlNmRnCUAq9F5TAbB7Y9JkUBM4uSTHhGo+qB/IOhVIz0FpVa5zuJYmo4JTKFo8eq0tKddSREQpye9/ZW1a1mAtRCQkj6DcGVFIDJNu3bGfZF3kbSQ1bhvKYP9t+YkzQZZNqoVxxNLYAIVoXxFeBrl2qZbd/e/HTBQb3E4s7NvxL510D0y1wOUqLVrDANs8+S13Gkx11lMdrdYIPvrLia7JmC4juQNJ6OWZH9xJRTsa+J7uqH1d7kjhX5U8d+OBrRVCtbHJ1XtfrGAFiNwKnUCXtzO66Chbvob7GIK2nGcKO5enc6PPZd5zfEY1kvJDqF3qqVNV430WMfaz1trrx2m19ckHAO0rjKM6AhVTveoXba2WR9Y7ICj0QHSYzoUIW05nPqElCFGtiXDDpnTImlDCmrIi9t8sIj5WI9VlU4oJKQb35coMk1vkpp6Fn0kxpnNLiaAl0vkEchKqw7F2VP1Sxng7OQN8QvI2NEPC+QVUIVcLQSyalAWiAbJ0GRrB6f36M90QNhB5fLHXN15c+ve19sveqyKv93r7oFQVf2h6T03LBo7WXmiWnM1eucvxjL4m1q0Tas0W1X4CIGFg+JnYYE89WLahSAby969zK7e3f372gcbQb47tSq3i298LvpEPHKjAd18mxsmuPCDkCi6Nslx1vtz6PN2nf7lo7JG9gaPGIlZSgWhszb5d53a7VWtSkw6OMhU1Q5ezGxJNJmdfxkQ2s2o4ty3Lthd4vzcxtol63CSxJSo5wuRlwc2hDQ+Og+dL2/NxsAtvqiqIFvy0+rP5yrZR3YpKs1r9wXHurtGIZq9ut6qmIrV22XluPp1ysgr+VYqS8Wi0zzuuUzC8vMVsj8Sr9moZEyhCL8F4qnHlhqp7lMuH6KnunvkrZKi7ZuiyVAOWSJ6cCLYRMJZNlZOYIfo4wZZmf8Hrz6yyHFzVZ1BPcIUkiSTPoikYCd2Z/jxftdZbdv0NCy/yHj2kWSzLCEK3Kooit3wlTKLA2KYXToWFS1K5dMyUqUgp4EBxSIE46luJoY2ESN+bbdw5JJivnXCY0SnN0BEcnyK2vIGVD+/V/RPqTf06++BB/+x2a62/iXjxESg/NAdoeoD/+98hbv0VYPMT5lnj8Cxz/9n9P0paH/+//Tl4sLGGUTfnGem8JMWWGZFKAvsruDoOjnRaayQQZEjpZI/MZsQzQL3Eyxw/nSLb4rT9oefprd3nvYMM5nud9MTn0ksi5MZB6KFymHi0tcfmCy97x5hu/QQjHtM2MVlqODu4RCwxDYh0jGi64d3DKXJUfnF/wxtERyyFTZMrXf/W3+af/wxv8i//tf+KTP/5dpF+huRCrus1kEky2a31BkYY0tNAOaDdB8hr/9H2aSUt7fJ90+T5psHi1QJ0PlQg0Lo1K7R1t5KE90KquF7vPb9eOKwSOuv5jab6tOuuenRrnZUHrmv4FFyZ3AIlCADE5fknWm1ic4F1D0aH6IkrrrbYiZkuKOwn2nh/oJofM5oEmOFQj6iZ0bcs33/k6155PeXH5nM2wZrMamDQNN64dEgus+sjTF2c8XVzw8fkn/PF336drM/dvXeOt1+/z+p37fO3NU167c8LHjy5578OPeXR+wWJY0rc9cVgxDGviKpLiJbmzXtyqCcoG8gYvl+S0skJpL4RWkMYxrIVUqh5CtirNlAz/LNW/Pzw45Xt/ligp8PYviiV+ogeXrX2BZLQ0NdE0VoZ6TNHOmf12imuUxgmuEfwAKTtKOWY+P6lktp7eCe21JbdvFNbLnpSyVdSVhBSlHwqXy8L5KrHYYFVQg5KjUsQTsyDe8ebXbpuqzzoQLyH2SkwDjW/o80DrA5dPPe2BJ5MgB7xMmaRDXEx4HzmadhxNJ3zy6AVy4rnzWuCGFq49OGDdLBj8BW9/Ax497emKsvog4aWhmRR8sJ7R7lBp3+wpklEHcUj0GyU6WK6Ux58kDk+nNE5ovOBF0eQ4OcxWvdlGsuv48KNlJR4b/a9kIatniJnN5oKLZy+48fqMu18TOnfEh99y/P4ffIuPHs85ns44mE148PpNQjvj6Dfu8vpbE0B4cb5gKJ7ZZM58FlhcKqv1BbPpgvboGJeEftgQXMezszNOjxzBXaN3Z0gWTCpxILtISg0BIYUVRV/QDEtKc4DirXdX6emHFcOwoB+WpJyJ2YjtIg7nrGqyFOsdjIzeYyWOOvPDFE/ZVmd++vaz68H0F22jM/Y5mXY/rRP38m5f/tqrTPDd/3cBUUAkEd7wNL/jad+C1EZmkxNO7t2luMRkMsV7oemEopkQJkjocXJeK3kGxFXNzNDhaIgagYjz2YypeAMaBYQpuAm0S6RsUFGTkKoOWitYIsp5YlFjqGrZamHjsAGX6nvAUAo5e/AN84OvkrWjd3+4vScWx5rD4BsLoHLcBbkjw0+zVS6J1pBHxoWwLp4VrY+iNCcT8DOGh2c0Q602UsA7EtZ7igKarMJkZNVRS/6k6niPZXmuROJyQCQwrrZh0lAyhNBShp4Ssz2z0AAOmUbkEPIqUiJcWaV/KhBUPsfnvtz+SrdsJXJKMbaWmgzDPvNHy77sHYBQXAW7c7DvSalBf96yh6zKYkxklto3oz5rDaADm/Wa9TJZrzGFkoUyeGJqrYIpCynbvoIoriRAyMWhGih4Wg9CDwRSCSTJJplJBQm1qXrMlS3oPM5npg5aFUIN9AfxSFFCKTTSsllnmrlp3rvg0XaCC9Y4Ol9ekjWaJFwDmgMxrWibKaFskFwIEjDTX4MgKbi2smvL6LBaSTrZ4RSCD9ZMVzNOTOYCraz8BNJ4ijhC05BJuJxIL9a45KDJtJ0iSVhvBC0BJBFyYIiZ4ALqofWFKI5hUMIY1BeIg42DIJ6kI4sXXLDy87wWc0g7UFcddPX0fWLWzRAiOUbrC5fVrj9pTf4lUpUfQCF0gbxcMby4pLt+zKAFP7ckH4cTSu+YfLxhnZUhFlK2Jp7Das0QcwVTTBfZxYyIOSibmImDUrT2g6pa3IMK4magyfpykVkOCucenYCPB4T1irIZ8DMbOVo1unVrn+qcGH/V3d/2Cb+10uN8GfV791e7bWXTdjqNwJZVRYyg0R6MNn5xB9zvHeOLum39gtFH2GM+j2NvC/5KqaxF2d9BxVz0FT/D3r/671gBtl+l84p/8lNUJ+j4Xk0qWtZx1D7afzb7AK9eHRnjtYojeE8Iu35DIvskjR0wN56TuLF6qQK7o/ydc8ZMdCMAPO5LUbI1rweT03XVkfVi0nLbE6vnqntDvPosTqte/fh6vT/ee9OR3rsvI8HA13PbPS+pdq9K6nDl8iyRVHJNblnVk7lbYkno1hLwJbhdVRS1Sqli6CZnALk4Yir0pSah1PT1cwUtxr5MWhNOKmMF+chXrc8Jql52lcYbn+v4VHUEMgzAiyWzymsW8Zzr7Zo2XKMRCKo0ogTnrHmrOLyzn+A9PjQ4760K1FvQ7ILgG0fwDV6s6rNtWrwzsGhYPSNuNlugfCTubkHqvddGoES3L+4/892I3Y41Xt1EpPab+uxg54uwfWl7bC6H4M23YZTYfPUyZHvme9WW1OTSnrzmmNBmL7lkEt9a5ep2THAnOznMekqvhqjV9hh5T2rctjsbFJz3NSlur27thVAJf273+a1d2ruwvTDFgHt7zs5bNYjWfLsXh7ga76hHtCbnx1texqrmYpUoxdQgNBbrzztK5FWSn24rm8z33MZlur2U7VOzCtOyJRjYMNmz2ePrGXLM9JvC5TITj2qy6Evb83O1KZZolVqda+sL4HU7NyzKqWuk2LolsOvzLYZH6DgIa9WOF0cvJvkWqEAWCmPvZFztiWU7s2p5xxAjirdeTs76zkYVHnmHm4VtNU3JWA+jxuFcIXTW6EljoXMOHYSYDW8pxT4fY6YNAUpLPDvDHRa6yQ0ePfsTHrz2OwiRjmNUYai2yWlDIdLIMUftV/HHkfN8wVqVo3cjrAfI5pcklFxM7q6kTFG4UQLTDEGLkWrF5Kaqji9DEwibgbJa03poAtB5NEZSVLyYSoVqJvU9br0mTJe0w9p6XB9ew/0X/5h8/jE8+xHx4iFy7Q7aX1AYaI8e4E7epFk+Az8jhpbYNDT+hJPf+W+R0vPB//3PKcuMalXBSYWkELNVRhdvybISIWUl9pHusOA7oazXFCdMjq9DXuKefxcXlyCRF03DH2nPecg8WUQeFaVtGi6GRFmbj5Kdw6nQdjP85ISGA2KBy7NL7tx6QE493ewaEzfDlcRBO+OyX3A8O+RyecHR5JjXDw55cnHB4eyANPSINrz94Ctc/yf/lH/xv0Q++bM/Iq1XEDPrBLFpASUNK+KwwTeOMr1J3kRoQMqS7tmP6MIE6RObOJguitqcCcjOJo52b8+GW5poJPlVeWUtBvrXdRAdyRhjoql+f0xe1cSu7dvmhlYilY77/gJvo9ysojVRPErB78hmaNWhcQkfrCeYq4Zd6o2/WD/hu9//A7Rk5tdmfOPBmjdv/102m4EffPADLtZPCK1ydDDh2vHc1qVYGIbIbL3hYHqT0/UJzy8ueXJxxtnykmfvPeJb33/IrHPcuj7jwd3bPLh1n//ql9/g2fnAux98xAfPn7AOjqabcLM7xOcNHy0fs15fkOMax4o2LPD5kpR7WzOcwwdH7BtSPyMPxdSZslWPbNdQYLG44GB+yN1bb/DRB5fMJjc5vfMxoTsHSSa1L6awg1hP+iCKaMGVTHLOSH5acKWlKc56fvuC9EcEuYP3NbOg4JvIjdtKKeesNhu8eBKFnEHjwGYFl0tYrmG1dvS90K+hJBuLReCNt+5xOL/N4/c2DBcDn3z4ghdnC6azwMHcoaXh0M/58IcbpnfAN4APXM93CcsZ06962Ez5zvsfsEk92sLhacvBG0vOn284Ps5Itt6LM4U7AR4+sTGhqswm0IaCk4GEY92tUISQHP2Q6TcCTcP5s0JW629ezjwaHNk1lPUB7lqyXlriWC8Kj55smJ9YvJqKMuRCn+FiuWG9WTJsNsyOCvNJYj7ZcPrbd3nxqGE475ld77j5Opwt3ufNw1/hlx/8FrMjx4sX5yw3PVkcXTNnMp0RugsWy8h0vaQ7smcSfKBrG/phzcdPC9ODezRFGcrGqn9LIZeeVBpSaYhZKH6FlEt8uUYMLeKEmBL9sGIzLFitVmi09dZsmlggrsESo1VuWSQg0uDwBB8IXaDkUJVD/KdPav4KEkyfh7Xz08ocfEo26HOe1ehA7qIpEf303XxKokt9weeG7BO5y8x/s6X5mqM7PKT4gVuvvw2tokxo2kLXRcQvKShSEsOwQKTQNI6creQ8tJ2VROZIK46igVQipURC8JQSCM7h9QbeHbNYf0jGnGTxFpRoKmTvSDWhJG4EEmtJeQZUTDqv1LBGzMErKSMyENc/RqNHksnWbS9fjVmbkoK4bcO1kbEEFpAJpvkv3ui8mgsykuoVSPV8xeOPZqwen+OS1ZCUqBSPsX3VFgVxDtd6ylDIy4ykAmVkD1eNR7UF2QmUFEGqsaycXs0ZB+Q04J3gfUvGoV1ApgoTMf3lzw18/jSf/4Kv7D+nm2qmVMlE65VUGCsoRgBtZOMi43wv45AxCUoEUVfHrUXNBqwLu4Yy4+8wMoZ8SSwvl2yGQsnR2CA5klImJSEWR8JTvIPSkw3iICfF5eoMOcxJkI5SfAVpAzlF8EKQHcjhJSI+0jjPxHtMWKHBOWUZe1wITBpfK1MsHO6OZ/SrNcQq4dQIGqA5mNIBeZVAGlxwdI1Cn/AeY+uWhOqYtHP4xnoFocVY+jV4JFnA7Tx2TmNPAlGrbMiFpILzgazQdlM26zWNZLgETYVeA+GwIE8yYTPF58KiH0jFAVYNak5RQ+MzR52jTD2XK3MKDg4ci8XGNH6T4l2HFgeysepRJ0jKFG1Noq4Rhj7TNp62C6T12oK+WNAmkNKAaqLkQjfpKGJl+XhjY4TjORzNKM8XxGeXtLMJwxDJWWgV2iXEtsEt15Qes4FlYE7gPA5cLAouN3Q+I9oDppWNWrVaygEkW/+m5KucqUOKw0kyhqc6ho3igrE5Q4G82tCeziyBpiOYVSs9x7VrDFbGCeH2wPgyAn074HFsLDt+tUJvV63eOEdsUjLCAfbW3nouhoLLOJ++wNuYSJFKth+rwz7bD9kHgT/92l9mxtc/tiDyp+71c/o9+1JWVgVUn1UFm8fkw9X9y3gFu8Ey9p30jq6xKgKzr26bDB+rjO3AY8XALqHkxsqlytz3wZiJrjKgVJWxQXGti9smp9C96gLG0xrPtV6L1Eomxvspn0IqskpBVwFLN2JepTYLFyi1n4pVSYy1RlJ/6rU52Xt+bkvcGTX0xipqaYrhtH6U/pNtL6Qt0FqsN19EyMNOwLW2XDD7Wmqvv/paLmUrnTfeD6lgbCqJUtcEHZ+j2Heymha6DQVFAvT9mktWuEZoQoMXtycrplt2Wgi+3jPBe7OR5lvVZu9iCbym6QzkBXwIKLZu98tjzvqLuobbs3u1inxv7L6E7O777p+17U+P/Z5hX+TtS9tjr9jYCgzj/rdSj/Xz24TOaJfq8WvV5L40pvOmRDFWRLJ/qLqX0YbUHW4TRtsP17VuK0lXbeE2+fUZtmdMso+JKCMBmjSuFNk9B8bDy7hM2372Kke352i3aGu3nFgiDt0xvvf7IG37ueUCWa3HyjabjV1TvT+qhV3GqJ5vfTYqFg+OZIKc8944GcdStV9jF/ZxfKoY63ntwHVf2p6fw22UfPV1DoBux5wNe7uXbgR/XSVYWAbU1tQtXmB+hIxd2+vQ7Qu03m2PN+b0tgopigUcY1+voiQtVuVUICblDMdiEijBWgAwOHBKaKUmXx25L3hnJMS4BHWeHASCSeSVrKYesckUrFe2i+foPJDXC7r5n3P36Ov0vrfxJ4XEQMKzGj5i3vZMmDFrbhIPf4nz4d+yeq3j6DsRH6mkDkse5WSI6yQqt7KnOCXGgqegVYUiF2GYHuGXK6bZZMpdNhUa2gbvA3kYUOfxpUDjIAmyHBC3QA8f0ZSCTA5pj++Q8ga9/w3S9/4d6f0/haNj3M1fIGrBPfmOxUPTOc3BbeTgmCFMcVPPtb//3zBcXvDx7/5faNzYHC+ugpfmp1grBLuH3gs+CP1ZZDJxFO/xgyct19BOYbEkpp73QuJHumbjjWz3PCn9ZqCXgcF34I5guSA0hSwQN4USPe3hIW++/ms8ffGQ/5+9N2u25Tru/H651qqqPZzxDsC9FwABcBDFWZRkye5wh8PRHW13+Ml2hF/6wQ5/Ckf4O/jNn8DhFz86/OIh7AhL6m7Z6qZIcQIJgADuPJ5x711Va0g/5Kp99r0EZbFDYhMiCzhxzt1DTWtVrsx/Zv7/F6cvWMfIi+aSw8UZ43DJm9cWcRLqAAAgAElEQVTf5u0bn8cROBtWZJfp2XC0PACUg/mck2HD0LRw8Bp/9F//t/zV//Tf8eh7/5K42bDIDeepsNnArET6MuJCIMVzWt8jXUAXS+bPnxGvRRwHjNHoiierkVS3xR/b+EenSKxiENtYSev/sl33zJ/TCozX0G3C3KZYbfpsEcRXPGxikwCqUNNndnN+srW1ekIdSMA3Znu0KF7B+Wy6Q6oUsRhjan4sWYlp4Icf/AtuXPs873zpjzi8vkQZWS4PuXPnTU5+esLDuw94dvqMqAP7hx1v3rrN8cERy+UBccjsrUZm3ugnxzgwCKYfuB54cfaC9z54QNv8BcdHh7z5+m1eu3aLbn6dDx8/YTMKp2mNpoEsAfEtLvZQIk7XpLip5+twDbRB6c8LZZ1xmkibRBwABPGKBIfL1jH69Mkj9pZ7HBwcM8YFJ4+OcM2H7F8/pW17sniys2J9V5TiM66k2hhgxblOM6F4cjH7EVNDkNt4t9gWjBRR9q4ljo7g5NEpwzDShBnFjbgIZcxcrpSLDfSDZ7OCYaPEUcjRmKVef+t13vn812lK4IeP/oL7H5zw4uySsSjHx0vaJjFEo8g7O4mcvvDsHShhHljdX/Pi/Rd8/OKS8+zZrCOhE8K+cPPNhtlRz/6BoinRjp6Ag6EQmmgdqjnQtI5Zq7T+ipIcbx24qSjDGImjJTM3fWL/9QYvmR/+mePyvPD6sfCNd5bcuX5Bzlbc8/DRSHZqbFxFkOwoCTYb5Wk+Zd5l9uaB4JIl9mRgtljxB//gkLvfO6MtA3M9QpYHdHng+Xf/jP35N7l39xlxBuoL/Si03SGz+RnnJ2vOninLvYSfNfgwQ5wyjiON7yixI3BAdAlNmaIDubTkXCgeEkqSNaonuPw6LuzjnSOmDTGuGIYL+vWGRloEJeeRMZkdkVrYVRv8CbWoEvGINFsqZiXZs/oLtl9pB9Ov2gnbxb52D31VnfbK+Uw2ToUiBaeKe6ul+yNlceho2sLha79DOFoi6mndDOcuCKFH8WhOCGvaoIhrcXJJEzpjYgozYkkgSvBzUnHEsbcFpAYc3gecziHPcKElCgQvVhGbC3hHdCZiDRY45WTcyEaJksjJspAWDFSnTQSyoGOmxAvSUCijmh83BW1JrSKlUKuNjcJO1dYuYQKGilHzZUWd8SqXZMGKKLhsTud42hOGE/xovKBJjfZg4vmeIH/xQmk9TTujxDUaszmGasBOSXYOlkud8E5bhWO/xki7KlektUShJSA+4NuGEiJu4SmrsXLV/G3Pwc9+YPHruKVSvYZdIGFy0MQcMqt4rSBG/ZSqce7at42mAdmqWaD4OmS5AphXAbtNokzJAydnp6z6CMWjxZOzI2YlaiY5GMVVHbBMq45SGnIy0MH7NaHMbUEHfNV6wilFPZqE4kwaNzglKDQYDaRmiDjUi/GjDjAPrTkluZDGkdI6nj+8YNYJ0iR805FVaGcOjRG33xBTQlLBSyFoRok4acje6BuMWkXxrkDlP9YitnhoRku6uv1i7c7iFC25gqrQeYfP5nwVFcRFOhF8ygZ2iKNpPD4XxpXivHUyOFGG5PAhkEiMeUBEWewFxn5kSJnYj6yTcnB8TNtZNJu9gaYlRYp4Mo5UoA2ZRhIhtOSSSM4TsC5ILRkRJZZE2Yx4TKutEbNlPhj/f46Jy4sV+3sts/056WhBuVhb51K/wat1G41ZyUOkqCOEkfWmMA5YglAS2Sk5T9Ut0HiYeaMT3KizAJ4MriCk2qUxEosSXItXpZURR6BkZ2K62dFvBubsgFHw0qK2xZ6q6ILsgPci3taMitBZaFMq+He1P1HddkfZztwWApzghd1XtqBgxeUmEO4zT9ewC74W3QIg8tJHrv71aVXuWzBXXh6zXZB3+/7f6JTkJb9lVyNp2qZkjn3e1RGbus927KlW3+cqmr2aSxOYSCE4R9s2FbC9AgInW2tVmbXjaErUOLdNFDlx2y4iV/XOJrBV1MDg4D1Tx5NhlFtSkC1grFq7Dep15pJxtap5unl2vCuqvak7adshoaWuFWyv33JpNreLTj5ETQxNwKhUsBisG8rLtrhmmivFKcWZVl1xQvFQqt4EsAXHipoWZkQZBZJU/aWdxK1hsc4o0IrpYqSpsnu6lmkOSK0WnzBg1LpxvauNCaVW0qrRv7rCpqwZOGXZBBqZtKisW9gJBCdGExECobGx91Iphxz4qeNDjOInBBOOLaXeWGddNcu9Yy7OnpLjYJ3uU+Xu7tzf2XZB2leZBV7trqk3/lO/+5nffmt7LGHgHaEJjDv+3/SR6T5tkyw73UoTBd5E5eG29qgmwetscs4006aK8ena0Kv9OOTqgBOLn6glu+TlBPu26hxq8L19i6mbcHsNu9mt+rcBlPU8zKXduWArxBOq7s123+azUQQRD8UAR8m+3ph64gWzfROzRcZ+yjTPdsZadxJpRa2rSadlXmuyXLefYzuU0zVOBQj1nlUgWlVYD3CRlXnTmIYPv7U9v06bpYZLtRs2hy0fetUlOa3H07pol27flLqemk2y6ibrEjStlL4I6yLMJeOdJ+eCp67RYtXz4hw523qZKRQxfcVYMqkoPY4PWkfyBrprtuJZGvNXtdjxpBRbc0WMMSWXOk4OjSZWT3CMlwWXMnSGd8TyHO3mXJ7e5cfP3uPm7W+z6A5YdscUSQgzZs0eKoMVpMkBe927DHufsLnxgvUbLd37I4pAhjwqJRVKKryRW9pUWCc7x5xNLyq1LeN8jlyu6eKGOPk0DkIWxpwJLhmDQRakL+hg9IFp6BnH58xmjyl7B4RPvo/70j7NW99EV+eEb/1jxns/YHz6AZw/pZzdRfdvQGhQvYOOI35vCW5OPrrGeHCH1//Rf8Hm5DmP//VfoKrEbMml6VmPxbq5izokK9TOqjEqnU80mxd0q4Zuf5+mc/zVEPmQzIigofAiFtbJo7GWxXhBXCJHJZ8m63ILLe4a9G7k7OwFs9lrPPvkPUK7ZLV5Qb98xmGY8eOTB4zZ0bkH3Ll+B+8vuPf0CV97810OugUlO5pmzp43TM8f3eA/+q/+G77zv/6PvP8n/wvj5ZrlBlZDpCuJEUfejLRdYZTCrJnj8Qwpke5/h7J8i81YO5K4CpGvbIDW5OLVumXJkOnt2hXKri99hYlNOMT2nfpMCYDWhAoOmTr/VKjaEn/b5uBXulnBlE2wVDIijtnsJkfXf4/9+W3SMHJy8gkXm49J6RGjXth9mfx3q53AO0V84XL9hLMnj/jY/XM+kh/ytbf+KcNgMiNt1xLaOY+eXfDeg4f8vz98n71Zw+2bN3nrzhvcODzk+LhF3BHi4eHpKWsXLZbWgiZYx4HzB2d8fP8Zjfwle8sFfrEwun4JVuAVN6RxBXlD63s0D5SiFosHT9c50gjDunDy5Iz5bI7Xhhx7SrZ4yDkh+GBFtTievXhCaAtPnpzx7ue+yPr88zx6/CF7+xcc38ws9iLqCsUJk3Zr8gnJDl8ELY5YTLsuDvuU4RAnc7PvJVEKtEvhzp19KM84X4/0WSttWjb6zlQ4T9AX6Adls3bkaIw+RZXl3j533niLo4OWH//wu7i9Ne1R5rBbcnk5sIk973z5TTb37uO94tweT++tCF9oeffzB7z4qUnKXLvhaXzheRKYmRbc7bcCXnrEmwbQPHgkCcOYiRpZj4b/dp2jbFo0OaPFE6P59K5hyJmL3jOMShkVGsE3Cm1ifhOeP4WffVBYuKdc/0Ygx5Hg5jx5FGm6hlKL30sR4vmc85MFt946xHWn+FALdEiIKrPG8caXAsvQ8OGfFy7uRtrFnJO9x9zeP+Dkp5/AYp8iRo8YszCfHbKcL/CS+O6fPaRs9vnit98hA5vNCvHBul1jZtndRMuGjXtGUUfWlqJ79e+GgZ5WX9AMp/jmEOeVTRoY44Y0JoZ1xHUBCUrOiZgSwQdz2WsyuyA48eZHu1AjcYvjlUJKvzi5/W+PIq9uvwrn7G/Elay6NfiizngtJTD/dxrCO4luvqBdHrA82kPCSOdeM35/Mee9lJYmmJ6IE2ecmxqtxV/2KRoRjbVt3yrbpJkhpSDOAGZQCpdEKZZ9njmcCzTtnGHoUa1AMFhQEgLee2IaQSLqzUHUbAFgqckccQHtlLJRXK/46KztXSqrfxQTlgOkKGSjwcrGMIZz1r5LpmocWVu6a0EXDndRKgWdBUea1LoKVmt8sQp+ocqEBijJzt+JVR+4IhRRJhFbLWqTOjRm0Mdk9DMiViksJixfcjHu4jzinLfKvSCoZsQrftkwrEDmYjN9rIHI3/4M+zvY52/2Jpoq+F1RRAElb2/1FLDLjnaMhcAGbliyUc0J3gLhikqujlwNH8WMJPVbohliz+p8RdyMeAXVkT5GcvZk9caNm7yVqhcla0azMOlg5CIoGa8tRVK1JQ5HRnNBXWvz3w0EJ3SuMX2AXAFDsQRbGqK1DccB54pRLYSGYYw479DoSTHj5p52bw59xKmQiiBdh/gEXYOeDzVpa7oGxRmFnXcgXkCCVblLMWXJku31ys0kzlmmxBc0ZVzrwXlKTHi82YVYaBYO1zji5pzGNxRvyR9dRYgNY1K09fjQEbIFoSlFVM2OiVNmbWDoV8yahjALDP0aVTue76yqz/SsHDhPKqbZsmigkYKTltA63GJOUmVY97hkiZFGDQRrvBhHbYpoyaRkybTGHzBsBrwI43pDCJ71ZkUaI14dpVhlZBoj85mnP1c6p1yWnovBgj9HRpzi0SpF4IjFqB9wNv6pmP3VkCB3FZQpxJRwKBIEVesySzFBSsTNhgnU30UFbS2YQh2Y+Oa31XITyMfOv7fPCjufmZ4ruAqbXnkmJ/BlB+y2Z3OnO3iiMPwMb7tV/kqpugJ2Tz790iZQ5RUwd9LZgC0oW9+tAOAEBO8cm5cBq1eB3AnQmvY3Abs/d2zMj7kabTvP6diqbGmXrgDO7dnV95WuCTvg8RUIN4nVG+A5BdNX1e3Tb+88oWksOTO95wA1gNft6JRcXfbuerp7z+odqnPbtJame7EdiZdGafo71So05zwpZ0Qg+0qjU6/AYVoPlb0X6mqSseM456yD0Nv5eecJ3op7rHng6hrxVn0vaudQ1CpzSz3vmuLdJqFkGtf6ekHImk2TqVTQfRfoL7qlN5uWs4JW8fRSu9OtCEirn6eucJEuQC/pvFGfTnVoThQnVvXtxRGcdZ0LEOpctjU141xD8EITHM5DCB4wwHA+n5PSyGJxwGy+z2U8rx2z1bY4oxjcncsAZWdufZp/Pr3+Mjj8N2RE+Axtv7U9V7YntE2dK7v7n45hdmQXV3s1seacFbFYQrt+udqRrU176d7tdAH+3N2WLVh4VXm+OyftIqZ9TsIZCpDr7BZPodT48OqeWFeUbE9vu3RPhmjbxeQwWqUdjTuplkuteE8qpQnObfdXtBhVnrVBTq6wHVvtINsusglIrp1NmqeBkZfm00smup5vyeZ3G8uyoqXSthelFMf5ShmKsu8dXuW3tufXbNOiqNOKaWidejYRi1qXwdRR4epz+3N6n5Ver2Ykr3xBMVWsVfYcbkF2GHKiEa161KBaCN6TpBa4ZuOfcJhO7GMPzzt7pp1XAyTEGCGY8tgZ8rYGxCZ7qgkf0VxptL19NCluTLiFIK11b2nsOT25S9csePr0X3F8/DZnFxtuHH2FqI+ZhdeJaYVIoZU5wV/jcPlt8vCUdOse+Yninxi1kom1wnUCcxyrlImpmJ6Jb+hRonY064HZaJII6pSUTC8lOsNmfFbCkBDnKbmYvqvLoAXXr9isfsRsEZjtHTO7OCPMHc3hTeS1L9G+88eUG1+gfPQvSZcnyOaSzfoe3PgKpbtJ1zp8u0+3uU85fBMR4Y3/8D/l2fs/oTx+Tkr2hKSsJFWSOANXk8WqE7Xxpk+0Uelmjm6WaS96VnstPwrKxaC0Xhj3HCv1jNlByqQeio6Id6h6XLOgrM+QNkPOvPXW11hvRob+nM99+Y958uhD+o9+wLg4p3v36+wdvcnzs6fcObrNex//FYvlPm9dv833P3mPb77zFVQ8PnqaWQAy52Pk5mKPf/c/+S/xUvjB//k/06Wes0FZR6X1xpITY6bxHm0iTVgzP9onDYJbzhlrQttsphg14WRjeClfv7UtqG6TUkzPh7JdU0ScdVlUmnKTodBagFH3WSnPjGrV1XqEinh8xlkjwjZuFcR59pff4Pj6H7CY36YL+5SugN7At28yxOf0/T2GeI+Sz6qf5HEUvLcCtYvNmp988GP2Zl+mPUisx6fkBP1mxdNnz3hw+oxVvybmTCqZ9UXP0/MLfvjhR8xnnmv7B3zuzi3eevM6+0cz3r/7mLM4klEQh3MdTduQs2eIG/qTS/Lzc9Pn6QJdE9CSKGWDuBUil+gw4HBk5witjd/5mTD2Nn6PH645Ojxg0S24XA1McgWQWSwWlOJZLvfoZgHRkU/uf8Abr7/DbHybu3ff56d3T5ktI4f7hevXGpbzJeDI5Nqx5FmPjtU4I6UZqZgWszWPJVQT4oWjax3Xj2Y8e/QTVkNBi5ByMUrTopagomKqwROLWALaFVzw3H73Om997gZPHt1lNZwQFpnrn5vR98JyBU47rt+6xsNHD9CsPH9+zrkU3vnGAQfHhXLH0QwDt9+ccW98SnNLOb/M3H+o3HzNbCeugTDHe0WGXIt6oU/G8BWC54d/ktn/BzNe/9KGKbJSDQwxsd5EhkEYU+HgpuBdIbQzvvoPW2RQHv8Erl2b0ac1cYTGJS4ue8PCVSk4Spzx4Edwdv+S43/8RRa3l9a91D5Fqt/hXcA1gdI9YO/6a1w+v+RgtuTo7czh5+7w4KfnnLVuG0unAqXMmM/38OtLljOlayMlrUkANd7OWDy4Wg10sz2G8oIkuXbDFlIWnGuJ2pP0nDA+x5dbqCaG1FNKsnEdCzS2HueYjTmDiqsXi2O1+uDOBcSZ1r0VkBidqZRf7Af9HSaYPu2gvzoj+Iucxb9uu6L7MWoRvVZov1Fojzu6Zcve0S3CbIZzgTY0OFmZ4ysBfEMhU/QUSDg/IDkDYt1MCF48BkBfoNLRuJs4lKQnJIkmoOYGfNPAOKISKC4QVSgSQAysyTGhTinOYcqQHSVBmHnSmNCSyNG6oijWYWCgR03+1GApZ7CJY8GsGFZISXo1cTIWuJTqcCporIuBB5l5CoG8GSuPKlVHoa6exUB3rU6l5qkNuC7OMZPKxhyMUvC+Bje5IEFo2pahzyYYWrsljJ994q+1fZecETXBcMGRUsG7BrxHfYbOwbi79P92+3Xeck0cAEyc3OaDFCZdmGn8p8hiW1mH4ooFzWXqHtKJvqs6deJrcA0glrwsUCTgcmK1hpIKIRs9Q8KZXnGBnBpSUZDBEqDFU9TjXcahxLxEZKTxSpCW4hPZj2hujSe/gAaFKmJdtJBToHGgmrA+m4ALIE7JsbekE1RhxkIsiguexhs1nziPmzv8bEkZ1oTDFvySPKzxfUBTJhalpAQiNLOA5g0y6THJiAms+Xo7HUis0YOAi5Ay4gu0wQCibXt6oe08XrJpQe0vGM5GQp5TdE1KyjiCeiWXwpBgs87kbNBuVmsFL6om8uyENkjtqPFEPMV5imY8zhJkwVrlU7TEWSwmjjsXYdY2+NASXCC1LUMaavVyoWTrFig+mC3xnkBgfbqiw7E3b8kukIdMOu9Jm4HF0T55cwmrgbyyNuycLBgWsfB36E34NTgo0REFsi+0kixgGc2OWvVLwBFRNfqc5eGMdDoQB6sWliLk7K27qUSjXd1sDLQTKqNjtaMygUWKulLFuCfAawr0be4Xpi8w4WEV8NP6UWVqd65Y/hRG1WeufodSv6vb5+dqK/ySy+6v3+YqmDvdH5Gd+/zXbxOw6VztyPnUD01r5FW1/NVbVyDurqbD5M9Mr0/Ub3AFlr7s71zZtpd/v7xtwcJdcwr0w8C9+/dYbTZ4N3UZcQVKizmZW/BbXu0guAKwJ7qP3c4FkWpipsa6nbPcgtj+6qZLvZ9bHFSVifx0t3vp0+71hNdarXy9O2oUNtPlTJ+xtaGOA7VTQWSrqeK84JqaWGLqiqDS5kmtmK4A3Q4OW+q4Fkz3bupZsmu7An+nUXLObW2jVoDBV/S91DHLalR62zkxJa9yJd6Tyd4YEBRz5LI/p9GBhpn5d/WY3llFrelCGGjhKhBvyf86/hiVi1FWCSqZpNEwE2efb7qG2XyP/YNj1qvHlLGvujw1ZpZXwdq/dopevf0p35nmmel3/D3oJviNtz1KP/Q8fPCAy8vBnvsJtJ4SQjVJZNfA1i5tk1uyc+Qd27PN2+yi3i/dJdnaqGkMpKh1LG5PugKCVDshV3pKn36R00GpDJzTQ1Ctze4pvPR3vdatrp2rwFZTk/tXYydcJbJtaTatpcma7Jhd04Gb6k3q/Ztw+OkcHM5sRtFtskv81bXDZHemZ46tHdrtarG4zDpHYyycX0ayM81Nfmt7fu02LZCrg+m9xVn2iFoyd1rDPBXcLjZuUjVhpmeiiOKrxqerBUdOzU++kEDM2WjeKJDFQE6nW8m2Qjb6K28FfCUrEbgQz8OZMSP4Cn0gtbMYRbPhBjRiRbAVnEesIzKjSE522KioT+AcpS80RQidQ1TJm0SRE8oyktTjUY733+by8j4jp8jMmCxyGMBdo3N7NP4aYXaTvP+C8vnM+HSAlSWTGwez1tNfRPKgNNXpcTmSxTOPa2M1AEYR6woCShKQDJIoCv2IafiGgM/FtMi6ljhEisB4oYz5kmHT04ZMt/+U9uQpbv8YVzI+XlKA/uw5zcaBzJnfWhCfv4+7/kWSU1p5itu8oHv9HW5941u89/D/AoRYIKonlsyoCUUYFYorhkMG81fGtYGbycFl8PzwMvN0Icy9Y0C5uBCGCClnvID4Fo1K2kSKE5r5DCkN8aJnvHjI+xf/B0c3v8AmDejqgvOzR1y/87sM4zkXjx9w+uATbrz9ZZ6hzNol56fPeB4WpJJZDSMaB9b9yNlyn+OQicCmayHM+MY/+We8ePAx9//1nxEonI/KASOUQh4zyRdoCrO2I8brxN4xPn/OmPOUh98JgyrOVbZTbqu5BOBqBtXiZd3am93Op2nRlrr4THZ5sj31idzGflNH6acv9J+trcE05UuB2fx3uHb8hzh3BNpsKea9Cyy6fWZNw7I9JufPMw6PuVzdYywnOD+ABvpxJGnh/uo+678659bRER/86Gd07TEXfebx2TknFwOXYyLGaJiAZELTogiXq8TZ+VN+dv8+Xeu4eXxENzukC2o4bzapA80R0ZamETQoXjOaI+MQiasVzhd8E+magTL2qBrVtfNK22Q2Gxg3LcNGQT1t63nx7IL9/Y7r1/Z4cbJijJkxFVTX3Lh5h7Zt0ZxwHobxgg/v/4Cbx29wuHeby9Oep89GnjyDuw8zt262zBY3iCWACwQ8MQ01WYk1PUhT/ZcqgNI4btxZ0vjI6uw5KRbrlNRcWV+ETZ+JxZvena9+oQrOwf61OcfHC1YXF6zWJ5yd9ujQQCmERpntwWLe4FyhKYGz05Gzy55rN/d5851DnESOvzZj/ziz1nO69ciyS6yz49rrc46Oq7/hJtpcJRXTuhuSo98IeEd3qHzxq/tsngb0C7KjL62MY2azClycF9qFR1wmNNQuHc+NgyU3vtGyf9SzzhvGfsQV4XQ1kLMSSsvh4ZzXDo+55j0/LWvufnDKyX3l1q3A5/9Bg7qVddfKgIQ5bjZwdKfncPYmY2n4f/70IT+5/iOOb7yNP5ghjOQy4EpHKcJcjpkNT3n764osn3LyoOPF8zlvfOMGQgId2KwjrTPca9IN1lJIJLLLqOuI0pJ8JKdTGC8oaZ8YN5SUa/evVs3NQsqJXKxbScSY1cT5qlUOIh4rC6pFTFq/+9cYoL+jBNMvSi79otd/2X29+r2f/8wv7+tdfUGqk9X8jqf7csPe4Q2a2Zz9w1tW5aJz2gpYCr46rgFLbXiU0bLpLiC4KuwecCIUiWTtETocC1SEnE/BWeV6YU3Oa5SENA3qPBHAW5Iqi0BocTTW8ucdIhEtDqVSNG2v301scsYHPoEtoiClgjIWCPgAOcKk5T4xWyjWqJE7TNzxQnFDdSQT6HnCRSNqNJ1KqVyeU3s8uGBUdyIGnlLfR80BJSp5LLULxIo2iipjP5KlioNnrULZBvy7KckwjV4VunapmPNZwRxpPCUIdAJr89f+HqzHvxFbrTvbBjm7yplSKc6u6r0dUDXFxARWUQuWr0LtabMndRJGtwB9SmgIY06Mw4jTguRMHoWcWrIW+tITVUFa46bWBogUbZjtRYZ1IPpowbEMNmFjg+YFzBSNipeMdQ9aUjprrhzNDqeBnAQvxfSYsiJZKSWR1FOGTB4yfubo5opvPDEVTl+sODxeos2atuug6yhe0WafdDEaF2+BVkCc4jRBKFa1AqjmWvFaE0o+WzAeFKMJFKTxFXjJkDySQLCAzrmEuGggQKWGE+3tuVWPZuOtXo0jp7234CQXgvOUUog60JcGKYXgZ3hXiKrWfZRBRBlTxEuteEMIziM+IJqR4IgidBLo1wNtcYQwY3Gwj4TA2bNTmqjkbOO8aCu/ey40LiGukDZrNg8VP0RSpZ4a1pEkaySOyDrRbwbaWUeMmawQS6FPhaQBF8H5QopCQhhU6ZzQYBVAMSljcZTsaJ0HFaQ4+tMByQ4RE9PNJWw1nxq1+5k30R6Ebbn3DjhVfwtS6b9lK4M0CXXr1dTfLo6fXplbv7cDmGz3qwBV1wW9Qj0nznF95fXP6CYyVbxjwImAVVr8PGprt/6VBMsW/HsZCIQtblz3vfOz/cBVp8JUCGLP3BYhpMRIKRkVwTUthFDPUZh6cXTbg6NX47I9Yb2KgJWreVXnw8XFJd//wQ94/8MPCYe3cT7sVOnvAN6BEx4AACAASURBVLjbKuUJsJ5u2VWiyZIyfsvZvAtq52IdpabrUUN2J1WbhK1eSilqAToT1VVNbE0/9bomKiSpwHxRq7oVMaAnF7aaH6mA5EIjbgu2G8GTnUYRqXfTbTWYFAXnCJ3pZWpOL2HoU++UFuPlL9UHylmvfB4goxVOsvWmTBpLmN+TasdSVrUkUn0vFisamsYzF0soxVJMZ1OzrWhV/0G9+XlarNCi14E4bjjCgkWwilgD/6z7QFSNGrref+8tcESmjhBfC5KglIyvgy47hRzeeVxo6Bb7hHbBMK6sEEOFMnXh1wTlNH66va5Xtleft11AfJq7egV2f9az27+1PZf84Ic/4KOffcit/T2OxW8TR9t9vLJcbc9ZZKsTafPVkjNuey32n1Zmh4kWU0W31Hdbu1L3ekX9xvZ+7u7tahxeuaU1AbMdg6qBKCIW2FOQ4EHrcacB2o6VvnSs6fq8s47SvJug3hk3UDSbIK4NWZ5GYmubanM/gtmbrbaVGZ0KHOgVTZ7WSnypsGdd66dCQM3UpPdO8qpMfnuN5Uboh0yYJYIs+K3t+fXbrMh0KtysRLWuJoDqPHRMnbNTAgmzUwpZjDrMT86is4RN2XnUVwQuygbRjC+ZpvqSGd1qj5WilKmjA1BXQB0PZp51aG2/vlqa+vClWAit4S2Sr5LJE616VlurXZjWeUeKEecMVMhDoKRMk6F0Hnc2Ii6TyZysP+Ls2c9YHOxzdPg2fTihkQWueMbyFNwlfXpGYI9N6AiHG4a3OtL3Nrhc2H/rGuUykoaIWM0xlEr5WDLeB0TN1k+FKbaOG17ivJpGjTiiOsYx0xQFB37Y0DaBIRZC61mtB2NuGGFMA83mMQ0fMZs3hONDuje+Rh4dPP0+sR/Rh++xePP3SKcf04UOd+0O4fmP8P0Ft373q3zw5/+K9ZMTYqmUUKWQ1bSYokJxQnaK1wLBOt00w7BO3E2Je3NHM5sxxMTYC32CPqpRFC480nqasMC5Na7pKD6w9/q7nN99wObpJScff8wjuYfvPK4TDm6/xbWvfo7u+gGz7jVWJ/c525wQwh4vHnzIwfW3+emH32McnnF2ep9vfeFb3D6+wb1nj9m7dgOVyCcnTzmYLzlsZ3ztn/4zTn/2E9ZnH5vflROpdgllibgC/UaJI5T1hrO+VP/M7FCWWshdbaYtcXU1mIwsUouEyra+b7sk1gyRYl2BEy+L1jhqG2LVOK04KkdLXZNKIVPp5T7DW4lKKR7fvs7142+TYkOKGyQH9g/2WO7NuL5scO41lMwYN4xxQ795g37zJdabU84u7nK2+gTRFc5FghPWaeSnT+8j+sCKwpwnS8B7ww+ymC0gm4402DprxiOw7hMfPXgK+hgRoV20dLMFbdehMiONCrmllEx22ajtY0ceLinDJa30tL6wSSYj4AI0M8uMp40QB09OkKN1aYamZSzK3msHtIs9Ht9/QY6RYUhcXl7whXffRmQgpRU+CKt4xkePz9lb3ORoeZN4Uoi6oh8Sdx894tq1yPHRW2Q6NsmMjxchFysKcC5ga7GAc3TLhus3DhiHT7jY9JRKy5uxBmAtjhwETVjnHmz1Fl0TuPb6Hrfu3KCJwvs/ecGeu87X3v0CZ2dPefj8jLMyQlHuvv+Y9blycTmQ8fzut29x45oH3yGzUzbLR/QbRXxCuhGaBW++e8BsoWiqBShiz0IaC31W+qxs1gXXQegin/tKQe9XJ0QKiieqshqV1aUSR6XbL/gGms7oz9fPHe//6JSbR4d0R4UuWVdQGRPrtaLScPvOAb//+/vMZ4n05Yam6firf/6YixPPrTuvEWNCGmUohZwTixBQKRy/A8s3P8ePv3/OX37vKZ4TvvqlzJevfx1ZQOkHXDSMf3Xvkv3rC574E9ap5+mHT7h++8u4IKCOfnNJ40ZcGFiXM4qm6kObHIbpxkPGk1xBwxrJF0gaSDFZgbgKeYQyQvAWb2q2Ys22bTG5D0dQo7dHPeICZs8KiMWef50kwq+QIu/TDODPA1t/s+9+2vde/cyuy//LbWZbPLM/DCzvHNN1Bxwdvs1idkhfNjQiBBWC7AGexECmEHXEaUuRDQ5L4Hg8KoHAjCSJpBEv+yiexDlRM4WMy4IWIRPJqjjX4WSONSYGAh1BWvCOgqcUJcYeEaFplqQkxPyCrEZhlbPW7LM3YTKzJ5XPvQKQzpw5q1w0PSXpxLhwa8u6ZY0EOmXx2jGbBxtk01tIkBQ3FrRy0rINQmorvdrSWdl0yMkqmTTvxJmqSLFuKZnEQ+t3vdQApui2Gkm0VjiVYm5iFQK1wFFNCBNFmpkFwKg5la1DQ0Y/21qIvzmbFtDGwAqpQbJeASbmxJUrR4uCqMOZyJd9duIKlbLFIY0/1FtAu42qAc0UUUIS1sNAP0TIAyKJwmAp4yiU1KE1kM7ZGxeqwYhE39JX77HTiBSjVErFG+VfDLSzHsaA5ABeKRKqLtII2qJqNE5eXRXPjQzREhFSHK0EurZFNZOGTFRF2o7QBUoc8CrkWcB1DZy8IJyt0Wi6HJ5klQmVqz+HFrk2g8sVDIDUylJX73lTKQcTxuvfYQ5uXyAXSgg4TbhibbSiDpI9r77x5CEjtAZM4YgJPI4WAwcGAUeh8TCmyIjHN84oOnF2zi4zd+BTMS7srDgJtRqo0HZCHr3xFAeF4NiMCUkDMkAcR9J6wGuoo1QIwZEl470lE506ggppzAxuJPQDzawj9QNSCk49qzER1DogYonkPoEqfQ/j4FGUlCHFgNeC75QhZzR7hjKabcqQk1WDZtEqhTAQykCitSIDMlqPGbPDFYdKIfU1WVkDFnbn7i4sOAF6WyRkqlKe5vnU8ee3dvaq8yNPoQ1XKIotFAa3T1Q6Blz/HKi4DaZ++TX312kTXE1Y6FViob7GToAoUHUHJqBrB+ZTq8TeBXnVdl6Bj90j6s732I6rSHXdzIu3Y4rpvlHSdirYs9DgnEdrJ80Eo1x1ZU8GsK7VFQQyHMhZIl6Vp8+f893vfo9P7t4lxsy8ucT568hW1P6V/b1y5wwgr+F3BQq3iaBpOjEd3nQSPKYVJxVQNMrhQhxj1VCR3a9edTPtgMCllNqZYEDMxIGf67l0wYSqS01OTWPgX4Jwqz9SV4lpgI2gqeDwIFZ9G7wzPYqdwh0oVQ+E7TOkNUlkz4VRTpVaKDNVn2ad+nDrEyaOVBPyU7KpqFFZlO15XoF2uSSjRlCrHi81KbV1srJSXKaXkTSecb3E2oFia6VTsQSeFqbhsgKkab4Wq0RHtt0FIrVbIRVwperz1eei0pyEbkE3P6S/PAGGHbtSnc+X5uXLz8F2RskrL9eL3nZLlFKDJd2+/lneftNtz/eq7Sk5sWoCB10w3UR2k2Xy0i/d+cfU6WS3ZTdZ9/IlT/oE4h3FgRerzASbU0m1dtBc3T+p90UqSjjFL0XLla5cPeZ07YpC4+x5dwUpfrtGi7dznKi9dKpsr9c5hV+2TttFlGxgs+g0N6r3q7zkz2p9tjVvAy3rStomQuqDtZNwmjS/tgnxbBWGRa+O89K0UUueTwWF26RSUSt4rJOtKMRB2MQNYW+Dk0N+a3t+PbdpTtv6VMvv6nqZixrVdrGEj3NVs3mbAK7+oJguIbULUtSem0whOs9pbpinCJprUaojKDBR11ZjZTbFbOFZ8TxpW3LwiGRbh5N1OZei+GB8mU6qmxxqFbaabzoVZmiuyW/NkGvy2HvSaLTgJUEYFfGFsjlDDj2y15C8MrDmSf8ee5vHzPf22V9+icYfMpNrqI7EuMYxIzlH81YgfQLNOGdxdIA8foornlIszpwS2a6YAyAipi1ZqU2n56kopOiMmilnNGcESBUPSVmNck8Ut0oEL5TRupuiH2g2geXREk2O7sUJof8O/q2v49799xnv/TlZPesP/wXtrW9RGkWHx8zaOZzepXUjN7/4JiePnqIqDLmQVIhFSViCKZdC9oIvkFO2zrGsrIrnrkDp7HzSWBgrvbyB2cU0kWYZ2hGdzyijJ41rnFtw7e0vcsoT+o/ughY0F0IO5Itznj38GI09I99j7+Aapw/vsfdFTxHh8vwRy+UxpH1OT5/y44/f4+z8FO+F//sHP+Krn/8qc9/yydkLPnfzFvt3vsI7/+Q/4/x/+O8ZN5f0RWkwSkIvmRShjNE6QrXw/HJl8T/Wvee2NPJm6ycLcJXi5Cqmmpw3UWxim301LU1bS6elXpm6UvWltRuVq99T8r0mmT7LW0kO54+4dvz7eDlCcXTF8eVbb3Jr/5A//dP/jW/9wR9z69brOBcqXtmSUiSmnnEcuVxd8Oz5Pe4+/ikPX/yMTXzEkC5s3fB6JQsiPd2eY7509JvCalNIeUGOHTEqOWVjRJKAb3zVXBS0ZPrLSzaXl/jG0XQd3WxJ07UogaSCplIpaQu+KbR+II+Xtg57h2sF3zjWl4X1yhNHQD1gdJ2qMJstSKVhebjkxrDgOc85X12gKEUje8s5ZXT06YLWN6xLz/Oz+7TNnK5doGOh6IqSE0+fPialnls33qZoRxJPVsPT3BT9lGI2yQmHhy2HC8/zs1PWydgYHGbjcZ6ooAHUW4bcCqytkeDw8IDDw31mXcvZ2QmnZxu+dPtd9rqR1EZmceTje2fM9uacnvbmVjrP3nHH139/D8eGJiwZL06rrm19HrxnTJnbb3Q0fs1QLLFdXEBU6cc1Q8ykXBjHQnModK2naUfCnmfMVsiiYgnyzahcXoK4gPiC78AFa1m4eBG4vIhIHjh6e4auhNQow9pYaI5vtnz1a3t0sxX94Lh4nji6EfnK1+Z85c43efvdG/T+A57n7xNzJsdEWOyheLJf4/eVN76+x39++C0+/KvnnDx+RO6/jMyFZ+9/wul7T3jzzZscHTpufv4GF08HVi/W3Lqxz+3faYmS2PQjXVD29i7Z5AvUDaavWYSJ7cnWGUN0hqLM/UCIJ6T1MWUcTN8dDLccI74DxGx4pNB2M8RySRRp8TJpL9lcNb/OtO21/GLb829dg+nTHLv///d/GUfu38Dpc+BugP+mo9ubI03gYP8NRCOelkYSDYGGvZrh7Rg4R0RpJBA1A0NtJGsQGqO8qiBc4ICkI5nnZBLeBTq5Cdow6ilOIt7t4dySWASRhsYvaZij0jCWkSQXeB/JJeJlTvAzhmIcilL5/iWYoHSYzaCPpCHZgjYFN2Vy/PSqcrhqDIjHtFWSdVC41hHHoQa3tVvIWyBXGiCxTRBpNThOjeNTMVqKUtfcXX9ehW3ThOZSY8Er0KegqLOElfOVwqJWIG6xzp3FtaRYA9dAHDZXBwpiP6P+G02J326/2s3GtyDbWm9LCqlmJuUIwJy1YiKyggV8W7DBwiLYVg6ZU2ju8ZUDaPupTqMWVqtLhiFSUkGjQ0sgFxNcLzXgtsrygBclkyhEzi4VXzw+V0pLAqoRKQ1eEj5tKCzw8xXEArpnledjqiCm0CwbxCU8G6R4cmxxOHpNzJ0Q+lo52ARwLas+If3IbNExRE+3nJHXA4kavDcNPiV0JlhmtyBZIBUDc1ebWiBtnUSuxfSB1KOu4BqHpmRBwSzAxhYVCaY1ZABFQJIF7urU2pcI6JjxwRwEiQnJhXnwRMn02fj2tQTapnB42PDiJJFEaLw3CCA4WqFSPHmyOJoSSSJkHL4AodDOHaGpTkdKOOcoErhcDQRVmuLQXEzYG63aeROaURhTxom3xTBm0jriknJ5cspsuY+UTIyJzaqQVokQBZcy3sG4jkjy5JJJRHJWZurJa0fxgV4KJXqkKJ6Ck2waXlWTeyyeRhpUHaLJ9Aic2c1UwBdnias0JYOu0LItPrILbAhXVXE6fXK323Pq3jOwZQJRpk6+LfAETOV2uvNdpncr4KUTsCVan0/4+2Rgt5Xkk7g1egVaTr8qKPgq5dRLm7xcRb8dxQq0vnzQn3uhrutQeZa2W86WNlVxGMemjV+R6eynSvif37/WyLUUJWnkwcOHfPe73+PR48ekbPo/br2C5VHVTrLqpi0AOnUevDLeV7hyvdJ6X16aprtdFvXfU4JoWuO3rIyv3I6Js34LAMruXWULAMKO1sr2ToKIJa22AP4ECDtXx2WC9Wt3kYhp8aHkXEgpkYKvlaS1wwqzL9PI2jnYehHL9CxakmsCKs0hmu6hPdtTsiznTM6ZK3oy4JWppWqUo6Uoqdgap84qZQvYWiiFIpkihSH2NJtH7EnCT/o5sL0XbuoAUet4zyVXMBzrKAi+6moZiqcpkXUNeaTUyrZSQScR6LqOxWLJ2XZMtsP185u87MftDtgWtNnOW33p5+/r9ptoex5X2wPKZb9hCDNmXNmG3bXvU692J0E2faj2Le3ejqv7Ibu2ZzrvHerL6VndTUY4rpLUtsftX9s5uTVvO2dZdzON1avr9nbZrcnFUsC5K0okzUqWjMu126GASjGdUYHdzKElCdRaDditrNftf9uv7MRlE/VdqRpZBoy+aoDZ2qnps5RaWFIwAFZrJ0axgsJhTKyb5/h5wjm/vb+/tT2/TtvUTWZblh3qHXUE7Pq9M1BSpuLT2uPkZEreXD0ViOlpGcsLFIFz33JTe5w6o/QXwUmhoXZEISTJaCqkYsmqk7Yj+2Cxj9TOttoFWd34ra+houRk5+JQ64zzFs9kLbTOEj3OSdWVwpKVWaxII1pRak4Zp5kmJZq9lqIZV2DFGblEpNxjbz5y5k8Y4ymUzBgtAdHMPO0Xlhy/OKI97ZH1aOeB6TyGutY7V7tbduYXWOFL1iu9xlym+6rEYtGwinVKOzXKNorSJWFIA6FxhCC00Wz0bNaQGqHEc5bN+7S3hXDn28SHH6Dek/tLmpPHlP4+7mhOOfwcTWi4/eaCHztIQyFlJatYkkmUscomZIVeK3OOQBoLDxTOszCfOfImo84xOGOT8Vh1jbQeZUa+gOyKSUNkx8WTU8bLZ8TLkW4+J6aIax3t3oxu/zrDxQv6ixPSeuQsfoSOIz9++Ij9195gdf6cW1/6Nr5dEtoF9z96j29+6x9yujrlnZvvcHq5IS0KbQic9D2jwLU/+I/Z/5P/ncvn32HM4ItawbOzmNxpJshIaZc8P73YFu9IdcqEaovr+MikSVt/itT36rIwJd4nO3pVJGuFpFoNc6lzXaFSQtvCVeoxbN+20EwFVZ/VrRVh/8Yf0ra3cAQODg75nTtf4HM3bvGD73yXN994mzduvUPXzQDrSEWE1ndot4Ql3Dh6nXfe+BLfLv8BwzhwcvaEx08/5vHzj7j37D3O0z1W/bkVi7mCR1nMBe9A/UgpG/oN9Bee1SYzjg43WvcsTpDg7EeCFfBfbhguLqwrab4gdDNcAXRA84YmjAgDY+xRCfggtDOj6V+fe/pLD8UKaFLlVsxj5uTJms1QuHW7ARrabsm1psEH5fT8Bfh99ucLGl2wiT1ptE6Zdb4A9Xiv5OQMM3OOk9Mz1psf8/rNW7SzG6Tsrbxaqgat5ppIEA6O9wi+ZRguiFEtoBBBXUCdFbuKeJqZIyUlR8PjnA903ZKDvQPikDg5PWe1Tvz03kfc9y0nZ6f88de+xCrB3XtnhKAMg1JIfOH37nD9BvbMOuUybhBxRiXuFRlaIHD95pyffT/i9xpef1vJCLkom7EwpmJacQpt19C0HnWZYYx1nfAoEFOmHzPjIIhTQvC0bY0Hk+f8nuCd0swdEpTzU0970LF6lpAUuPPOktneYN1ee46DRSEu4Ctvf55H3znj8qFy8/U3OS0/xYUzUu5pwhKnc8aciWFDyiOf/OgJv/vvfZvLTcEdzoi6YnljybO/jNz2I838NS5Oha6/Rducc3hUyOUMzQcgQtM0jMnGRpRK125FREWtkSWo4ZyjRqJcIukR6WzOSKLkaJI9TWJTVvjc/n/svXmzJcdx5fnziMi8y1tqr8JCgARIiVo4klqtHk2rTW3Wbf0R+ruO2diMzHpaplEvalGkxBbEBSR21Pq2u2RGhPv84ZF5bwHgjDSymQEoJK1YqHfvuzczMsMj/Lifc7BqlDFjQ8963c3NPMzNV23TOVXKtcnkfTkYTF90/GM2aH+f3/2HfP6UcnjXS/gOLN5cENhzcvoqKW4QW9BJoMOIDAjTJuYcs2uXdqMQpeBlm56iRh+gMFDshgSo7bEwOmWfjgX3OJfv0sX7vKg/Yi8XxHBGZ+ckR1pJnIIZUU6ossHCiHAHrDKWPUUrJou5ky6mglqlW91i2b3GWC8Y9VOSFN+cNc8Tdl4AUtqimqbCk49K9L0ktlcoW/RG3Rsm+8MzVbj1yI9jxo6WRlguyNsCV5V41LkrOFHC2pdobB2N86Lr908muTvzhdk1tGkbyjCb0Qqu1R4zYBXRvQPdNTi7ojPomGDVz4FiXx9frqMaBAounRTb5s2LG955MdkAMyfBapW501WAWUZkSpNi+/dUhDoAoLOmGK4TKRa8a6lmci3sTagx0Eg6ZBzIr0XIRKo55TpqRy/FYwiQQiR1RtbqHfDDFSFGUlxQyFh17V4ISBrRsZK6RI7O+FnExhQJguUBd3wVxl2hFCOkRB+gR1l0C7QWJGcCazi9RekHotxA2bv/k7mXkeSAmDqtkOgbh67CAogKA0gXoPMCkaMFGckFTRBXESuK7MFsdLmXhQEV0Q5USEEIUqlVWXTSTKiFRegoGsgUJEBQQXeFhLCrRpSOFAJSFdE6F5MzILFHlpnliUGu1JiQ3r3XVrGjlMpYR4asWJTWLQhFKxGXpch5IPQrBz8CFIRdqaQAvQqMI/vdlmSgdUD3gmZhs3Pt8U6EWISkho3q2ForLpmZF6wwSjUsBGruEDWSVaIYYhWqEnuhqLqfAFPXd0EkUiyhJowmDEUpYz56jnkJkJoylwlGeymyzZo1BxBs8mSawPUZgGpzQaakRxrIeSQlOSFSs3zeFIwPLcRfDPx9RQ9pSZ2EI6AfPMGEQ6z5ZQDvVEPg8J5fhgN/0S8ff9/090tr1wR2zfdkupc2v9YupP11DCr7NeWc+fkvfsEP//qvefb8+VxcMgPZjsQ0NFDQ2jo/gbzzhb38HTOo+/I5Hr/h5QJTmM/FqfeT78YR+NgAWcEBJMELsaafhwY/V1xqzS2TJUNtcntVrbElDwDzlNBj6sB+u4WzB4x4UlOqeWLaGNTBbDY+n8bfPS0cELIGFjND3YLhIKo2QNrPDWp1ireEAFVnMLdMDN6pCKXeqTYDuxOCIe0JmQCqYNRQGcoeyyOL1JNSoguROEuISSu8HRXk2l4siBCTOGtLaB3sFQ0gqtScjwohh2JZDIG+7zjEizYyNgH7h1g1zY/Pz4CjZ/wzINxn7/ev2vFPNfao+tqz2+3YdoG+D95BOy96h8aICRD/ouuSNgb2mTVpkiE8lv10ZYfjgthh7Kc5Nz+rbR5O7/+iY9qHTsWheUo1aStTRUs7F9cimy/PsTOZAUrsKJqqs8c9mE0IpmJNJuJQZNfGQmrvkfmq2ut2JHvr32U6FY1agYvDvDuuLarq7NEk0302Y95ft7hBBStQqzBkpRSjiwtSSr5X/jr2fOkOUy+u+Nxpz5QB4k1YE5Bt0sZy2hfibGSfE57YhzZvJnZFwKV1RhIXJXJbB7rG1jW8MC1t3+l7aUEJFDOeClhoOYvN5CgMhRCRGF0tRsEZcOYNq01m16oQLPh+POBNrTG0uSlIcHZyCIFanQlVR0VTRPaChYJUz52sRoopN+U9tNywWr4Kdcd48wFlu/fimxont3tO3t/DxZ4umzepiBfVQ8NpaHHEfdVcxlfVXNozCKUUJpnbau09lJbCesNyqdX1qySwHb1xMORCEOi6Ss2RvFKWqw5qpbMeefYe3RuPiK+8zf79v6L+8D/QdbB6cI48fcIynSG332R9OhL7wLjNFDNGE7IJRa3lJ7gHCsaIUETYJOFKA2VQNPs8DetIOutccnEzIoNB1yGnp6R1RLTSLe+w++BTtp88Y3ddnTkUA6vzFbdfe42y3/L8F+9RtbA6P2G5OuHy+gVUY312Tlqcs1iMfPKzHxOj8cZv/ysWq7s8ffIxXUq8+/7fUqKw365YnpxxS6KDySnx8I/+HU9+8EO2W6W3iijECiFFJHZ0t29zNY5sJonDKai3OKXzvo+5wEqLr769ax43k1cZnhsGbXKp1lSFMGiMXsFRRJk/S6F6N/bkJXeo/X+149C927/D2e23qCXxjUff4DtvfIfz1W0E+N1/8S94OeF1L/vDPZjykdAK4JH1cs168SavP/wmJv+a99//kD/7yz/jKe8ylGeUckHlBkkFqQM1VFhmVqcF7iX2u8DNtbHdBMatknNrcVYgdoi4J2u0hFVlf72Dmw1dCkgY6Lo9y7SjDFt/NqKSFr6WbS6FcZOctWWBGDtqKBQqwz5ztRmQy2ukJjTA/QcPuH/rIXV8zr5uubp8CnrGcnmGsUT1xvMDdU2U0Hx0VL1tGYRxMD786GMePBg4O3lIUZcaVfUihIRA7APnd07a3uuG6huUWVVBra2zEh23iUIdGxsq9ixXS9brVSswXZBH5enmEhFhfWvJa7/3kDe+0/H82Skvrp/z6aeZ9z7o+Gf/5g79siBpge6fk0tBdeHxLvTkEVbrNZ2t+P6fXPDqbwfuvxGc+FUq+1zZ644RZ9OnFN16oRg6em5WJWBiDBmGXSKPjhWGYKTOOFmuuHt6i0d/dIsVZ1y92PONswckXuW1V97kp+Ujrp78N155LZCCuEt6qHQxs757xoM7r8JHT9lfXvJifMG1Pmc1ZsqwIUaDkMhlSylbfvAfP2SX13xyuefuq/cB4+InH/P9P/kh/+Z37rJeKH/+nz6k3l5ysy18+9twUT7gToksT8+okqiiJDtH2DJJaQaLVCpFRwIDXVwhdNTaMaaRaE/JNz25W6MFwBWCxrojV0WqW9XkPPh6GRrC32AibQ3+0uac1Zb7mnv4owAAIABJREFUhu6XzusvAYPpy3S01D8KJ78ZWJ8qNS04P72HcEWUBZGI2ABEVArGgsxIZoswACOt78EfYBESPe7T0hPCkiqFaomOM5bxDit7m/v8S8w6athhvOf+I7IiMILdJ3KKSCXYkiSVqrfpwoZgdynxJ1CMRXefbBekIFQbGMaBxBkLeYSlQl5cQPVqdYhGWAXyUAkdSAiuy9lyFyJICtRspBDI1Zkg3coTp1qboWGEEAM2KLPZvLWmt05IywVlEFScyyQBUnTPJjHQZpoN4sBWEqy2mujcQd/2/yZNVqLdqhAxFC1GVMOyOmHFFNXcqroBjQGiA87yFV+I/6kcfo99Y+1oQHEQWyZg3BcID3513smZqXd9iiet1maiJ8D1kKhPxjQiTXmsfQ/lJXmQIpFBAhoieXT2j5OkDKNSraPWJZYqWTMS3NcICYh2SImIDiSpTfpuQR6MGnwOSvTzlBBm8+06uMRBCEa1kWCRyUS+ijKOAQ1Lko70OdMvBCvR14IUSYsEUrBSMB2pr5zQXxXkqlK6nhCLG67tK4wRKxVZAj0QAlYE6RQL3hEiKt7OKB1GJfbRF7WJCRO1NThU797aZ2c0Cph68pjEu3TEjGUwxtA6tBidiVQSiwi5FmKTv0QgSaDqSDBcDtOELgRSFGKMdIsl4XzFuNshxRlAKQSIkLW6BZZVYitSVfNYl2ujsov4OYf2XJVMuVHyfiQGYdUnpBTGqx11W1mdrFDLbDTTayLGiOWRpMXlEswThGJGFnNJIYOCe81oXRDjjpoLN9seC5F79xL7i4GSu4YnVSqe/OYgZJSa9w1Y9Ix/2lu3sAjIkZSNHZAkDvig4B1IwEGu4fCu9rtyqLXO2jkHEH8Cnub32uG/sciRg/ivwOEDHFrRTVV+CaD0xSDjXDCxI+Ds+K9fBk6JvPTa7AEywbsNAJw2fqYuyRCmLkdaKLPpDf48TOcQYmzm60bOhXfeeYe/+dF/5+LqijF7oXTqODYb6PMeiadHALUcnapA42qHz5jdqzr47KBlQaSbnpSWmx938jcgU5ppt4S5QDQVWPz5na7Jz2MqDM0/+sz4T397rAnze4zWFWoHIBVo3dQyy2J4ccoZq6JGQkDcd7Pm2rwf/f6k2dfD5hnjTKJjELsZp08FA9VmcyIeM2qdQd7jZ0Da79MYS6qVUooXkMzcoFXcQ8OCOQCoLjNh0Y1fh7xjq4Kk5LJGx39w/8wYIykllydNcZbskSk+tntposSgWGhrkwS0Nq8gEZDkBbIp9hyB+S8/QX+/Ywa6p/t9BPp+jg3yK3H80409bQklApshc9YFOnm5gOKnKkfx5OVna+r8d7maqYjB58ZifkDNWsyRBjwcF3Pt4JPEoch2+M6XShWHcbMGBB4VcfzFtudshWDff+rRXPT3TkW06Vlvgs8O2hc9xE1hliJVe/nS5Oj6XipatXtnbdtras7YNz26/Ye9hOrETvFYrE3CE8Xvp07zcAJd2z0woVZhPyh513t8/zr2fCkPnZorFDRM8oXTgyhkaw0Y7b5OUpyhgd8iLp+j3k3h0rAGFhycbQKUFOBFWLAoO3CHC2qV5o1lRLHGbPTCxU6EMXRMMVGaD5cEL0BKBElNTk+NECdZ3driABC1AfnmBVqZ2HowFc6rQoyeS+YRJDgzJ9DREQj7SigQqwOzWa/Z2sh298L3PsMVsSpaRswgXApyMxI2I0FtbpQB7zYXArU2id0pd5hiTi1YEGL012oUQlXQ6g1t6mvC1HJZx4aviN+/BKTO92XbfcFCpJQR0UB68oRw9y7x5glhEelPTrl58ZiyGZHVBSZQ3/1bePA+3WrNye2OT58NDCaMWikEshkZ2BWjNL+sPd4Ec9UHz7OSUF1pnSxCrAW6Jdqv6bqB0i24fu8Z/XLJ8v5t+juvs7qJPP3xc8abTLeIrM5XEI3NxQu6xYnL7eXKTb5kedtYnJ5Sx8Jue4O+eELqe+K4xWrgvb/6U+5893d4+vxT7r/yBp9+/CGrxQp75U26vOfJ88fcPj9hsVhy9uv/jPvf++dc/emfYWVagwIpdvQnt+hWp3z49PEh5tKkHNu/mSRLjbmIOG+Hzea95Mxund6Lx/S5NcOm4r6z72yeczrvr0WacEibf8Zx48ZX8/jW2/8SkXNeufcmrz38Fl3o5/Hx4/gCX27s8ClzvAZLyy/aeCG8+cY3uLr6ff73v9ywudlTSyBxhxC9GTREo+oeDXvU9sCe01uV0/NK3Sd2e9jvlTxCqWChYubShCn1bZ9WsJoxVbrFgNYt1nz/YjIWfaJkGLcdZRQvUtGBGX0XyEHZ7kdUla7riSny8P59TlZLqC4nGmPCUK6uLxnGzHK1Zl/WaK6OdVZtewPPn0qd9pFKVeOTTx6zv7Plwd3XMToyhkUhCcTeODkVxEbKCGYRB4Kbj64kTHz9DRLRGiiFVpxPPHr1ASerM24uN1xf3xyaObrI7//Rt3n42o5yk+luC91zRU8yd379IW/92gLRSBdPGIaforU11ZpiEri6LpzfPaNbF771dmR1q8PyjmCJPCi5VMYKpYrbMERvSLJqUAqYzHjKbp8ZtkbOldj1hGisVgveeP02p6uOcHfLdzeZ8XLJ977xCrtPboifvuB/fOURj6/POTk33A7Am2n62HF26yGrk1Nu33nOU7vmZ9c/ofZbZKgM+x2qe0TOKHnP9fPCk4+F3/63v0vpQPpEvrjgv/7Pf8U37i357lvf4vvvfMqNZB7dvsvVk/cIoedm3LLeXLA+f41FWrEf9khcEro1yo0X/GrrA7dCscG9sZryz1iLyzUOz4nFAHVJWhoDVguRQIiQh0zNBbHOcUlgbgL1BR1wSUKzBV1a/tJ5/XWBaT6OQtnaSN+txC5zdvsWi9AT7IYolQ7nRUTxIo5xhyKfUOVDhAWRsa0fPuncpykQOUPkzvxaT0W4IbJiwS16+Sal9tyNsLa32HND4QohYXYLlYEgdzDbspJHpGBclx+ySh2xnpJSQWuPxQ7VK0Ks9H1G2TDWx5iMxCTQRyw3VkAySLhhG+ab9TwVgYTiZVH/N4GCEpOgvbnaVjX3aZFIMKeUu/m1AyySgZ2ScvANmwiyTmhtsmCx9XWYAyOp8wUh54xV8SJUivSLnjGPnsRM6Ke5drIDNtl1jFvHnK/a5tXW2HQjE0jnurVSv+Kr8T+BwzfcE8+igoWjRM+fr8kjwOuQvtGbQXeHEBvGEY+Sw2mjdrThO0LbBRy4U9+wxy5QilJzaJ18hWKBaokQA4MOiDmDRosgFkFhlEoKo3+nGhK8603HRJRECAXImC4oCEEKlDh7KngXk3fahuqvVUmMwDhm1iGSktL3kTBCth1Wja4sfEMwFERHFsvOpf0kQqpYrFgSZGgTJQmyjBAySIESkJqwdXR2U8kgHcSAaSEsxYtJe5eUMDGkT063TiChuueT6QyxRoHaNscxGMKImNBJJMXOZV7EWKgzesQKIYXWJeksMGdzq8uPdpEQlEVMWKzcunvKzWVBB8ijkkyIiwXbzY6csz8XybtlS7FWhHY2UlVnEkUJ1KLUIox5j6hxuuzRrOw2l2j2buBcCtkGYnCmUslGrJFkgsroMp7t2VOp1KxgHaUVJhMVqrRNUHFzyiIMOpItelKh4vdKwMQZEJN3zCwA2bCfoxnzhfNI5PDGCQg3a/qoh8oTU5e0mb78Ue01O4q7B8k9PUxAJnP3fyh886t7TIUEjgApXv7r84d8npHzS48pVEyg5PFRdTqBQ0WnFedrYwVuNjt+9KMf8c4777Ddj4ylzDJDVb3IVOoOGXbIYsksS3d0fUen7RjqS5luK3I076YQDowHjv6WCZBUbw4gyFxckiBOxX/5soHJd6mBkPMaIK2z82XWgs0rxKT4pL5/MZdJ8CFTYgiHIlP7YzhgUKlUje4/Z4Vaip9P84kiNIBnAnqY7vPhH74e2Qw0WAP1ap0YSTq//lnQoBYvKs0grxq1FKo1b7TYAH9pgFnT4rZoZApD2VF1JEXXXp9xDvVYHThmjQVSSsSua35N0wh6A5Kqzj8RaeurNFaEHO7ROI7t+fAHJIrAZwqR/5DjsxJVv5pSVf/446see6z4c3nT7xkWS5ZLOez9P3sVR8D/XFKxBiCLYZN6Hw0cn/d9LxcMrK1t07N6YGh+5sJbQcYb1jgUbqaX9TPMpuOizhR7HCEnxNA+j0ZikpfYm1PAUpQYHNwo2f1YaN8tQZyaPTEXj4LPS6c/gaFTVJq8sJqX0CHmTCW0o5y4yXZO46SNPalTLmXe7IdGf4/SPjdQirAfKkMxgnRfx54v69HA7ano6OCT5+hJYHpuTZ1150velIB5t/ws9tWec3Cp/NnPCd/TblLPi7xEbM+iMZOq2cxMElz6sagxpMg+hpnZaI1dDBWJkSAHr7QQ3U/N2nf6rtQZ9p7bTVK2jmvMz3wwtDYYLQp1VFLyJpLdThiHQtdByh0xD0BHhzEMhbAwIBOtUErGfVSF7hnoLhOyzR5qTCNkLRcN7m2pVd1HymhzGQqKVm1xzMelthhVaWEWl2CTEGYGdcWB2VrNi10xoDcj1kfv7t9kJF7RnT6h6xWJhXR2m02+IA4jtlgyvtiT0pYUhX4ZvZCEq3cUMbLBoJDNfU2KGUWELTAEQaLR9a4eg8JSBF1F7P5dUl5SP/oF3epV6gfPMDZIUbje8vTdnzPkwvLWmtXtnvX5GXkYsZwxjBg6hrInSkQHJZ1EJClmibK9YnX6JuvViefbNaObC+r5fZ48+4hFv+Jiu2V4+jHfe+s3ePr8MY8fX/HNN97k+c2G5e/9AfE//Wc0ZwxIEokhcvbwNWyx4NkwtCf6oIAzFYcORZ4W3WS6xz4/pkKQE1hboXTak04htLHxTdVBew7yqEpr/MbmNcyn7BfI0H4Fj7ff+C7r5X3W/T2CuHf6dByK+Q0X4hCnpp/7Pl0pdYuqktKS2IrSU/z/zd94iw8//YhnP37C1f6K/XDDOO4JElj1ZywXd5DQMYw7hnFLyVdoHbzZWAopRW4tewxhqIVCa1yLvvZNjSR9VLqQGYbBGZ8x0S3cY/byibK9DgiRlDpv3G3XdHM9MowFBFarBXfu3OL+2Rmbmyu2Voh9JMYOCUrG2I0bBtuQUscynFAtU8KIxNKaeByvNROHccRIfceLiw05/4xHD16jj+eM9FiArs8sl4GsA8MYiZLQGJDQgSRv6BdtfkVC2cM4ACESU+Ds1gl5VPb7zH6X3Y9WAo/evMPv/t59otxQekFKIS4r/Qm8+farfPrDHX/5F9f8u3+/QLfXlAJDhaoRNeXqSnnt26dEtqwXA/2p5zelKruhMhYvZJcxoiUQYyIEhTKiJU5KqpiKSyBujFogLb1g9/DBLdarSgrG8qTj17+nMKy5L7e5HAbef3rBf/xv77B+u2GKBmqVKIWQek5O7tMtA8vXlZ89/iEl7liGSFXYjltyviDGWwy7JywXiXuPzjlfRvZ9R7XCf/mT/8r1zcDb33uT5+GE23/4e/zWkHn2dx9yFoSTZcfzTcRKhrrHWBKImAZSuE/RK5QB8JJqplBtoGr1xjSBsRiDjNR6TR07SOINB2LECGPdoyo+bghalMCRZLwCoTVTilG0UsRIoafrvi4w/f0OASwQHhrxdegXS06WhpCJ0tPRESlEaT4kNhLCCyovMLIvLOZ/iywQetwysEdYEeUcoxKkklC3WLMla3kV4Qln8uus9N+CRAY+4nH9IUYmhrtseB+zNSoBs3OqPaELtyi2pQ+vEeKaqoVst7m4/pGb1kqHkcn2BNMRtR0pKpZxokY0YhRybYugTAuXJ2YABKEG776XBgKh3l3oy1/Han2HzfULsIrWZqhZDNtAGUbqXgnVkE5YnJ5wc3k9AzFWoe4qRIjBO89y88iRlkzo5EvSfAZC8C7dYJBCx76OrjVeQVQa6wXP2qweFuw+QKxY/f/j4fr6+Icc0rQ+JykGrKUnEzAp3nEXjjZXTXGA2YzOqhcgpbZFPDLRqBE9JLrgG2Gc45QL5ASExF73VBOX46gVQkVCj9XAaJWUAsUKuTTPMVMqoRnINzkHEqN2BJQUAp1Z8zvrUQ0+VzVSxVmCIooViHRoqFRRogiZ6qy8WlFL5KQUWkJUKjFXLI/Ydkda9vR9QhS6KM2wT4nS5knsXKMyVEwyQRK6x72KRJGKd80UcSpyMsgVUmrsLu+8CynhVVvanDNCAzrNgs+76lrmiUpo/x+lNsk+SH1HqRkxOImRvQpVhRTdy40mh7IIRgrSOhtBkm96MOPeo7tcX16TNpVxHCm5+DVknTf2qY90ES8SaSRIwofFzYUJMI6FUoUUI9d5pG68ODTsCgUhjyNBvT4T977IboOhWzDp6c3LL6NUqolryteROrENBAqpGbSPoPDsccfACpPc2GAVJKAhEKswMIHGLZmkxWI5ADRT17iXfI6BIZii9VQQOqo5tcS1FYwM3zJLo6ZK4Nj0w5ofms/FqbA0VRYquPMXsxHkV/g4srMAOAB30/r40s95Gcn7gmxvYgK4rAyHrHL6lQbE2udeOwIFbYpvhy+Q4DEthDDfJWd+1mMdmblwbdET4qvLa77//b/i3Xd/zjCMBwna1tXrzCMHhLtxR0q3EI7YEPMpSntEWsInh+uZ2UdW2zPaYMsjwNWvaeo4PIxlaNI2E+B6DHyKhLmYJUeG2YdTEh8DmEEp5PgrWwc2NoumziM9XZ41xpG1aYDPJSmFUL0AVptPSWznOBe1rLFH2vVMnd1HqAOYOQDUxltbQW9qdVCcNfVSDdicLVCre8Jh1iTFdGZYhC42rwv13nBroLQWct4TdE8KwZOHac1r3p3zfW+zGIGQnE3g3+9ymdrki0wVYucSxOJeVX4fAtZY5Pv9ZnpQ/fvCYbJ8VkzzGKz9Yo+axviY/vcF4O6vAuD7dezxeTHkyiZn9rnnfMFLPkm8dAnt3+31Yz8qM/WGjRAOzNwZsDJe8nJrf7zA4583N2i08zpmscxgogkTI17mj2/Pp+E64/Pn2zyGE0Q5/WPmSE2IIjT9cX9DzWUuPmkrYs0yoPPn2sw2Ag5d7/P3NYByYkm27/Pv9AvwtGlqNJkGuhWUpn2wuf+bF7SbWgexxSiwYt5IqG5evs/KiLKMqa0jX8eeL91hgFVn85szihpvDTMIUjGbZBD92a7BGZaNPuTrSvDPkeYNVpl2oJ43ACCBq/6EOFTO844YXOHA8LfU6nvPasJWoveEmSFRmy1Im3/W/OnUi04heH43yTpNmvyHNdjQ3JQsmqqKiYA60ObFKaXrg594UcZSXLp/Hagls5BIleIy452gww2I52JY83gdIX08EodyaGgNLps+xboQpBXe/L9r9TlczBUfgrp0lYorMVQgSPRiXCvymbWimIAFL/a4woy56ASCdJHFwhsNK0J37xtIvaHsR2KA/mzJ5mrLbrOnFOP2A6PGE0YCXTihXz9n1EDBKCpkvL8wmzKakU2oCKMZ2w5KMKIZixQxBNtnZA8yCrrfU0djuFAuPv45+xcVu68M+wv25Tn7y4EHb7zK+s6a/c0NZSzoUNldboE9EjtCiiyWS3YvrthfbQkp0q97qMazd99hcXaL05M75LyF65FAh0iixgDLJeeh48///H/h1Te/w/27D9nngVIUfeUB/dka9nskJOgii9v3OXvrO1xcfMpN8QJfaEWfg/TqYV3Strm1xlgDmsB4e37b8zltgnVaytpibrg84yxTjpdtFZclbHVUz38bBOxSop+TpPhKHffOfo0Y+rmANMWcY79Cs2mJ9/e8zEz19QEKu/01w+hss0W/Yrk4ZdGv6Tr44//pf+DJ1ceMdfQ4lzpqrex0z+ZmRwoLQuywEKm6YNhX8m6gVCOPW9ALzDIx9izWkeX5kv60BxGqBYIUFt0AZQMoGoVuUekWsNsq+5uOPBiJQJ86amPg5v3IZjvOKjbffON1Ht27T1AY9iO7Yc/J6ZJ+EVuz7wAoYy2YZkLsiBapZRobz1tU/UnpukQpGVUjxshuW/jg4/d55eF9Fqv7qHQsupE+ROrNgp//51fJZwNnr2f6rqfrOsePaiJoxSyQB8Oqn2/qEjEpuQib3Y48GpqF7rTjD//425ytCjUXZ5dGIEUWpyvuni/43/6PT/j5z5/y8S+uOD+tbHNk0CaPWgKb68J6vUBKRUa480qHBKiW2I3XjKVQq5D3CStG6n0Pl0dhuzVOTBEVsgVuNpXdRjBzH8jFKnL/wZIgO2J0uczF0gjdwGb/I36yueI/vPMJV2XgD2+fUUejpsXctBBix2J5H6LxyeY51wyso5EadFJrYcw31LBgOxqvv77i7qOB7QdPeOO3f5MPN8+5vtgBiV9cVspF4dZZoFt05JvKq68+YHknkIYlzx7vOLu3JZ7fbo08Ea1LYlhjtsddxdo80KZkoUoFRvUCWsk7hv01tlxTBmfbEYxSMrn4/rxbBLfvsbanmxpHzNcbC22vKQmxQORribz/20OQlicI8WEknQrLkyWrFImScYvLitqIynbeoIz2HsiexClOWK5EWeJ3o5uBDSPgchWJ1BbkIA9Z8CoP7I95Tf+AGDuUjGpkyzmEE3b2IcgZgY6NbYAlQc4x9hS5TeGGFO+jVdnXD5Fwj9SvCNaBedW81BGxgS4alluQrvh/a0tKiu9gAr4n87xBCMm7/iWIb5SmpvWCb7BG4+rFCwde2muxmcFZhTw6LRtXxWO43BGytkW0Db6CNt8HmpeSd837ncm7Quo7QlBUSzPdU8qQPZtxXH7iDTuALi2fqL7BDF1H7YI/8eP/hw/W18f/o2PuZAvCxKBQvGjjvSpT5SE2MK+BArgBpBhYcPBdaZInNjEsBCxi2vREJeBMQac9l5IZSkWLs1S0eSwVEjGId49J8Cp+iZgmBGfiGRUV3xY6XdWTimrV5TKtQmoSFBUkeICv6vIhGiDoAsyIqUBIWBTvSitGRFlEodY9RYXRKkWEkCJp4V17VQsrU9AEZUT2e8IyYMnHh9ChISDBkNgmT/bkhSjux1QccJCQWqJWkSSthc0QPLZpNSTafB1kPQA1DeidEvwuTjI6QocXhiiuFW7N8H7VC1JhMO9Y7qOgqs30Vl2OM0YW6wUikNY96fwE3rpH/C9/h0pFOiGYEvD7X4tv9ksBKy5VWM3vSYwRI1JVsKoMQ8FUWK6WkDq2NVN26vKdIWAloINgYwO3UyWqMBQckKIiVpsuOdSx0BtED0tkDKG6nKEtMAqZkRFrMjcRqwE6B4cjDqgLAZcgbIBWg6MmkGrqEJ2Pl7q+Wncyh05gpk94qQt3qhAcFQyZArVxKCgdYPA5wZKAWTp8xFf4+CzA6z+kPceTXFBjnsAsXTT9mojMxW6xKVmcPrsVCtu/pw7Eg//E0V1t1B4RJegERIrPyQZwhtaUESYmgYsro65x0H4nzJJvFXh+ccX3//IHvPfeh7PMmlrDYuYT8y4tNdBSPVbSzUbsM5BqgjWKQAhNJq8lzyI0lqkdPUPzhbfxafsPa7Yi3hbdisr+KyH6DTA7sAokNnbnpIQkE1+V5m3pY6stxk/sqQmYnUDklzui8USxAQRqrYnBBJXgnktFCTES2330rmFr3Ywe96N47DqCw+eGmmnwpnjn56tkdWmLai6f42G2+TrV6pJUWanZ5R1K8S7FqtXlIKI0+UB/9qxTSqjOiqrKKIVcrzhhRx8apcMaOyC0c5IwM6ok+p7NxJs8ooJ7n0yJvcd004LV1iWeuvYMCqaFYXfJbvO8gfW9Nwkd3afPSk29XDQ4zA87Grfj6mTD1T8PCH+Fj69jD3PsMVOG4n/MmAu9h9O0eZnyOX5gKVpLAObu1emDpwGd5n57hqYChqlr85kcFZmmET4qYPl+szHh26Ae2JntO6f9ZQhH6+xxU5TM94DpPhrQGAtidvBpmYoqoX3edC3medZE3Zk8Zw7Bx8/7eNWfC47tdauK1TrVDLzQ5yaoHgttku30OOTNMs2DqSHmhiCWXNkiGzq0cVWl5MRNNnIHpzE05tTXsefLdlhr4BSlMf/aegm+95UwPSDeFEeTRgT3Fm1jIWZNGlKaj0bFaEwdfNwCSg7C5WINudLlkSStgGHu2wWGUdmpejMVLnk5eSkKnoN1XYeJOPFHPOUHB1KrGanzQketxRve2pwpOsVL37toUaoYIbbvFoEaETNC8qa/irK7Ue+U3ydSD2FpdMk3IxIdF+kulXCjJG3yj1MRwDxuSDSSiLdkBZfKc6lBb1iZinFC9PuBtf2OeH4gjTsjYM2pRwIsmuJGzv6s9jEiVRl2IyquoHDz0U85u/+Qst3S9Ql5/hgdKgXYP88sbxnr1x6Q98/IV0+4/WDFGJ6zL14w3iNkc0nBYkI1GM176EeXmqBv/igAmqHsDNkb+cmW3c7YPC9cvthjQ0VkwW77lFoDt964x+rRbVQLq9t3ePazD9hf7YkEV88Rw2pl2G69kW87EvuEpo5SjLzdEcMpn3zyC1a3z4lL5UwW7C5fQBC2+8Fl06+vubvf8+Mf/4j7r9zjwZ2HLFdnrL/zbbZPr5DFgv72Q279+vfoT055/Iu/c9m/eQ09WisNyrTXbfs8E2lsM5v1Hly22Be5xCSX1wq0GFhoz3jby03fYbS1xhr7vjU+SWu4bs/wV/nw4hIcEsjWdGZTXCmMeU8IiS4tjvIQL8rt9i+42Tzj9PSUs7MzbskZuQw8ff6Mdz94l2Ec6BeJR/fu8Lu/9U0+vXmO9pDKQC119lV0tRv3WlucnnKmFcuZsTg7Uevoe+pcqTlT9pXrYc9yBeuzSN8VpG4YiyukxCgsl4qg3Fz3lJwQMfpuSbLkdg59x9PNNVmd0Xjn9hlvfuNV1qe3yZsdtVRqLWxvtgRb0y96qAmHa4SiI5UdRiJ2ER0jxQohetHcGzi995gYAAAgAElEQVQqIbqEHqbELlBz5cNPPuXB/R337j5s8bNH88jl0y39OpH6SOoSISaqOoswpUStsN82QzLBLR2iUEfherNhNygqibd++w1+7TvnSH3Wmq8rKgosOF/c55O/yLz5G/f49r8W7t3Zs72Gsbq8aZXKfgyMQ2C1BHuxpj/PLE4y1XqiBJfIy0Ktgd2141+ige3jSN2teH69Za3Biyi5st8aw5YGtBlnt3vWa2uT1zGw2HnBMKcLrmXDxX7PvVcTVrbUoUe7gAawKERZkroltQ5cXV8TBZeVExoGaNSaEbvNMBpFnvPwrRN+8L++y+L8Fj//+Qfsr7esz9Y8+u53YN3z6btPWQZ4+t4nPPqN73Bv/S125x0fPv47dlcXnJ3eI8QTJHiIXXQPqWWDNGx02u2pFaq5bp6akWNlYGS7DWCROhbUe5mBiaUkxD54HaIWzw2iW9g4Kxig+ctLIpgg/xcNxV8XmNpOPOAGWRKE+Mh1GRfr0DYzVwgdSgQpeKd2pLKjskfYk4hggVIzxJ4ga4rsgJFqmU7uINI1euyaYB0r3uAWb/EN+R4Pwz0u6wtqiCzkBEV5xG+Rw6tsdMNS7pF4wg2fsuIhQe5i1bjgp0hUuvgaUS4ZdQ/hhBD2DcS8JEqE6JJ0NTVgBCG1kliMTRrPczLfeJk0E2wHObW2FhptVN8AaCUUpc+0jT4O0LQkWHRKDvw1LeYMCzOIkx8KyDIgathOkeygiidBbsxZy4G1MtGPJTjg6kCLG2jOOXJbl90DwqvtZrjMVjxsDL4+vryHa3q3hJ8wJ+fGtPlyCTnvItf55quEA7hnhknbPGgDBOxgqjklF9KAwdASGlHXDM9mjNmwJNSioMKoSkbJJHd0UnFOjkxd6w34xCCOVEtoXbZymBIs+PxSY4EQwg6pJ1SUWjvSIiNSPWEzBTqwSFb1Yks1sgihFpIEhrIjhkhMCdQIRUmLCCQUpWYhluTF5NPkBaSaMRLSJUwyYktnzaTqyZe0MEfwIl0KrVM1Qs1e7Ihe2JMYGkjgUnQWIhKFpgXgMaEoITL7pwUyi+i0a7PqyVsF1OgCrMxjRTEHOrS2uCzQdYl+vSabgy3LR3fJYyaORv/Pv43+6V+zUGNQQ60gKJ1ErCUouSqlgoudmrPGpGAa0OzG2zEk8n5gsYowKMMo0CU0OTtSawYiZazE4t5JWMVIKBUmL4nYUWukqjPfnE2QkJAdLCxLLyL12SVx20LtkgfBu0Ni9OJ6Sm0DcYheLb05QiUb48GOeqRnYORzE+zzwIh50u6Y2dR3N33eAZg5huyEljhNP588cr7Cxy9L1bwgET7TVdeSvS94/yE5OuKUTffmM932h677I7mLo3E8TiAFZ/F6x64nLAheIG/eHNISicnXwPW04cmTZ/zF93/AJ588JhcHcb/ods1d2kZrLMmQls3svbFlGqIzMRVnT5SjLv/D+ByNwzwGh+s5Hr/Zc6Qlz9N8mCtCcpBSmlaFuRt/ysnNGUgTmKsNHEBrM9Ru9zJI20u0e9rOoaoDPrTCkzXwOdKKtSG0DmTfZxzLrE6drXGax9J8yyYA11wKDwtNEkyP5ixMWHYQ10bPxahVGYeRcczUUijtj5rvxQICKVJrnb0wHbx3/6Vse7abC26xJwZfj1DFaoHWIBEEUox0KbnJuLkEkphR2zU5eCgzOA9eINMqILX5uQi1DlxcPGPMIzGmCTJoidfhPn/R8VlmxSwDI+LsiaOZMIEQvyrH17HnEHuMBiYWZzJ003kIc6xpbUaHwvNULDgq6DD/rF3WZwZMDkPSfu8o7og0aaK2T2wfMPkC2TT+x+M1g4KHOKjqgENsTMNjGTxp5zjX5NRcbjMEL/aIF7I1NNa9n2D7bIHWscpcJ5nmy+Rhx7wHmOTtpqYeUz2MiU3j0RJB74xyA/E8UmrxQrfWWS4PncCUFgPVQfTpmktxeZbLzR5bDISw8PH6OvZ86Y6pAc9ZFOL7e9r8b0xAf6ZsLp763HEAc2oEdC+j4Dm/TP0i0shE3gDYHBXZywLplfVm9JujTYxEvcmiqrBrDSbSFvbJlndSW1ExYoiHQrmVFi+VEBvTpwghRF8T1Z8jU2n9b4FcXI2iVkMiTHqL7hlXvCFtrMQqhArbHSzWGVk3BlXnzCU6KBZYvBBk9OaO2JgmR9sJhOhTrO2tU/TctGh1ue4mAxmCs7BCize1tIZJMQrizC1prCfzLt4UQBaRUiqKMValCwlTI2Xj5rrQ2ROWrz2iDpUYK+OmcHOVsUG5fjLQd0/RLpILnK0NonsQFzVGg7Hdw2LeFJMtsEUpAWIVrEY0BrSCEggZynPlcn/Dp5+8QPcw7AtaIJfMfhi588p9br/2GmWzp1SQsxVnr7zK+WuJ/fNLNk8fk4c9Vv07wZsH8zAwbjPdugciu6trtBrb6y2n6RZlUPLNDes799lc3nD+9opP9/DBx+9TQ6G/6vj4k59x5/Z93vz9P+TmL35A6tecvf2bLF5/m5oSl5srBG+WVJvWvLZW4M/jxMT1OHxgN83h1w5L0cTIm9aleQ1p7MEJR5gKiXPK1TbLwsT6DEfr0lf3sGldPVqIpp8BIJUXlx/x0UcfsR8zi27B3bv3uH//IavlkqxXVNlzcb1jPxb61JNi5Ga/wWJlLCOPXzzjnZ/+FBUhLpSTuCbWjppd3i5IR4gd7o1WKJqBipjOnoBqjiEG3Ava7+1I3r9gt/kQ8mNq3nmMiZFFB10S9jsh7xKqsFqu6UNPqM7r3G4L19e7ps4kvP76I3bbDV23ZhgHpHnKocbmZkPVSuqSF2eTN7mYQqZ56oQIpeLkpdaU2xRnYgzkotSx0nWOlT15+oLUFR48+DZBe7rO+NY3ey5PIilVUodLkJYOi0YVx0G8aO0NyUahFC947PcDBGF9b8kf/qtv0afstieWqeZyyDGfwZMz1veUu78lmNxD8ofky4KzZB0z3m8MWNLHMy5+XgnLgZwNDR1dHdkP1Zk3KmyvFEIgRvjob4RPfzJwevuERy+W9A8uKXnP7sYYBkMkEkPg4SunHp/lFA2DT9C4wqqisme9MhBldasyZGNZnV1rGj1vC64UVnVLHneOpSMoShADSdQA1SK7KuTynOXpkkdv3+YmPubsYeSNb75KCiv61Zpbr59zXUYe/+QTNrtMoPDJT39M92CDLAub7RWneUvq1gxjdkxTT0jhDrm+mDFwQyk2EG3tYUOV0byZeZeFyKIttM7ClTgVqyMhCVUypQ5I6Ekhtfno1ShTbySdfERf3he9fHxdYJohigYQRKN/CGHdAJRQMK5d1ghnPXShxzRC2LViyGReGrHQYyjVzshySaQQ6KmMJAyICCvO5Nuc29us7REr7nHNJVlGkq2ZjGEDQmVNYkEks5DKxn7Cgm+y4re4kJ8SOKEwkBkJ8k36ZaaERC3v01uh1GvMVmioHgiSIVG8qS4bqYMytk2VtKCuEEOrSA+4HnppzITagJ/O7VlKNqdfWks4WmFoWnCPh7n1+83f4eMt1F4gJLRkYmmSNo1iOHV/lJxn3edJp72hSC83R7f36ERWMQf7p65KSVOn7//bz9XXxz/mMAsghYkFI2HSPvXNuW879ACeG7NMkMjURQfOTgJonfb+X3Nxafpls0pAqVZbcuMFIwletDKRWdIsBCGYd405Vjm2Tw1U3EdETMgWKdrRmRHDAOrOa2aQmhF7qYlJxzdaxsYF3XoECqUsCGmgVvGumuqSDhWXP6jRAYguNO1yNXoyZsaYO8JqgXZGqD1RImEMXsgJAVkYjBnWPXSCyuAsJBNCCmguBI3NH8WLy4YgrrWHFZ9Lfhs8mZQ+4k7AwYOG1gYCtwS0wUEBWKYBmMbWwbM5+QM38IUZ+BWB2HV0y55CIYXAgEE2pFauf/hz1t96gK477OmOaCPLGBmSUGN13eK9oNZA8VrcpNICoSiRjO6VBYEYKyHiWtw1EA122x0aIloMimJl9FifIsSRsHOW26hGMpBaKFUpmiiNjSUmTeJigVCpFBB1iT56VB2IC8FZsxKEasUbH1I6JCFTxjJhZ0cbcZmyED3MiyOEcQabXpaAOUL657ceIfXT50xvtalrd+oYn/rIjrOgX7VjAmUdOJylWFR9DWrv+izgdAA5D/+2w02bQcjpOxwE87GfTFJtTryO3hm8+Hj4XHVj6AYAHvcUqQnVKu+9/wF//bd/y4vLa3I+xFNfjMPnztullIxaMqlmpDePvUYr4rcVffISISASZ/DUzBrDxn05Ztk7kfnxmoDz0Ao9x8bvxyCpn9TR9Ysneehx88lLt+rwWrtXjcxMUCWodxt/9p7N8lKtiIR5oUpkkj0Ih0JU+1vNGnhm09e26w3EYASbwIA2nrX4dZkX0VV1vr8B33dKdR872us5Z8ZxpOYG7qpRcqHU4tKfXZoVoCTSir5ubJ6lsCtbbPuE85CJYd1iSfNeqXV+hmOMdF3nwJoqVpzhap3N4zpBAI4HuleGmmKlgDTmye6aF8+f+p4rhDlCTE8z7buOAd3P/v338Tj5VQJ4f/nxTzT2mHedllpQ69u+zYNGqxE7aCuTTNRhr2BTgRVaoi/zevnStXymwEb7/ePXmMFCa+PkLCRsmmcvj5A0gEHannQu7igNuBBv+pvukXjRSBuFy6CxxlpxUAyNzWNlYipNZzTJgUtjM+iEWAbfM7fOd2sxSVVbgaY17zTgya/Xr1nF96YTiDp5v1V11qSay+TVWl2aJyZmNhcHr1RV0CLsBuW6bIjnSpT4dez5kh7S1q9p7Y2N5RvFsYgu+t59Mv6eYkYIk1uDuYSzCYTY5Jt9Tk0Nowbzez0/U4bFgswt0vUVUt1ioJp7j5pBrl6oEfFnL2CtsS26b4TRZOPcvih2Lf83nye1TB6+oFmx2KO5YqW4P6RfvDMGVdABSEpAyCW79Hn2Jg8JRoxKt+jYF6FmJQ3QrSK6qMQcCYOxeOxNYzaxpFoRtY1Sk08L817IwAv2Wuc9CyYoTbJQaYoTfq2iYLW6lBtGnyJjKY1K4+wy8DniPkhG6IXu7Nz3CecncHqX1G/ozk7Zfbxhc+netxfPtiwXFVkIdtvLYxqEnXlxaRKpUGm+TObyeBmXzyvVsLFgoRWLk7DbG9td5sWNMV67kfwrr53z9PnI9cWe1AfUdnz03/+OKHD3rW9RdiN1t2Nzs0G3e5dDHHBFHYyQXOYq54KpEk258+g1ti+e06UOiZHt9Q13TKhjhVroJPDRez/m/PwumiGmwIc/+zF3Ht6njnveu/nEc3SBKEofKycPX+ft3/0DPvzgPV48e4IMo6+9bS09sI08KtGK/jZRiTkURZljvDQgmDk2IS7pT4vVjne1fbY14LphG7MsK4o2796v8nEsaStHP/M4XMllg9rAYpW42d/w6UeP+Zsfv0PRkdXJildevcdbr7/G3dvnpCUMu5EnT6+5uLlhyNkb/6lU4Gq74/ryim3eoqmy6P5P9t6tV7Ljytb7ZkSslZd9K9aVVSRFURRb6u4j9cU+DR/DgOEHA349v8X/x371D7DhY+MYMNA4xzDshqzWhaIkSryIRdZ1175k5lorIub0w4yVe1eRPPaDDUgUF7Gl2rkzV2auS0TMMcYco6frEopn93jXsRA0sS8S1N0QCEaIgS4KUZRSlTxuGMtzqM/RfO7rc4nQCf3as1PPXyRqDiy7nsPVCWj0Th4NnD47Z7ctTgCnyO2btyjTxIvnT7m8PIcAy8WCGAJ5mrg8v6RfdKQ+kichV6hRCR0QjZBckFurd/akDmKS/XzuHUiVPFbSItJ1K27amxzkEz8Hybh9T9lulBQhhUQIqXUQO2FFVqZRwTo0w7grnF1s6WVFKROWEn/xt2/zxoM1Vj6l2I5chTwE5PKEW+Vtxlsb+u+es8twdHjE+aMJd/72TlYV4eJFYR3XrM9u8vjjz/jHnz/kb8a7vPZOZbWa2I2FUoRaApcXlS722HTArbsHPPzNM37/4Tmr9QHv/O2SvJ7IY6BUt0hd9D33X18RZLYUTBA6giWMDCRG3XF4AqlTgnR+b2qmFqBz0bVJI8Rq3q9k1QKEHpMeIbIbByZbkbVw58Ga+3yEyu+5373Gj/72e9ThLpe7A87Pz/n1Lz/h7A+PODw85vlm4J2/PuayH5FtYGRgmjb06SZCcBvivOBg9Sbnuy2qGc8D8+gLtQHTHiyQpQOpEArTsKFmpU5CWjvR6ESh17kxuBDf5w83LjYTXy9iRElUMaoVxrL92vv6W4IJmKd9MbClEG4poZ8I6gvcyAJryv4UBMiE4Ac9SkckoZYJAl04REkYBwgLlIIyYrYhygEgdHbMIW+R7CZZAlt5gmi/twMbbACURKSyQELbB5kqAxv7giKBQR5T7DmJ1wD3D+7kBqk/YUdPrV+gtUdtcmA4ZM8uaoN5KNqs+jzvxKT5vEbhKm7DPHS3rezDDDCKERbiorWsSIQwL6jawnA+ssDeKxZrhVBt+wttYSWJQm3+7e11dgVaBoKvGqX53O4n7IY7td/nxZp7l3vbvNk1a5Fmv8PXk67fbn8Em3n7HfNCWeZzvgcQ3FpNNICFpvTyhacXDP5aV8/aXr3of6P5VzdrARJYRK3gXTV+qakJQRJjHSl414uouj1Saw0V68gokUKSimhErG9E0EiY+1IMVEYMIUqH4Co9Y43GSAoVGY7oVudQI5VIiJlaYrteKx2pkaMKpamg8MKo00IgI5NAFiwpRSv0kboAIRAse9fSMiFSvIaJPZrVw/2iISn6Qqq13/vWjnltXUwiXnyE7CNnhhAXmGi7CSuS4kuWN6js89FCSEgNmCwaSGukEMllQugQ9Rt5LM1pOvhA0a2WhC7QVaUKLJcdXR6b3R1s3v+UkEsjl4VlBFlGLjaVUAKqmWqJ1CtdAJPkIo5RCKnglhRLam6qWSlYVkLsCRnqzshZUYRuLbz5ds/jj71tX2OgDIqGQDYhSusoa1K72pTKapUkillx65A9+DyD9e64DdKuP1eLpC7tC9V9qe6DJHN3iP8/e8BpPv5z6TGDZbOdxpdBlBlg8DtlBqv2RXAr2GnX/1wgXX+98Opj37ztui3OrJy/Dtq+DNzypcev2yJdB7XmXIH9KZQZ9J1bAWnPnZ9Asyii2Ro1K7sGJPs+I5th4v0PfsPvPvqY3TA0kj7sxxKfTxvQ+8oJNFNK3tHnETmAFAOiLXNDnRx2ZbMDJiE6yRT2NgFXqkTde++2zKBZdjljsA1kna9L7/ybtb8vH3ezK9CxoadX6PG8271/XrPWwYUCalBUWzjv9XXJ1XnzriPYk7FmWKR1BXnHdNjLkf2EaAN79+IWNYJWYitaRdoCPXpWSVHvZFJtE0773LX9Lup5Nlor05QpOaPFs1ByKf67aZurAmqFKMm/ozQyC2Uis9mdcrD7lHUf6PvFfs0VYkcIXTuEQlF1K9L2tWp1ct4LsODqSLkyYtAZvBbZd4zXMvL82efkaUNsVibzc/zYXl1f18mS68DuV5ElXx6rXr6H5v19k7c/p7FH1Zgm9U49VkgDda4EaFcWeTAD3e2+n2exmQgy79bROXOpAXzzWzr5du37NIuwWXi438/+P5mnX65fi9ePOe1PM9EnM/5Y29gV21cX/VKX2Pz95xooGGj04xqs5XbC3oqMPYl0BWKriHdCzWvmORfEQGvrIGvj2TwWew6W9y9rG4NLzk7yqbaOoUb6qbWx3JwkEqA2sr19llzgYjuyXT4lLTq6b8eeP9rt3uGaGJxYSiLN7hZ3M3Q4i4CLwtpSFfCcVMEzlPZUq7hFXQDPd/UHUSIWfB7OKLk6oTItDrgcMnGs9F79eQmvUGcLxwhIxLPTrpwNTCuqkRDc+SAkIHRXZGsrZJxoEqIIGqQJSAqoO2FYhNCs+WRyhirGliNVGiFaGvG9m+gWwjgG+hUsi5MA1SqpArtCzNoyc/wejO3jhLRfTO9FNNXAgrhbRPV1QewjU9E9duL3bkFMKAIiHkWAQS2l2foaWr17mtkG2EdxYoVgSlz31PMLcv+YfDiy7IS8iIRloguJWifqGNmOmYAR+sBYjcviU4Hh4oDS6rBsMKpzW9Ugmnd7D2NBSuJwGRlL4Plm4vRUKWPh7s0VByvYHS0IQShj5fkXFxy+dszxvbucf/aE7cULjMA4TkixPbFfqxKjUOvcPe7neDob2C0HylgZtpeIRGIKfPGLn5L6iE2ZeHhIfHHB5599Rt1uqQn6Zc/u/Bk33rlPfv477lpm2l5izx4SzlboaeWteye8+b3/ktMXZ3z4/s949tnH5DziviT12sToa2bffFzUmWCaaynmW0S5Gu1nIcBse9j2MK9rpXrtrYbbTfpY7ef5eq3+p715RnZhuztnGLd0XcdikbAwsFp3DDmxGpc8WC7IBc4vNjx++oyf/OQ3/J//9D4nN1a89ebrvPngHsvDntvLE84ut7x4cUbOEykKt26csOgW/OHJI86HC6aLF6iOhOWa1fqAxXIJsfPxXKJHB6hP3lULpYyM04BZplLI4yVl85SunmHTzsebaCx6t8jbXAambY9VIYrjLanrCV3P5nyLCNy4seLsbPCMLxHWy0POLs4ZhgEEFr3n3IQQiBKpk1JyRRKIdVg1cinQOf4ao6+/MKNkj2uI0dcFIkJKgoUOKZH3bn6H17rIi/AE1e97HtMqEC8CKbScx+BkbC4Vx+ECWrwzCgvUbFxe7njtaEUxYXljzX/8r75Ln7aM45aSBbTyu/8NbqbvcTZecus/UXZDIa2PSVEYhh2jBiqhCe8Sm+eVW+EtPvzHx1ycPuLgcMkH//icm18Yb/99IWcok1CLMA2V124cc5Bv8cM33uO9/6rwycNzdtsdn//0Eav3JuowoZPRxcDdB4ccHqd9xnkUQWQBIaJSqRKYqrE8VPpFZNEHulBdFGMdQTr21pUYpIiGuc7E16sRUlhwsd0RYiLXcx4//inD+IKum7DuGf3BxNHtie8f/0v+3b/9mB/+/Q0+P0p89usnlNBzcus2pk+JqxdM44TpBTEUgi4pVigopXSkcEjWZ746MkUtU3RHJCCW3BFIDPqRaTtRB6VOoFWQ2CGx7HMAXeTh0RRBPDfTqD6+iy9eY1RqyWgdvvZ+/pZgArzHpYAJsoDuWJzBK5cUi1Q7AkBsjcnawW3MgWlcZRIlgcc8ElhQbUOSlU8+UsACihEtkGSJ6JrCDmEk1DvcDvcoagRxZrvjgIkFF7alyI5zfUaRRySJbPiYc/sVk10SZYHZzjsUbInYwCE/ok8nXNoDRjulkwkrp94pQW03hVsKSCsIXG1jDUj0idHaKk97/1Y6zjZ5bcIM5g5eat7Z0RYYgM+t14iifZHaiJ/9ew+G5gnJhTAYtfqCyNSLOYIXeoJg1QdPt3dxT3cvsm1fSCDeYaKVvSJJZjXvvFj+hkzG3+xtVp3NhNLcy9aKfvNBzsQv3tkbtCJE4hWQOQMScxEuvtDzcFQvCvzCqQhKMSOGphyXSq3ZF/yzcjQ6UYI11YiOWIWoPdG84K+miFz5jvtjHQWjQ9BSIHg3jakStCJaCWGkasByJKTkXVI1IhT3m8Wv35h88LeqdCHStZJbq3depQhSJ6R2kHsHgmJH7AISCnGokCOkgE0b4iJhC/9MZC/mJSS3ZGmdhBYMsmGjebkSHGGyWhqiEaDQ1LGeIxQELBSo4hZaPc23v/ccNHPi2YN2CyElMKNP4nluITIWI1QvdGMwUlSm4sBTRKhlICf26tpSClMeiQFS7FlYISflfFuI1hE7P1ZRBJNMLYLFjl0OJGfHKdWcpMPJ87T0qy9Gz+Gz4P2oz55N7AbvZtM6IQTfH8GtODV7cKQJU41k83kimRLn4N5WaLt6QSlhbAvD6BFaAkkCaRWhXa+CNuW0X/OvDmezLdL8+Ewm+S8zivbya4SXATR/6jyu7h+5esGMpTQ13XWgT//MBtivA3av/938H/vHrgNTe8C3/c/1Xe0x1waKzsSK7Z/fSv45xGQmQ3BrkqfPTnn/g9/y8NETclVM3NYqiOyVsG4d1yxj6isXhhnVBrSMmFUvcFJCdAbo8Mw5CSChFSORGCMiiRgSEiPSctjm7qSvP1bzPgJSBW3t9yHEl16nqlQR4ivdD3ty6WqHOLgr124I2YctV19wuCXQl/bjV3Kcw8NpSxlz+9Ja53ynQJzPiV0Bn/MeRI3YrCxmQETVfDFfnTCy2goTtT2ISylQ3es954xqpdRMra2DoGXeVDXP56sJD2V16yiadeVkme3mEet6xrLvHfhr4G7qFnSLFd1ihcTUsi7YrwOjSMuG+4ofXrZgU/WciXG34fLyFJlDtMzn76suguuXl730768Cef9D99arr/1z277pY09WI2smF/8MIXpCiTSr65lk8kLYuxpjy4UKcc6HmuuErzpO+0HB/wvz9c5epR5fIQ68TlKIX+7uemmv83u+NBlLsx/ze39+7PpHm1e5wJWFpx/U9ndrlsXte82hNNAASFyRGpqwqolbaGS0tfOl7We2z7nqPFKqeO5S0Uqpbu9bGilVa3OQoIkPcyWK2yBzTVxoKpRsnA+XTN2Ovj/6duz5I96ODlZeZe3vcZ/fa0t7U9hnTGgjqgVDg6Dlas5BoluM7wkUawSJETSSxFjFSEhLpgjPznY8PT3j7DzDBDdCZRUBCahCnio2VXSZEHPRRWpdOgbN4aEQSL4WmcH8INTqY1IpXv+HlCh58pxGgYB3QWGznVuzJq9e+2iolHa/WMM0zBxjMIOQYMqK5gmtkShCzpU65EYquKjEQqA2EjdmF/LNQl/F7SFrA1FmsVgVI4UWESDiZJs5QRcwqEpWz2qsTZSnao7BXFvzpwRTUdBI2uyISbxGTC6u08m4+853WLCmWKKMG/pjI9SRWiemrGSDwXwtUzEmE6oEanu/ilBd60RNeLwAACAASURBVOkAZRD6rmPIxmaX2eXI5QVMu8J60ZOiUM5hSaE7DJzmwrrvuP3ufdJyxemnG7ZnXltbIza7LmGYk301EDo/L4JQpoqp8uLh56R+QS0eYlGKcv7wIUGExfEN7PMvuPeDdxFVCJF6cYmZks8TZ1885qDvmdKCOlWm4YLL0xeMSSnLO8TDU5Y37/Pu39/h1t0P+eiDf2Z7/gTU7eKrm+b7NAjMqIV38TXySOdv4+LJuTYT8Tlz/l8M6iwGadeD18rzvOfvUcXrNLU/bXLbN8dhqg48efoxn372KU9PTyHBjZtr7t29ycnhIfcWx9Rq7DYTqRNWB0vu3LnF6YsLnp2f83/9/GN+9ovfcvLaAfdfv8Xd27e5efOYg8Ml41gYcmURe4JEPjt9xuXg9mbTNPBi+wxJxvrwgIODY7puiWFI6Nw+zIxQErkaQx4Y8zlhOqWTC6y8oOpElZ7QCauVZy/noce0p4sr+n7t4rJppEtrLi+2pBQ5OV6BwOnZjqdPnnFy4wSjiceqi1LTwhsdUozU6s4SJas7yYiQR8FGIy4grIBYidExtDIWJ9C7gMM3QqRjWY84P70g3Npx0B9jVTn9beb5J8eE/sK7V8Q7EYXqnV3iNnQeOSGAk+Lb7cCNI79m3/vrN3lwZ0GZHrHLA2aRYRdYx/ssc+Lfvv9TfvzOkjv3T1gteqxMTHmkKlRLFDW0RJb1Jr//599x7+++R7wP//Iv7/Do4TNsdcHFbnLBnSl5SCyWa/7hH97jr358i5OzNY9//jve/qvX6Y7v8t//m/+JsyeZMjqhktaJ7//oNQgTQRIRF09LcEG6yZwXroQ0sVoe0i87Yo/jaJ1AisTUzQALXefrLJM5LsZIMWKp5/z8GXEVGYfM5XDBImbQjNQI9QnCmq7/nDffrXz24te8/sZdUspMl094+ptDjv/yJqv1U14ME8N0waKc8uFPMm/98A1yHLEaOFjfZaznVJsAfN6iOldhAbXex+auoq0bI4SI1owFdy4Sa05MFsgF+r6twfY1rUCI3j3axiIr+hX3sm/fEkyAR5n6YkMWhpyAVaHUialc0HXeZizaNR9wbUoOozJgQGTVdOcRoVJlQ2rgqbJApEdYYtJRTSkykOiI9IgsSCw4JLKzDCYcyZJHYcelnbKjYnLGwB/wrI+RypYYjAULMiPFRoq9YCn3WLKgi98lyl22wz860G4CxdzioBqhQLLQsmOuJkIRaYquVs8kISwCakKsYKO3/npR5wsynX+pzA0Mvvhqk+1cdMgVlt+6lDxThsmLFC1gzbdXalsgtZZUU4Nibd+zqpi9SsdXxN7lVGcAdX5PxQvf1jX1Z4Z//kluvjiei7ZGMrXzJhYIeEYN4CSkM5lX19hctIdXgMPZ/oM2gbTX0ZZwIbjd0OxxrNZC7uaiPHsX0RQrVSNHnTHWQg4J046gRgluJRVMm1e2NiVmpeyJs4SYq706BJOERscUQxz9/tIOSa4MtmCtK0rIzQs9ZSWlplYJSjBFg1CjTxZZlZILlpKrt7pZmSjQ2rMlG/SBfVVSzf/WNeVh1QbmtJs7twqrtsUx0VuFU/AMBhUn4ZL5S6pbOBixBTFXH8OiA8azaZ7npUSqzQUXLGKFHvIkdFWQkJhQzBNkKVTGnZJWbgGhGcS8ndtUyVWRWugC9AnyOLEIHTEEplxQE7QED9rtEqVUqBkziNZRcuuAu9wSLTFNlTpWV+4ReXLm3yCFgc5aGHCA3JR1ouL2hUyodhRTTEY66Yihw+KIakJ16QSeGEYHIi5hCALJsGgsDg6oIbSx3Is4a8X0V23XAfZXLWBeet7+hmn3nV6BiPOdsVd30+6l0N7XZgBnRpQaCSxfv+D4Rm0zmXEdIDT40lFuIPAesL0GjMHcXctL6vt5mrrqCfM3mO1+5rfz/B7Ps7A5y8dgUuUPD7/gl7/+LeebHVUikjoijRsWwcPbi1+DVam5qeVRpF5Bp5XKxfiUo3yTZXfQupOE0DIXaB2DM0gbY2gEU2i5CG5LGWNbwM92Su2ghXBlkTdnnwTxccRU3JJUXj4apqCiV7Z7+9Nx7ViFef++j721FQ46Va17AJYw5zfMp7EpZoPs74Fqts91InrmVLwG8EubT2YlsUlrPhXQ7O81dyWoNnBWdd9ZYGrkkh1LbgSTlcKUM7nkRp43oqnUZvshJFoWThQkNChV/D0UpVpmOn/EUSgs+yO6Re9yxhixkNCQ2BVjN2QkbJlCzzL0dF3PIkT6lNxmJ4S23pKrOTZ4Jy8WEStoLVxenlPLSJQ2VzQ51v66vXaMnZOwBnrPf5hvIntp/PqqTV75+zcB6P1/tf0ZjD1t1cHpNHA5ZW5a315vrXtK9vPhfCyChP04EoKDcoIT1HOsEPt1H1djzUwuybUf2I9Ve30Gfo2pQdzbFMn+2LZDzp6wur5ffK41oxFE1x5/9dwK+yBzH6602Sy5MErqNTJs/8Hay6+FgVjrZLwikNjfay93bjay3aA2sLRapZbiP9XHHGvEeilOrjdn1PY5/LOYzdZGRqnC8+GckoRVt/CA8m/Hnj/KLaQOTIkRaOSSOzy2nBes2bCGvbFlbZZWksC02TjP3XDm115tx9O6QI7eQWxV6W2kTIEvnp3y4mzDmAu7qfC8Fk6i0EshiXca1e1EFCP0kAJoqRDctUW1eiaGKCFESgEJma7rgYC2gPsYjDyVKzKmEbyq5u4rzddfG/ghzeJPhFavKJHWuVMrlEjsDEJgKkZQJS4EyUop/r0LLlCxPfFL6zp03ESLErq4F4zFGNFg3q01VY9gkNhqv4LEQKl2ta4wt6hzvjmgzeYom5FawazqBJeKkbUybrcsjhZMF5es7q6RwyPuPbjJ6vgBp59+zOkHH7ObKmnde+1YA5vqWU6YUDB3fmDO0fa84qK4yK+tfYoWigW0KtkM00YMB8/MOjnuiduRz0535DxxfPeE4fSZA5hi9P2S8XLn92oK1OwW8ZgPyxGhmmej+ZrQbQx1GOiWS25/513OP/+Mo5u32G7OiF3H4uAOF188YbFecvvtd9lennH55BM4U9Z3bnP3+C5VPsCk8vzsgo//6efc+c53WD7oeO2m8ez0nNXRDVa3v8tf3P0+z7/4mD/84h/J263X320oUcTHrTbeSrNSLfNYfG2tKAQKPnp6Bw+AXJVRsxgqeH0dg7Q8X2nX6rXB/090Mytsh3MePfmMs4sXDPmSoQxkq7x4fs4HH39MZeLkaM39+/d468E9jtYH3FofMY2FYbPixtEhD/Jdzi83vLg458nZKQ9//jGp+4jbrx3y3ttvce/eHbrQs92MHJ8dsFgs+OjxY4blkn4aqHlkqiPbi4Ht5ZbFome5WrNYrOj6BU4KKlCodcJ0g9gZsTxnLANVEgRh2QNW2W1XlGlFDAtW3SFBep+LTLm4uESCcnDYY1U5v9zQ95GAMg0DVSdEPAOpVqVkt912wYdfa6WqO9BEwLyziaKMavSrSIyJIIkbR0dcbi5INZIvB6rBeNHx5OKM8S96jpYBLRPbz3f8L//tz+gWgdvfe4s+X0B35oI602axa6QusFymlpHk2XXDWDAJpNWCH/34u6SwY5N3nD8ubHeJvtzg3sExP/vF/4HdGqjSNbtgQcuGIWeKpn13ZCxLfvDgr/n+CsbtU+pKGfSSm9/tEI44vzj1DlgJTEPgP/3P/4a3377F8TISPs9sn59StwMP/gIevCucX2Zy9oHr/neOufu6C5lDHL17tBG8iDheJZ4n2PWB1Bn90oUAoU+EToidZ+e5HqnSxeCYuLnIHCJEIciKs4stR0eR7W5iGcXrPldgu6BBlFrPUdlQyhNkNfD9H0cOujd58sHIweMb3OhvcWZbzk53rJbn7LYDzz9fc/TmGvo1gRXLdJMyPm7foa3x2tyiJH88OK4m08iKjmoTRnJxhCjZw7vorSOFBULEIy68Ay/FzutmEn2X/oNmYN8STMA8OAsgK0MOvBm8BGMiI/WMFI9JUpl4QWQissCHmWFfcnlQXMQoiGVEEsbUoOvZmXxC5RmjnRJYk+QBVSZ2deBFMLIob9qaM81sbGQIZ4wmTFwgnJDkkmCXBKlEeiJLzJbu+S2VzIaJLxBZofUSSiHXHbHZALiXqBGqkAttAcP+gtRs14oa/wkxUXN1YgpphY65IjmAJkOOe+qmYkMluJ9Yw+QbebUnesBqI5xoQFFuC68Ii9WC8XJEi3pXlTh4PhNkzReskQfsBYLghQ2VfQAvNHK50jJQrtR1325/3Nus/gqzFYg5C0+oWFNpB/FBzyw6yBnmwtofh+j/3KsgW0u6Ne59f/G4r2glETDiYkEIgSoJDdktX0SptGJXXEGlNXJWFSEhJkxULChRjGKBTtyCrxfvdVRLbGn3QQM7+uDtuaY+UEswTFyhFlBEG9mgrgrsUBgGV8Bp8zSPkEJwUiuOIFBrpGhl0Xt2E0FhNEQ6pGt2kzsv2m0amH27TbxqMYk+4aq5pQWCDA28SIL0AZuKV1BBsaKEHP07LALSKUwFKxFJ3lEmUtv7BKjBSZgZ9VFfXIfZg1kEqYlkQmFH7XrPd9BAlUDqncArCJbbWFGaslbAC2Sjqo/liwVEKW4tpW77E4PRSfbiTwN0kUolV4UyeeNpjWTxbKlSJlLAxyEFpcMso1EpcQGqmBaCdiiFqjBZ62jAr6FJjfWRqzJF3cPW2bxCjBXVgEUlygJZBFJK5BDpDw+uFkHN/tF7KpzUcQBphqoauHS9c+n61gr+K+q1dew1QEFnQqp1fl4BmLW9R9jvp+FYDdQO7d79hhJM85zIdTs12VvI+K92/enzU7h6dpu79PoxEqiKWcAktXwOaXOyD1tybY97u6Zmq2bNQsYhILd2+90fPuXnH3zIZlRiv24kzqJZLgIophNiitZMLRMaMyFDyK3wbcbxmYqVgVLOsHDTiZPY+bhV2OvDZR6DkLYWugJOxSWa/v2jeG7HTEIl784TMaKYq6TFiynp2lhtzZ+ecNWZPIsHGnJ4Raru+S4HQaM0kNUBYQlQrbZT5Z0Oqt4Reb2jQ6DlxDT1vip98q71aiDVGnhM8+w3FPFx+RqQma+du9mCKoiPQdqENibeCV+BgmFWqXkiT4XdMDKMUwvK9ZybapmKA2dFDEkBTYpF3a81K07CSd2Qzj5l1UcWi54Ykge5BuF8VKbdRAbPaBgDy3HHYpHoOlguK8fHwuFRZCkdi5Q8h4or8k6tWfyYMQ1bdptTOpkD4kMDhfQrxiLZA7qe6SVXr2mKcTNtrEA7pj7QvISnzFZX35ROgq/c/kzGnpjBrSWNKRiVypCVi6mSNbI0JQYaae2eDOBitiuyeB4A5vv4SmwkOIgb27UW5snLWSgH85zCacK1Vu+0XXoQN1fETiuXRK5fd3v2yvfX8oyknYDZSlNwcFpFGxH/CtHUGpu1ETsxxf15NrnKt2k30LVx0K68rOq+nGsg99U4iM5zuwv9muAVNSOrEzZ5zOTsJJOar6/8x+87Kt45QtyvH6DVdSrsgMf6AvqOxaInfDv2/NFueX9+myOAAarolFsdEPfzaQ1GUAfMEbexlrbmTjHQiXcudSEQzYjV0KkgKTB2HSaBYcp88ugpz843lFr2VniTGo+KE8d9FGJQjobC6qAjmEC1lv8qaGnh5G0uVHXV/kwtB3HbaquFMlbGsbR1ihNPdaruTGBOjqCeORaC52rE4CKQNN9nzS7KNFKbYDdTCcnFeYvDRCyBF8U4yUIfW820j6zzQUTU71O/frwm7aJ3bKcu+jUYk3c414KZg50hCqEqhrjnhsXGcXsejMnV8C7RxcKhGlYqkpycGILQjwU5OfExNO+Iw0NWuiAfw+XqiGG6hCcj6wNlKrAdlZ16tpxbaPpYb+0amcfRXIzUB3fiqIFalVyUosI0ORly0EdWiw4DFl3HdnvOau0WYrvTiWmYGnHpVowpJKxWihmSEiFGt9Ur2nI7mxQiNObJlDqOjJsNy8NDlgeHXJw+ZTw/Z7o4p18uiQaff/gbXnv7LY7u3mZ8ccHm+RPG4wOmywu0Vn76eMOT3cgPHj/nhz8aef21v6YOE6HfYXJAf3STt+7+F5zcf4df/a//Hduz560z7mqM8DPlRJg1oXUIfs+46NrHIe/AvLLXaVRaWzf72G7qOJia32cvCUf+xLfLFx/y6Owpp+dnnG8yFxfnPHn+lMH9HlmsFjw5yzx/dM7vH52y+Pn73Dw64N23v8Mb9+9x49ZtboVjxjFz43zNrRuH3Dg54OnpCx69OOWTxy/4+Okz7h4d8RdvP+Dt1x/w5hs3uXP7Bot+wQefP8RjcxLRViyLopoZxx3npxeYvuDwZEW/cOu8UjLUDVEvWMkleTynVsEk0vXCYmHsdpHnTztqSSy7BQeHB1jtKJMy1pGLzRkpQuxh2mZUjZjg8GjJ5mIg12kvvgsSKaUSghBT9HoE3eO5pehefFGq1yDvfuc93ji5y9MvHrLdKbYTurTg+dPnrI7WPDs7o2plGDLoCs2FfDaAjdy5+Tqf/uqUW0Ru/9iowe2PvUHVCMFYHgbKY7cdFYS8U1QDr92/y4P7t9HyESUrq5sROzc++J8n6he/5ZPNGd33Ist1R0oLong8gpa2bqCABrp0xL/6j/4lj372Ey7Lms+WAxfbLauucLDqfOlaXOS4vnHE93/4BrI5I3KOdSfcfC9xcGCEmx9xZznyk38/Ukch9R1/+XdHFL2kqJDaWsWiEqQQrAcpmBQkQEgu2A7BO8BiiqRonpUdl9DQOqPzvO2W+RkssEg9NS/Ybres9Qg1I0l7v5CwKI7kSKFY5vTsMaFbUBWWqzW33zjhZLHgiw+ecPt77/C0f8724oI8jfzgb+/x2e933Ig3CCLspkpIxyBnrWsJn89EvUMLAQlo6pDe6BaBg7Biy4BaaSIsQ4siVUkrIYbogiGBQEeStF85N1ka/bzo+4rtW4IJ2JdQooRDIy6MlIofSPPsC2Ukc4qQWhNrRybsm8c9E0YILXcpSAIigQMih2AnBBYIS0TWRFnT2QlLu8OaG6xCx23gkWYe2sQQKlVGhJ7C50xsMakNqiyoTXiacyKJEew7JH7IaA8psiTrF2zypwS2KE/3i20HcQ3LrqiY7YxCjOSp+ELrmqCLAmXIUIwwGlTxzqzG0mYFSYF4uKLstr6Q0dByBXwBP9vk4rioA5/aile9qosNmKYRq64okkZSaZh9wqVlQF3ljljbp5h7LAeDOBNM0ogJpAHQfEl19u32x7mZ+tBkTRnpAIZCU51rA9q9Zm8qun0A8nUQptmo7Ds1vLggzLx7QyJRZqC96xMitanB/J5TjfSLFUP2QDtrCrRs0AVXr/keI6LJW1Bb0Q3JlZ9i3jXT0Iog3o67bDfJvHCX4H6nZplaA2gC05b7WpDoVglBIIuhzSIu9Z3bH4RAmWpT7YcW0lv2wKzbv7XFaY8TRlphAqsd0EERrG/ACj4mBCKEiJmDo4YSghNQPqm6Z7k1hSASkUVyxWpx/3K/FwMagncotICqmotbTQUv8B00EKjQ9z1DbddALoQueMHXCn6j+bGbUJtlX4oNX2lKfjP37c41UoogUohN6bvAwyWxDpWIIpRJCT4cEnp8XItGQ4AJZhT1btNaIrKYQJM/j1ld1lNk9EJMRpJWigWkD2wG6C1RKZhkB701AD1GpcZISJ7vF1Nkue4bICJ7Iuc6W74HtPdz/ZV9kLY/vFyMRL+fbO7F9f982Lw2LzQbNGnP4tr/u4q4vXommsz24N6f6vZqRslXbS/Z6FxHca/+cQXsXlPF+4sbQLrfF3tG5OXn2bU92SvvAzNRuD+rTVn8+48+4Ze/+ZChQL88JPY9sUt0cdEEMOrqu5oQq6h2pJzQOLmVZYhgwuz978pRmHbnlONM369JwUFamIFL/H6nkUbNu3svvpmV+vPY1zqW/EcQiUS5Ag9fOs5y/Wi2C03wLh0zRHR/4b9khddea3sE+Wqf173wv+qcKg60Nly6zTPScvOqZwG014TYrITM9iCssod63Qbs2nuoKSpOaHnXIm3MU4pVcqmUcfJuWFWGUsi1MmnxblYtlOJdTdEifb/w4bbhE27J2t6Hyubic/r8KYuTjm65JPQ9Gjq38jGFkAjdgtSv6ZYnrA5uslqfsFitSMmtfS4uBi43IykGDg8POD489u7WIN5VoSAhMAxbah6ZEdnrREdo4M/XqXy+KieIl/fyla/5Jq3n/tzHnvDK2GNVqQpnux1DPuBoGb3DYk8i+RzutZd/t70Vp9n+vr36+HPXUNj/zbudwpfnLb959yTVS1uzE1eE0AqYq76r64fI9g/Z/Ovsb8Qr17hdfyF7Yqp9UM9vU9k/ZibNPm/uirK29mKfT3v9Y++JkEayG7L/UJ6jZWipVM2AAw11Kv5YsX3NV6o2EB66lOYPC8heVGhqVBWebDY8C+f0y1vfjj1/5Nv56HlbkUCMgb7viClRLrdM2x0xRULf0R+t0ZSo2wHJ1YW2KmSr5H2XhtGljtQllinQSaArRqqOjaQu8Phsw9lm8HvCPOMpBaGojyVVlAFxK8mLie7Qc0gigsqe+4PmgJBz2Z+7EIVSigu5mqWUIfR9T55yu7Vln2VWiwvCHMQH1YqEQK2ZKIE6FroUURStUHLFilsGmoEEd4aptdCVyGjRCTOpqEjLfpPGA7fOltKyEkv17CU8M9GdH1qtEaJ3TBQHCD2NIFDV1w5uL+55rbUpF3UmL6q2LEYhmFsJqkamLIzbzMUfPiO9tmTRLekWAzH2pNPCgqk5J/TUYjw7rzzaVbbVwdNZOCTMnTRGL5AQBhXPIQ40kZBw0Lu1XZHAWR4B2E4Ton4sTWGcCnq+o5bWnSaCiXdJ1mZnKCm2sQqyuYVnjC2rDcAMzRnEO8YvHn9G6HpiDCwPDtiUDDGxXB9AFIbTZ2wXHcuDjvXNu6xvdATNXNTAR2c7Hm0zSuAXj87J8X0OjtYc3L9HLMZSRyIFYcet7/0Nf5ki//w//jeMF5fNBaIRcTrDsJ5XIzTsyxVYTsq3y9g7KWlz6VX/8J5sYp77Z/zLu9Mkhj95kunf/Lv/Gitv0/VvUeSIzW7kfNhyNgwU9fV9FReBWlUuhoEX52f8/rM/sF52vPPm2/zge+/x1v0HnLzW0S0cHl33C44Pjvjs2WOebC747MWWR6fv80/xV7x+7xY/fPddfvDuXc63Gx5eCsXcslqSYVbouwUlZ3KZGMeJKW9BCsJEYMPCLtDhjKkKVRKSoF9WigqXmyXjJHRtuZVLpusXRIV8OZK6iEhlNw1styOxTyRxLKdqvnJ5ciiJGMO+m3h2ddgLXxrRBPhaoQTu33yd1UZ5/skjfvgPP0bSIcvVkv5AOL98yC9/8iEf/vqCvutZLBNmRjmq/Gf/+q+ZvjjnV786I5wueS0XQirEKHQxuelaEI5vdoSPJiC5EHfImFbe+c491p2yvTyn6AXDix7dLohlzc8//ojujRWLOLJc9qTO7fdKHfA0odiWJELNwosnv+eXP/8pN9+8w3rZc2nPGEalS4FpUmoVkAX/4u/+ijfeO2R69gIJX2APznjtgRJt9LH6spJ3RpmE198+4tbrmVJ2lCiUIEjo0aioLcC0SfQiKUGKlS66EFGS2zR3Uukl0cdDzNxlqJTM3AUV6FwI3SUuN5mxDkQWrDu3FZ3Xbi48Tph5Z+rzy+ec3DkiWEQUxnLG7bf+kt2jM+w8cLg4ZHN5yTQqRwfKqo1vkw5M28qtG7c57Ae241O8iq0YBbPOLyLziylERTrB6hKpsdWfvp6SSdBQGnkZHOPDOQKRvdfZXlRVa/na+/pbgqltDqopLIWQlGiVoJHO1nREChuqjtR4QLDDpjilAXHNRsUhuzYhtJNCT2KByDGKEFkRbEmH92GUeoqlG2x0yV1Z8Wbo+UQHLjhla2coO4IIoz1ksudEDjApuPFWbSCGEFjS8TqTPGZrnzGWz9HwGKwQqNQKMUTKOPkCppE73ikk5KF4g0fLLJptkERBdkqcoLbsJEd/mR0qsGKUhxewUST7NVy1+cTOXUtNVRP7QEiBaajo0Iik0IBcAyZfYFnBOwjUX6Ox+T4n/w7BYBaL0P4dGuCpszKv1U8B9kSWA0N/6tPxN3/zRWwbIJvPK3LNFq8V2HMlvS/u5+J8/xgNSG+F91yw21wcukTXi/6Cibh9mQnVQrMpqUhOaN456MccAI9D8WZ7MqNxHnTzdcmVTcJEbp1BkdjSQ2Lzii+NFBPxKVaobnGkwWW90VeiEr0dWUJ1T+5JmS4LXR+w3ojdsnXquV1Alsm9YcXQkrEEUl0JSjLvmMoGJWAlYLEgB4C5/7mEgJRAmPCMhJzZRxJY9XMSvOV3D9lawDR4oRYgzDLo0IGJg6sdaFNGWNXmZZuo2opEcdsHghdFKp5ZElBimZCmNJ1a8DTmumOAqRSy+VgVxTOswv5cV3KBWpNnOoU2BmnBGKhF3AaxBrdxSdV926eCYETt3NddSitEE4RIrRlqQWrAyA4+mYIlJ62ktjlDePTsAiNxEFp+UyM/C80GIyg5GrFAks6L/VXH3L49q8W/vF2BWVeoVnvmXHS2e8NxxTZ3WXCQnmvg5bXXXd1v7ZXXmSqxNrbKyyDZN2T7f7LI8efA/MVfVaF/CeD1B3kp1H0mX8KXn/tVgePX3yfYvObwQNLf/v5T3v/1h4wS6dZHLFbHrtiMHtY5T5iqGa3uA20lo2VCxxHCDpHgXcaqVA0kja5sHjdMecdqeUxIQpLY7t8ZiIv+M+coXbURNeWzW+YRZ7ujK9A3xkAMc5iuf8d5DLcGgu4vxT0+3lZcJkjwscgIzYZG9mP+dYvIL4GCr5yv61lle+K0rRuun5uqvsYLpkiW5obga5SqddbWAI1Ma99UZ5sJ3BqCee6oSqnVArHHQgAAIABJREFUiaSpUEqlTpkpZyZVxprJjWBSzZQ6tbEyuHI3mM8RQgPFXRyRdeDF6e9YxA2rgweEvkNDRGugFD+YqeuI3YLFYs16fYPV6pDl6oDlek0Mzfk/rDwLqhROzzaMpXDz5LYXugomStbCdnOJ1pEguqcffKwJ7ToIe5D3uurfr4VrJOG182Eze/0V2zcJ4H11+3Mfe1QDTsMam2nkcqjcPEw+vkRfK81ru4AQxRyoFuHl7kmubPOcgWUmnAT2wpZXyRgaIPwyseavv04e7edi8UrQbCbl2hhmV+Sc7Quna7u9TijZ1X2w77oM83li/7g7VghV3NIhxAb2tsyZK95vXi/4Y3o9u6k9SatSVdHiGZa1Vre3KgUrRp2UWtRzmEwp6iRT1zV1q8nV9zAXFKoJY4FPXpyxjZGjg6Nvx54/8u3i9IyuiyCRbpHoJRAUjtYLpjp5LlEppGFElgmNft1ZCGyzW0NfVGXYjWg1RiZCn5hi5GC9IK2W9CmwPj4iE8gPv+CgC2RzYqWGwKiGJBiKMjVlPCZsh8LBNhPEyQpRo+t93ApBqRnPt0kOzNVS0Nbxb7VSPcRtb//vxHVxUVqeEPXOQmn3tmltBIh3C2KBsnPxmgWg2fLltj9/H2BUihinSdhhrCp0XfD1gM71qLX+Kr8nu5Qo6l2gKQTPhMKJYLfR9d9jCtSixPYZa+v6xtSn/3ado25TV82w1jlVGkUxZc/g3pXA8zOvWVZdpY+RcJSQbkHqRy6fZbdljwueXhQ2Wfc2biGEK9SrDSMahR6gerd36DxAoYtOhl3mwnbrucRPzkfi5cCyT+TJiehQhGnr+W6+7mrjVIhub9hddYWHWViKNCzL14laXVRHwC3Pp4JNhYsQSBiHx3cYx0tynei7FbWAWCZPvq5a3n6dSOLTzcjZdmK2/M7Ar7+45MHHn/AP777JYrVmHAZ0mOjjyEHZcOfdf+Cdv/0dv/73/wO5Xs0B0JwhcDDN8zsdu3BHFry7yVptZz6uB/NzFpB906TjDO06bediFs7Grxmj/lS2L8pvefzF73lx1mF5xcnxayxXdzA9RsIBQxa31DWj5hGz4okYJpwPlZ//7mPe/90n3DhYcf/OTd5+8w1u37rPwcERxydrjtYLVk+f8WRz2QQSmY8fb/jDk59wfLBg2a+IuJhV6d120TpqTHSdsmpzeykjF9unDJsXLMILFnbBNk9kFUhGt4Kuh4tzY9wmuhhZdUv6tKKMFdEt1mJUDtYLhmmgaHMboQDG+cUly65za1ERsinTNNEl7yDV4vVBSpEYxG3yGgln5phOCPCLX/6M927f5s137vLGO8csTk64+cZdlC84OxvRlPjod4XNk8y0hcVryhgnHvz4Do/0BRLg1q3blPoEmOglEQWKBQIdBzcS3TJQB3/vaZw47Dp+cP8mwTbszrc8+6Tj8/fXbJ8c8ejTU57vdrx36yZdgBivCP5SK9l6FCdbXr//XX787o+4/N8fszjpYJkJdFw8U47uQSkTUykYkdXyhO//1ZssV5Hj+6+xe5Ko4ZJqkVoyu2Fks63kwWvR9358TMkDnSl0Rq2QOsHUreCU3indUEmperlq3nnUBc+fIgldSnTdsXfzU5nGHYYSJRCdC2W9PObZ4y1FlFU30cfAZqjELmAWERJGwsKaaRQsFo4OXodxJOuElksmmzg6PiZfjtxZ3OSpPGPzaEVcHnLv5k1UlKGM9DGhGljF19hxio8g6t/JCmIuaEfEIzU6pQyQrKGRWt32PhkWlBoqVSvRIiE0qkg8t8mt433tPex2X3tff0swAftiQCCsQrvZwSR6ZhJKkIgIRDoc+r4EOoTSfveFvqFUBgo7hAUdgciK3v4FFcXkDGOiyMjWHmJxwQtOuSFrnjLxXAuXMnApD9kwYfqIQQKXdomGZ3RWyYxUFG/OvqTUAPySbP9Mli2qQrELApkggWp9a5fLPkC1iVpL62jQhhWrt2GD3/yeIyBIC4u1JBRVZHAsg4DnMmVDR4MC1oI1QxPHe/dcmyTNKGIsVj1SR9i58qT6PE5QQVpjSTXDfLxFi+093muleb/44kaa/Q0KBMM6/z57C+4GVL8MKv3/eS19u/1/s/mF4MtiY7YFYy64299dDeagSVtbegEiXrA3KORqwSdt39cWgABqzT9VXLmXukYiKagINVXEAqZQqwd1qnhGiKvtfME/t+ZFjOhyFNRgMFfliSi9CUmUpWT69gmUzu0nobXLO9YqGL1XPCC+oHI7k0JMoNZRa2gdPJVpjEzGPgxbKah2rnaaifCScUQ0IEW8DQtgDprfFCR2xHXnB7QWX8hP6veZxEZ0gOFt+5IrdSjErnMiKV0t/kkJQ13pP03eLVVX0DzD/bQ0dVoVLLiXLyqUCpOJu9KpInHhLeF5gJmUU3VLQ6tEPFsuNyXiHGgtpkSBXoxM8G5QU6bsJE+0SpgiMYPUSiaRK/QKZbOB7CFztY4QDhBLJK1UsneH1kitia4qaMEsQJooiJ8fc/BOgyslU9JWVBiadpgIRRaU4IpoCZEUe2oI9Ks1abncFyFf3q5d26+A6rPCaQaWHDdzOcW+22gO0bPWxQeIXPcKnyuc+Y5sYP389jO5NN+r36DtOiHxdYHf1pSjr/49vBIOfx3Atb3ajCt7pNb18+UPAdcP6wx8zR29ilAl8vvPHvKL335MCSu6wyMWyyNWByf0ffNMttDIh9m/toAWah7RMlJD3J/rWgpaI6VGzy/LSikTeTiH49sQFYjEFPZSYtUAFpHoWXaEiHFluQUtO2Uml6IvVq8Dp97VOZNB8/H/8vEIs+Ow/d/svUmvLEmSpfeJqpqZu9/xDfFinjIia8rM6mRV19BogARRqAYIcME9V9zwF/GPcM/mgrUhAYKoKbMqM6IyI2OON9/BBzNVFemFqLn7ixy6OIDIqAoDIu67k7lfMzVRkSNHzqExqY5AzhcAYai5GSqnBiO2dR/mh4M5V3jxGs96T3sz+QbgBDmanhZnStdcmt55k0zan1eJMRFDpNbapin9jWlL9n1y1ZqngVG0UrQyamGsmV3JjFaZrKBaqNMOMfflq6GStdCLN5l8uLTppUthl29YX33MSyendIsVNDZ3GQuCM8xT6Fj0S4Z+warrOOk7+iEyDIkUEzElRLxYm6aJkke22x1Pecqdi7uIREJw0+Fxe4PViTqvdUf3fe2H0EC1A7gbQmgNtzl8/br48ctA79e95X6pmfINP/61xh5tsafWSGfeAJly5no3UuqSWRZvP6mEg28BazJ8rclkDXDcN4AaQ1OOr0drwJjt/37fF8OvLBNE4Ovr0H9pfo0XvzxP2oTmRzcv433znZavHv3irLogrcktdpiN2k9etvPU2kCA2P6er92rRPLcSOtButYOr3GsAmHK3qO3ZqVmpUyVmo1ajKrKVN0g2ghYFa9pY3tP6ox9U6GqcLOFT5+vWb5yQbdYYd/Gnt/qY2nGad+RqUiZkK1hOSOmdMGfdRUlb0evCQb3XKqlwljYjSMnp6eEkwWb3eRSlENPJHDv3h3u37/P6dkFy8tzfvbBTwhB6JI3kGJIGE5a6Yq3Q3SWfBNXRNltC6mDLnXuYRS81FC1JpnmJDpZ0HxqgEYEoZ3P/WwqtfjXtRq1FK8jXWpgX/cZ2ta9N5yCed7hDSahTi5TJbgUXQnGatkh0bgqxq6CRSHn6rVHNzO/tdU5DgzXGEmd0wpLI++6as4cFwJIk8sr1mQ8fVqqNInA6sXl/Cf4FKG4v+w+Z5HgqhtqWHbZv000bm4r/Ulk0XsTJMoIEphGb+A/Hc2bfUfeWiEe9pIuBpYIDxaQNbA2x2vM/PnKBbYblzg+PU0UDQR8sqxMxS3Z+sg4ZrSo1737eOyYmv/ZzXMz+ZSq3zdtslqKVf9+repqEy2PqtNEpTJdPQRVxDKbm2sWyxPElBSWLGLPGw9epxMok+uKes7n17OY8ni7I3WV+w8WpMWKsDJCr0hUpIN3/vgv+Plf/2/km6tDfWSudGJtGoUGVUlDDV0e8UhlB/awhBjQvJcP3XK/5iozQUtcOv0b3uwuUphkYkcm1w3LuOXd955zc7Pg5vF9tF6SywKTSFUlT5lSc5ui7fH5R+HpzZZHz/6JH334Uy7OLnjnrdd46/W3uPPSHS7uv8Xt7cjDZ7dcrXfsxomqlW3e8Xy7o1LoUqAfBlLXE6Tz/CpEYox7cpdpJjExyMhue8tUMhYCqYPFIJQRdpsBrYkkA1EGAj1EIU8jSCUOHWWamoWIsFwOhChsd4VHV8959f5d+j5SqyDFm9C5ZNKsMCHKbufPaRCfMinFF5BV//jkyTXL1cBf/Dc/ZFisGS7XSLdj3H3EVD8knUy8+l7gi48mHv5C+c7lKetHa57nu0x6ByTx+Zef8+5bE3SOc7tMr9tULE8DZ3cCTz6tLg9eKncrrD54yvZR4PazV+nHQv7iCdvbkUdPHtOfKsMiQGj6DibUOpLrhopPSMf+lD/6N3+GPvoF1/0XvPqnd3n85ClPtxPdmY9vlOI5CRZ5+93vcHraeWzQDaa5xZCIhIk0BJ48X1NLYDjpOLs7ss0jqXF2waeKVEHMlXBM1P8tQGgECBQkEkSR6PtQiqdoHSl1xzavMVFiiMSgDJ2wXN3ji8+ec3IunK1a/mMtg7WKSnTSeei5vd3RDZHl4pxiz10alUqQLU+/eszb77zHRfcaXz39ksdPPiN/orzzp+eMZnRpSYowjlsmKjGdMuWrtvcZahOiAfd/dwWnkFzqsKNjQc9oO+g6UopukyCFqiOmC28w2Tz57xhVpWIG6/Xm1z7X3zaYAOcXKNESJIVqVOu9yWHXqPWkBhBWGwlSWtAPRBlwBeCKkohMFG6cYWYDKpVoJ6zkktGuyBiJu0RLdBY4kZfprAMVrkJhx8TWrtnylECk2h16O2Epn3JjjxnlmmoTKhuKbdjVLYVMNS/CFotXmfJzSr5iETtMo+u2aqWqM106c21cz6kMjcAQKTeewIS5ABHzUdHeNSMViP0CHTNlW4lJnDFXD+PqTU547/fumKiPDXrTzouiUJvvgPjD5j5JTVWv2oE5aGCTtY4WIJ7ozUMpc1chDG4CKeLAvpZ2jn0hQPvYQNq9TMW3x2/lIYcGkrTC3LWWw947AxoADtAYnZ6q+eJzdpcvJGnJqp/UgdD9542Jqubfi2mg63s0bagxQpdACpt1S3bxhpRYRixQaA2QJnkXqKR2Qm/wBqpFJBgdlWiwWGTOF8p0LWj1JpnENvto0iQQxAt5/OEo1dlyQZIXVFr3PlSg5ClSgroGech0QRGJoJk8KXHoMBJqQmgJONv2hwdrQEeHVMP64sz8qu1hjjABe63+dm0lwNYgm8fPyVoDMDbGoz/PAaBO7l9kHVWh1InY+dv3+GTM1ZKJQhW0AAREFWqlBpeCiMGZibTpmarapsBg6AN1UzHzJpI1JmJptzriUlTVMrUEogViNMTHNAlEBgK5FXRdjagqSqBYRxFFLDYm3eRmvhYodemJTRAsNyY2Bd9mzYtUAkkhVQFRahSMSNWOuOjY1UyUni5F0qJDk7C6OCH2HViTjfRu+qHJtw9uR49PY7bNQXTGPn4JRDn6fM8LnPV15gbTHpDy506/Bq54rD/EbHnB4+ObfxwDR78SRHoBsPxn/Lx/Y/99adM+/08AKhOftPv400/58QcfkdMJy4t7DIsVw/KMxfLUE2/U/QvM5Xxdm8RHhS12aEnuFdTWlDNivYANoXgyPBXq9oqiE4QVQXwykzqz2J2VKTG1eOsAnxHhaEJgljCd9cVneaX9ZZF54qcB7C3UmLw4STSv3H2fSJh5CX62GVCnbfdzowgceIqtqd3IBsfySNImOmbpOhFvhKmZS/m1htlscj4D43vA/uh+llIp1Bd6w/N0lOHTULmWvbSeNqm8UQubOjHayKSZbLnJV1WEQorJp9hFPecSJzqZQaVSyDy7+YqQn7A6PyV2C9QgjxPUFV2XWKSeIXYsU8+QeoaUSFGI0f0nus4l+CQMmFaGPpOnHTl33K6fk+INFxd3oVTG3Ybd9paoThBwv8J52kT2zYDDI3BooDggpfsGxgu+Jt9s3Pb/1fGvMfbE49gTC3msmGZud1u2+ZITCyRhT3wTDDH3AZkbTE2EgWB7x8D99ZobcsdSgftv7S/PUVNhJmK0Amem1hjzGt6f9uj357PZATTckzM42GW1xpS16av9fUGaF5D7vCFzmnqYy5+9PD0OcfSMHU9aegPqhQZWAyz3TaGijaTnMckbTEYZlTwZJasDOur5qQqEGKjqQP5Msdf2t6kaUw18/mTkSkfOl6eEb2PPb/1Rp8zuSWFjhT4mpjAiVolDoIsB64RcYQru0bXQwGZSbwivd6QU6Tu3FFitTrm8POf83l3O79xneXmH4eSUlCLUzM2z58wTO13vpL1cBTHPl08JFMtMR/npbltYnSRq0eYvxJ5oWrV43SPiEmvBG+BOALSGFxhaCrW47KZWgeK6MvO6DXPDwk+OVX9vppUYAnXymFPVp44DtHP7Hrwjk1LExHgmgftmDDGgUZhKoZfkRDvxnCmEgOVKFbBWowa8oWEVPN8u1AqluFSxtAYOuA8IElErLdL4sxyC5ypqgYw5C3+OHGqoBMaqbDPcbgrDpsPCDguKSaIbBA1wOxrPNxm3U/DZixiaRx0wRHhlFfnuZeRBH3j2uLBuzShrfl5TNm+MmZKiQXQvvpAiqxDZbkZCiKSkVAGq7QmSaeg8NoXmhSK+n9TiuVqtZV+XzI03AaRJfsYYvOkohubC6vIui5Mlt8+fUccNZZ04u3POYlggydh89ZCgrlahs5cK0MXAH/3J63znD95geXKGyoLVIhI6iIsJ63ds+nPuPniZzfUVclwCtWCvNjf0Z1JI8xNFfHq1/R21eUrEmTDQwlC1/cYIjXgwN8zz/6eR4P//Q8UnDAVXBSlqxFS499KWl176lNvNY54+POXq2RllN2AhEkLXCLeQy0SITlKp5g2Ir5485uHTh/zNj/+Oe3fv8t7b7/DW62/zve8+wGpisylc3+64Wq+52W7ZTDvW2w3bzcjOtsTkEmcpdj69W3dst8+o4xWLsIFyTSkTFYEkDMtAH4Vnz4SyTaQQODs9I9oJbiUlZIxaM7Vak7S0tvdU+iHSLzqmyXh+dc3d8zPMIgGPa7EbGKfJm6mh2dFnXyBBYvNPbjirKZXIq99/hbM3I7pdk+sjNuvP2O2eMK6v2VxPlFLpTzs++uunTE8T3/9T4a23OnYn59x9cIfPHz6mjpE+ZmqpSPIaJ1BIXc9Lr3U8/myLc6uNjz9+yOJnsJXMmAufffUQXShPbhTpjZdfX3BTvmS17DFbemO+uiRgrRVj4O23fp+7Zwt+/uE/cfaG+6vf6HMWC5jM9/ap5STDYsW7v/sKyOQkvvGKWgsWXFlIrbIdE0+uPO186fWBqT4n1die0Vk2zp+/KBWxgovXRZ8YjdVxZ5kNNiKBSJdOCbIk1yvG9Y5x3Pq+A6QAy2FBHy948vxDXnuzZ5FgfbsDU2JTYqrmhB2JyvPbNWmAlAbC4gQs0sXAyXli+WpPXQyUa+VB97usT37CR//wBe/372PD4B5105acYblc0qc75HxLlQk1AeuhJsQ6xJw4IEEJEYImutIRU0ZSR5Seoj79pJapOpAMEoHY1pnVAlKp08j2avy1z/W3DSbAS5SWeAcHpuvkEkhiE1F6RNwbwzfyQGJAZYexbQ/0QOSUSqHIQ8Q6knQomQ1fUPkririo3ZLX6OWUaOdEWSAWuR+W3sUHIguSXLLRzwlyF5VC5gmjfUWwRQPbMyYjhB1a1qh6MKx2g+rooLJucZ+agWibJnFlkJWQfYMuZlgXWZyfczXdkmrZs9kMoBNCSJSxYFmhVDQ7qKKlDXvOLDhHOHwq6ohBr1VbIQhdNXQ7wSjEMsspsDckM5W9Lq/QpNLE9qa687TSzLqr2hpU7T2EuXnWNnhPMjm8F933rb49fosPa2a+EmIrvA3RmVHgbNhjY+UZ4PS1Uh31VoFZ/ssMldiSbHN95yNgwFlKPckm6AIn0ZPwGp09p9mTwAoUMSyYT++FiWxdG32X9jqFSYRoAdVEtQBSiFIaqFGZCqy3LoWHGH3EtXprJUtwyQIUs4JS3FMjd1QCfV+YckBSJGGEWJi0UneJfgF9cNZLTK6VW5q8RbAZ5xX6PvkEVBYgQPKEn9IaM0MzEt24fmtQoLrx7Xw9jcNz7l2iAhbQsRBt2AMpotkneKYKFpkUUJ9ezBnXOtfqDSUz3I/FSGZMWijVARQMKLXd9+bFZV6MVZM26WhYZyCNidsaVJg529cKmJG8K93YMM5A7GJAxQubXjIilVIqeUwuScgCLdkH4FL1KSkNEIVojdXR1mfNENXlsaq59J3PfEhTCMtIcF3yGkFJXN4LXD+JWAjElNhWZdl1LO9dNF+51liaJXZshq+UGRA79M1nGT1pJWsL6vPP2wGoonn7HZO9DWkA+L4r4M3O+RwyN7HaKe3A/tZvOCizjypyvL45sKK/dsyMeL8oL0CTHD0d+8+FuQHxIsiL/OadyY7fUzthVfjq8WP+4YOfU+PA5Z1XSKsLhsWCYTghph7MLZmdCe/MrBngxQp0PVYTXQyk6LIOfYxuQCuB2KYO1So2bph2t3ByhgQhNgKAGlBag2nGYq1NUjSwb163c4F8uM5wPIW0l+2a1yQcYk3rWx1fpWrG3Io/hlEPN+joNrYmkzbQ2I5kk+pRY1Srg7OhSWvNv+NTVjPQMb9LB6SKug9nDNE/xvjCc7Jv0racRGcHz9bEyrUylUzVSlb3XCoUqlSqeNFUzeXxkrjBeCeRXoaWLDXCkDnbbqxbnj/5Jy77HbG79Eb4VOhqJCHtv0Ai0IfAkBJ919M1FltIgkRnTMaQkJjokk8XbDfiBsi315ydXWJmbNc3bV1VZ1m2dR3CiyDvfKdfbHb/Mrj7L02C6p9zfBt7IuUo9qQ8sbPKlAubPHK7nbhz1jueKLhhegOQnYC0b78gEvb+aUd/BC8swl+6nkeTXsfkC7MmdcnhGhjOFsYlbvav/bXLOO/TNu/XjZgT7Oiat4kJv7Aea+Ym9/691FlRgkMsbXHFZcFlL00aWkNfmKU+7RB7j2ouqz7FoVUp2aXyapknmBwYrtWbTqUoBcVi4yRFsDRPVEnzXvLYuRnh54+fIRdK7PpvY8834IghMk1KqS5HddZHisFW3eQc5hCgTpJSiCFRTFhdLLlz7x7n9+8yXN5heeeCk5Nz5OQltFv69a8K0y1PPv+Y9dWz9vz6YipafFqu+aUmlLMo3FYYVVCrlKkybjMSgS6QoiCx3dUm6R8AzdWVVAKUrIQY0erEO6tNvcJcAg9pjSp8TVTXpdqv5VqrT8TgHieiYS9BbmhrcrVcpTqZBDFkiDzqlXcktElox1qSk/c9lyhew5g0Il605nnacnatODfH64saBSqtAeHLXffaOTSZcj/EtSgIoq12EnIwOhoRDJcK305wdZXpgjBtMt1FIqaB1BvXY2azzTzZFIJ4Az+lSBdc2OluD++eR949j6wC1GK83ilfjA0HattFLkoxYZkCNVd2RYnRCNnJjjH6dPe+Wd/iV4qhNdkrQvJr3baqGEO79j7nZaKIhBZ7/fdzKaSA7znq9SxlB1MlopydXnB2ecbF8pSTixO6oPzir3/kcup7kp3vlf/2T97lT/6rf8fq7rvQreilQ7olXbeg61fUTrjIN7z29tt89rOfoEqTSGdfnrlflr+/tsrYi1Lst1WP+2aQWwwKcpiyZbZ/wOsxB+IO07ff1EPM0FGYto0UUQevlwUgcHJqnJ1G4uaEq4eBn33yhHURUncBMlAtoKUyTTvK5BMV7gMbGSfj0y8f8cWXDzk5+TveePUBv/Od93nj5Xe4c3HBerNitytcr2/56tlzvnj+nGyBoiPT7Q6jNnnKHePuOcItSW4Yp1vUMhI7uiEw9MJuC9MuUatwcbZkCALqNf047hi3O4rU5lVYsSZnLWKkrmfoBrSv1EXH9nZLFwf6tAA83+pTIpeJSQs0f2lVdYKKtDJLDSKc3F3xnT+4g8hEiIqWynb3lN1mx26tfP6zCpxyej/x/IvCB3/7BPJLvHJ/IlK5c+9lNlXZra/oT/y+UAohdb6OQ+Dug57T8x3bm4qEnvrKHe698z6f/s0/cu9Ox/3vnxLvfcXz25Hb68TPfvGYx9tCyd2+uZRLZKoBq4HYnfLd978P+XOWlxvGfIdSdlzc6xmfrdmNA0WjT41p4K3feZPVaXXbmDpSx0doxXFDEopxu5242UwgkfuvCabZdTUMQg2EThAiKQhB3IPJA1FkmkAkkggE88a9iK+t1J+ACaoj65sbMiMJoRMjSmK1uGS8XUB/y52zFaqFaZpc2cjcjztJRAOYJNabp4QEKUSsOyVaIsVIiPDK773JZx/fUne3LLoFf/zWn3Jn+wmLYJAr0zhRSyGlBUigTIEgRrARI6Dm1g0dyaOP+M4hnTmxQTuSCXmOvWGeCqx7YuYszKqmoEYKws3NNXn769vb3zaYgH10F5AkpCDUXIkSPRFpwJ44Xb6lxUsilcwO57avSHLOZFsqmU561ApBelQmRn6CcYJxTpYr1nyKyjlXepdzeYuRwo0+58puyDFT9IpN+BnFPmKjz7gJH5Dlmt4SXViQDdS8E2MlozZitmKIr7GQO6zLzxjrFZRClOiSLcFHsGPxgoxq1NETnLFsvXlUDamC5hawYqBLPVMt2A4sF2LFE7Ny2IDVWpE3N+sCTV4L10beZ/b+n6nt5b5gLnZo52i/q3JQnpCW9M3ZFK35hO3Ph0Idj5KsgINfzQ/K92L7zxbT3x6/BYe15MkOEgfgzLBAaU2nJiHyAvDyIqNUaHJFNoMo2lj7A9IVAAAgAElEQVRDqREvG2NfDWxCpBLTwPl5csk8jLEWiBE6sFow6dpk7Yhq8FNH9+PACiKFZD1dyy6d2al7OT0NW6YCVgM9xaedzFl1ongxYXhhEtVN9jSCFlIyikaQ2pLpwK5tgprwosXcW0gRignUplecJ3TjkgY6GaFtqoobhaY+tgRFIRo6VtK2JcVVIQuS/D44hRjQADHtrz1TIRSwNDZPkIjufKTaLDiQocbMoq17YCS2BtCRd4E0OcA6N7MgtLHlYuxZbEUDkxaCmuutW2BUqNllE8QOU481V6KClYKkQC2VXBJqE110Qa8Q3UOKGtBdbBroiUp2ZqFl1BLQYZawmul7SGEHJZGLYiG5J1cFS4Uq0/5nY8RZtrhxdtYAER4+nShRCJ0xJIEkxKHn7oOXsGYI2dCcgyTC3s2bF8DyGTQ5eqDaHTqgTDNxx5rE3cFD6yAfxMz0bdWifz0cXqatcWN+6cP7+cYeR8z2eR3+Jpb/caP76Iu/BPYe4tIMBLYJnheQzvm1Dz6Oxsw+bfvhPPJrytXthn/86DNyd4eLO6/Qn1wSl2d0nTPoAq7nLsFBmKAtn9GCaXaQVxVw2Y+42NCPC/LQEeMM4ipWO6omppLR9XPqvXuInPq1CsGfL/Nn5sCy9N/dM/DFtZslOOjiuIe4D5w0sKcJw8xydPMaFXCml/hU6OE6H92nJO4PZ0dAc8MKJDqAa63RFVp32qcR/QrPjR9f74qE4E1rMURLi5UwFSPG6GBQK+5V1RlxAmaVFCNRmgTZ/HzqEeqiut8diirVjGzKqJWpTGzzxGiZIgWLLsNSyVj0BrtWZ2lriFgwQu/3d1d8In2UzGb3BSfrv+fiJND1vU+al0CnHUmEqNIa3o2VHIQgrjmeQiBYavIbwWX+UkIaYaEzo88jeT0y5kwKynbziMjOc15LGC6VON9vcNblTDYSN8yc24qHhsjXnjP7vxFPvukyVd/Gnq/Fnq2Cdph1ZB253m4Y6xkn0oC3FiAk4Oe2w9/jCgnOKA3m623fvDZp3khCRTzXU8A8F9rnIMyXqOV5YR9wDlNImEsA2gEgbV0Mv2DW4oov+lZ+NBmpfaRqJzXby+minnsVsf29slLb/Wt3TGYpc7/Bai5F7Ft32Pt3WHslm+9sI+TNkp1afZKpZKWMhbqr1Gn2AYU6efvLAs0DRJtsSgBtjjKlYjWQp8gX18bni6/oLjvSt7HnG3GcrgZ2oXq9oIXV0FGqKzZMgk/fdx2rvqNfLDm7OOf1szO6k3NWJ2f0Jyu61YKQOogJCadMLLAqlPVTnj38jNsvP+PRlx9jU/E6xJT1CISOkAJWSnuGAoMobtlY2FZ/ImUSpp2S2h4v5vsfUtGgDs4FI9UmvhDFPV692PAGkoHm1vD1rb6B2rr3ddY6g8BOKvF4YajWJr/vXSmPq+aEyGAtziihCrdZuAVOcKY4Epiqe7F2IaG1qa2AFzRqSOd1ogiErjVezBvAUhWtFW1ek2owm1ErDn5a8+dRWiOmxey5WvZ/tI/Bp5tuJ2F8UhmeFy7XmeHMuLoaeXKl3G7haqOshsQquYz2IMbdReTBQnhlFVi2Bl6pxiuxwboaMPEJqdoaayLKlKFWlzOMoTT/IV9/2jp9Erwu01KJnRBSIvZdk/5SaqlOKNx777aaBDtIoLbHvoveoB5z5fT8lK5LxNgjTKSTFS+9+jplu6YP50g2nv7sM6JBms3sU+TP//Q9/vv/4b/j7pu/Q+rPCSJ0oSPEFalbYN05JsqgT3nltQdIilh10HWOtXVuNInH3/aXNhL7UYwRI6nvTybsffmaJguq7vGCtWZC2+jV/vlx6rfxuHkWePY8Mo5eC9dcCbZEJIIMdHpB0ktK6cnliihXhLJB9AnD8hzjhI1GWneBeW559jGKoQcTrm8nfvzhL/jJRz/n3sVdvvvOO3znrfe5c37JcnFG3yW2U+Hp7soVaZIyjZlxvKbkW4Leski31O01OWdyCMQ+sFz4WlxvI9OUSKHnZLlkuk2YTYS0oGjl5PSE7bRjHCfAm6e1urLJouvou0AVyALL856SK2Y7kgyQ3ectRfehUy0u24bvyT4cIb7/x8g733+Vi0sgTtA5GXYcd+zyRK3n/OAPfsCD8x/y8Rc/4dmbN1ymB5wtz/jF3/yCd997B7FHPHv4jPBZx9lLESieX7Q8yMRYnA48eGPFR/84kobI6sEJ7/37tzm/JwTbUeSSXZzg9EuGs1tu7JanP+2pxZw4TMV0woqSNfDgwTvcv3yJzcO/xaQjDonKROoVQkKtdyJANpZnZ3znuy87biMJq7c+xYMR6Wl0O57dVMZt5OR8YHm+Rah0Ifn0tTjJOxHpwqL9nkvTqcFmGokhEFvMrQIpVvo4sOruYVowy1w9fYxg7doEQoqcnN7j4aPnnF0YJ8PA7eY5VYQ+WBus6IjaE+kcOtvd0p0lr6cx0uAUHCWzPFsxXMBu0VE2D+Gm49/+/huM3Tn/x4c/obtzQuo66IX1uCPFQD/cR3OhVJ/qruZxS6z3ySWAPiBdIpSOjkRR36tSjAe5erJjV8Tme9ambMuG9dMrunT+a5/rbxtMAA24E3BGlyvCOIAAbmgaJueKmKHBnZYCA2aTd0/JKNsmjwfV0zICPdIus+/rgjIyySNUrvDx7JEdz9mGGzIbjC3X8jEbbimS2conGJVkFyC++Ku6jFStFa0FiSNiPQtZQbcip551ntrGNFGqJ/9WjTIaURvjJwPFMNuxKF6QleIbtVbD1pWSt8RMm06awRL2sjNwCDgSBE2GBW9oyeTASjCQ6Kyi1HeM2+LJmx1qVtFW9B1hlAJ7TWEfs2auww7gUvUkcSYAHio295TyZv/B6Pabjn/+qzjmRKw9MzPwIljb5GZwRPaguhePqRUojT0kzQOE1pygTXaY7tfrDLo7CagjpsTZ2ZK+u4a+Z5zMp+qoSF+oO0F0iT/lQg2BU1EuU+BmbYyyaIAoVFEKgWiJQPbXtwDir69qYBHVnlwhSUZmdoG5XJuqy5HME4KOZUQ6MSatPk4eHdDRGqkRhjiPTTfjx/kyZZ/kCVqJJJfKk9DY9tKKKjdsdWDZ/GNWpIoDyKJQQnsvhvSGWUIkzdoR2HZHWPQ+DVVdv7WUgiFUrZTDaILHGnEJFhd/CgwCyaqzES26PEN041rUi5aq5oUh4nHJnIFbcsEkkgvuwzBNe7CnZpcZjGowFqTMhWTyhCcakYhV11tGEsIIeQlsMQ0kCeQ6Mqk3kULMHt8GB3d1XZE4uqawChI6XDJCsdBkFFsBMYPm1Qo5B1gFJAnaiU+IDImL+5ftUjUwjTn+NWkyk0MDvUmG/EoG7h58a0j4cSC00BiE7gZj889obGvH9tdw/6zZAbiaz/Uvgfn7dZmp/xzIe7ypzDJrv+pnXzzPr5Zp8h/ksMcdfU1MG7tSUOnYbEf+4aOHrMuSswevsTy/S7c8Iw4ruqh0tLulraSVo0kfq1jNmBVEZznJji4FtI9MAaS6nFWQmdWt1O0Gxlum7YZ6ekGXBodnG2BoTboRadNB7c3v2fUxNAC0scznyWQUadM8LovaruceGPV4HqwBCS0xsPnacPR8HCie+2tnx5+3L74Iwh+ApMNN4NAQalB7aI2xUorLuIigtbgh/RH7XYM0Dwnfq2ZjbDPds3Ux9rrjNOnPqUxUlGKFXCeyZqZxB1aptaDank1zcDrFwLDofVq1gUfVMpWRJ5//I4v6lBSXBIRYjaiR0KYXI0ISj2cpROKRvJhY6xO2vSOlSDd0xBgp1cFgrQVsYiobSi2Muw1mrUV4NB2zn8J48WFoIPcM4f7quOHfn+/Ui3D8v8Tj29jjsSccxR7w2DNNyqbs2GxHLpY9XWzrtcUD35NaNnckNweztOasH9+U5OXgZzQ3YYwGKuNrfx6MN6yxjf0a7Pe+eR+mgdAvxJ627huIPQNAL9y6+cfnRtnhSy/e4/beMfa+ToJQMZ/iaO/BtNVg6qxo5gkePPbo3OSWA3guuNR5yV6T1aqUqVByZcruZ1CruvdSm5KUJu+VUtd853C5aBU2OfHTLz9js9hyGlffxp5vyNENAznvOOsHlI5+NXC6WBKHJavTJcPZGYvTC7qzU4ZhiYSExNlb1vPZnCu6zVCUafqK7e2a7fMbrp885OrqOevthhBqm+x3kkXXR0oxul4IEaQUEFiFBKLc0ci2wmbM9ALrXUHVcw6tEFJwgl8UMj4VQApOllXHNAyfRjJ1jx5VV7CopT35czNp33g9PB/+6Io3lqrvu4HQ5FcAgmultilingual_cliphxP7UggEVUoRHgnc7SKdBSKKhOgestUBC3W9SaYQKanjTB1oqcVX3pQzIpFaGwGxgX6qTUmCFkYsOC0gOFkyADsxOsSfL7xJHVviXswIKkzFY0iYKrcCt9tC/6zydK08G13wZhcSq0Uk5omTELjoK2e9cLEQFo2QWKqRS2WlgYUpG3WykGJ03UwWUrJam1Kz1lBqXlktv9wD5I0IMMdbv1YVzYXj5niIoRG8vaUwP/vBfJJcK3SdsFwmumgs+8TqbMVus+bOnTPOzk54tlljQ+SLn36Ibbb0KXLeR1558wF/+R9+yJ//13/Bxcu/S6mZKIZIT4wnhOEU7U6BLcP4EJtuuXdnycnqhKfb576WdCb6HZLQfdg333h0Dvrm9yZr9b25YWGHhhR4t9BRPV8D8gIW9k09Pv6kZzM6WS1Cs/boSXJKKneo2xN2uWO3KxQTYhdJOVE2mefPHvGH7wkvvx358ecbvnjeURhAFphB1clVjST6RKC4tN6T65GnP/oxf/PTD7h7fsZbr7/Bmy+/xrtvnLL56IY8KqVOPl1Zdmje0sst3XTLZtyhCBYT/RDoI2w2MI09SqCLS3brHlHHfre7NcVGSjXGacRmr7cgdEOPFtjsMiY+nefaNIJSm2dP9qijsRFnnSAckzRS/UwYFSQlhtOe737/HjEpEitmQplcfaqXB/y7/+J/5M37f87f/e//kcXF6zyREc1rtvop7//xd3n1re9y563AGz9I/O2P/p7t7ZbVefGmNd6wTygWKg9e73j41Ugaev7w994jiPLy914nb7dMu2umpz8jypbN9JxtgaLiDaVcWk0jHqdZ8p13f0AyZdp+hbFAZCAmlzOvOqEqlJpRjfz+H77P2cWKvl8xpAHZPaLkG0wSwoBpxKzjaj0yTnD/wUDgiiiQIqQgWJylNwNRegK5TWz3lGnNOBW65SycEUgmRCJ9XNLHC2rdUsrEs6uHjsWI17Zdn1gNK37y8EvOL3pElZJHujBjKHM8UM/iLLDZPOfu+SVeFe48TgSwuqVbLDlZVW52EfoFf/VXf88fvPEaF9+5z1u/9wpbjO1UqSqkMNB1QgxnBK4xuUZCwYiOWErncpIAQUl9R6lGskRU97WLwaUZkXTIoeY82EBQtpsbttcTy+Xi1z7X3zaYjg4hYEUpE3TSgGjxBEDIWJ08aBFwG/jUipSCyRrlEcgW53AoSAa2GGuinWBMRNl6V51TKiu2PAJGnkokU1BVRq7YhscETshqFLnFmyWleXwYxpait+R6BbE468V27PiQPCbW208Q2aIayGVL2FV0o9gGwtgaReIPNuDFUwDUtV/Vu2QwQhrV9YoDEGeWXmv6GPvxTMMBZwsGfaBUTx5t1KaIYUgnaG6AdT5wJp0U2Rj/bcIquLCnJ3stqTgmbM6eTcfqT/6+aMAPDTRqH+dK8tcUFN8evz2HmWtoSwM3ZS84PxeM1ppMDuwdpFCaeat5GbCXhGmTSw4YeHBteFzDAlpCG4QQExfnF/SLR+ymQOoiORdEA1rcc03Ei4MqzrzaClgpEKBTZyC444CioRDUGRAZA3NfEjM3OxYSFtaujyoQZMJnaZIz1gwkOGO+WvUppWQ+BSURQehFGMitrS2YVUL2dd6FJtcU/D0W9S5VlEBM3pwSVbJODYTxxCUlIEDNGauRYC7bRwMcJKd2KXV+6NCi/ulkqEWqBDfyBjR4o6xqQX1I2WNG9XOqGFMJjBU0VhaSKZMbmhIjpVobz1WCOjtp68OlJK1YmUCEUCtVJ3KNWCmE4pNMCSXnSuoaWGTB449VNBoZwdQ9mQQjRbDcCiHdoEEgZPe9qkKt7s9VtVAJhFTRrWBhS6knWGwNJRVS33F61nH1/BYjgQQsVCQqMSgWO5qDMaHvsJSQFFmerji5PPHYpoe4JfP/G8DlTaV5/LP9zIyNHyPts17DHEj30pJ87ev7J7EF9iP5scOJmfXEkbkc1K+hk9/A4xjk5Wvg7K8Cek1f+PTYD+VY4uhwnq8DvkenOvr/0WVu7Q0vOZTIzbbwk59/wW094fzll+lO7tAvT+mWC0Lf04vSibXJIveYUPOY6aoyxVmW5kCu4azlHAUNRrCC1NIkrUqTiqnkWtG6w26vmZb36LslcQ8KzAaivqasxecYnU2uIvsBjRnctca+DzRjUTzW76cR2s8dmjcz6z++oFvvbM7D1XthsON4qm+W0WpV+d7+yVrOYPPeYd7Mah5LtfoE+34yCrBa3QdJnQUX5skoPN+ozUcQ8ymnmFILk9Ebaa2pXrTSFK9d5k4qGgpVCtkKxQpoccDGFKvFJy1F6PuOxbInJKE2dLbqyPXtF2y/+hEnp5UUO0IVokK04Ex0CXQx0cVEH7v279j2UW1TXEYMwqLvGRYdsXNvrRA7sB5bLZnGgVpHdttryjQ5603iXg8/zF5cX1vlh+nJBsD8hpCxB99/bZPlX9Dxbez55dijFdWCWmFTMpvdhnHqGDrZM9Wl5UHzXzQ/1ns5yz2Kd5RD2mFlti3uUEQfXxRpM7phlvqbJ35fvA0e247RPtu/xnx+mYunX77wQCOImMv7zW9ZhP2E5/4VVJrxuHvG7JtXwgHYxKe/RVr+Z+AyUg1Qr/iEZlVvhpt7XtZse5k8reaT2Ob5bFX3f5AgxNSRuh4hQnHAbCyBz59lPlp/ip3Eb2PPN+i4fOkB5y8HFosF3WLJsOqRxQrpOpbnd0gnZ349SsbKjt16S96N1GnyJsM0kscNeTMyrnfsdmtszGStjOq+KB4HDG0S1hj0KRKjN0XPV4lBZvZqpagyFqOryukyMRWlFmU7VXZZkVRIKSBdcLIcPtFSohGlPc/VfDrKHM1XU5eZq37/q3quIY2wYo2suifP7tdLE54zZ3FHE0Q8J0gYvUiTOpdGeA387LrwIAVIgRgrFYPYpueCT6tUrXS9EuvI1BpfIoGp1OatBg0KcYn2Wint/VXEhXZbI0IcAUZMGPB4m8RaJezBSFrTzHB/tYw5wx2j7iqyrmysYzSX0PvwasuDFLjXCX0XOesil8vI2QAyGUWNnCFXB2rPRHieFRXIjSzke4C02rtCw25E2G80+8nM1vgNMdL33pDbrXeg1Rtsgk8mmrYmU5uKN/PJ+ABFlZSg6xOIsVqtWC6W9ItEbN44Z6sT8jZzdn5Ovr3i87//ERf3Lvnh+2/xuz/8Ht/7ox+wujgndefUceOEhnROGC6Q7hyoWHlGmr6ili3UHcvOuHN5yZPHT/fSi9AmjGwmB9q+LnNiQvR8V8Sl6JnrKjgaP2s4hXsNz1uNNFKD6m8IYt+AYzdGzLQR4p2QzmZFnS7I4yXbDWj0mtz3np6uK0xW+OTna37+wc/5y3//Mj/8fsdL25EnN5VnzzbcXAeQAUmDTySZS+/afjIWci189uQZnzx6zLL7O166uECGU8wCJgW1kaoTXZw4jSO7m1tKrZCEroNFH8hZuL3qmLaBEBKnJ2f04YQyKlMe2Y1bVFyiRoKTfH0NBGISut4bimPO9JKIXaRLEcbZwzUTuhYEFHSCWipBAin5M7J3JjHl5XfucP+VjhRwFEpGqmUmAkO6w8tn75E//b84mX7BOin37vR88uWXnP7+Cd/9s0tEPiCefsAbq48JdzKfPS5ODIjBJ42lEELE6Dg9jbz59iWvvP57vPfmvTb5IixOElP5jFw/YtytWa+F3U4cS67GNFaPP51Rpef8zn3eevU9bPwp2+kRGl53Ep+6zUCuiYrjwZf3X+HNd77DYujo+5X74+VbanaFMW/SeCP9ZlNQjLP7AcTVJbouYWJNjrdDYk9M/lrW/EK3twWTStdBkFnO1H0dl8M5Ia7I4xPWmxtuNteouPpZCsrlokfqOevpA15ZXjDlHVQjRf/7JQmEJjcsiToZt+NT7oULz5nVMKsgUOqGEO9xchrRx4E6nfLBh1fs1srbyxvupndJy3NEXMI0iFDqhu22shjmJpMBXsPHBCEkqlZMIHUC00DSFbHeoFXR6LhgDF3bO2bilkuIqWXyzYYudsQ+/trn+l99g8mJA55gVCpdSdRcUIPJhFXT3FU7IdstIj1ip6jsCGiL/bEt6gKs23nn8bJKsRGTjqITSXqCeMdPuXIQgTUdL7Fl4lqeUOQTEkvAmOTGf9e2bPURXVxR7JZSbxnzNWj24WD1ZCRP6yZxsCNERWohjAobqLdzc8kHEJIIllz/N1ScRZtsj7r7RIShwYO7VE/WmIsTYz8uKc1Y0oqz+mL1QkVzhQKh+iZYR3Mdzza+rtkZN3OzSKtvsrPGscBe3mresPday0ZjFbE398bJwF4QtcRwLvCkCvsvfnv8Vh+OQ+rcgqANjcJRgb7XLz4CDGgMXZuTaanMWsVHMCMisbWAdM9s9ZcqID1n5ycMfcJCoF8plneQC6VEkMm9ATmApEWNrEInApKpDgEiFtyfB9/o61Gdak0GMISJaEInmWjeHLJgGF1bx00iJQViyEhxHQcLHWNxUKGUSmjyBAWDZKy3BiWRTo2x7gglkkqTV5Ie08xyiCSKNwg0ECS5TMnkRXrZTkBPtQ5CYFAlZNjtquvNDkLdFZ9SjJFiQmrsiFIro2ZqDlSJaBBqzvQSmDQ3oNWah5vft2rZ5T8VpnaNZrahSTO6DcZUMiAEC5Ra/Dy5tIlFN3/V3JIxWkF4BCzvqq+yqRpCR2QCS+QSKCFBKGitBPUiTkOlSnJ5Qs1US0jIVJ2wEKlx4NU3K5/8TQVLqFTXFsfNK8uYGGuhqMv5eKPREHG2WogBerBO0agQAt2y5/4r9+gXg8vmzE2eGURs/57Bn1adHUDwBo7sIa9DN7X9ew6OR82h/VPyNXBGjs7XQJk9jDZ7SbRn8Uil6Bt5aGNOCzKjl63R8cLDC3A0Afmbjxc10l/8+V/2/GhseznIhhjigKMGnl6P/PTjh2xt4OSuA7yLk0uGxYKYAiElhOrgAvP+58z20M4bZqnHktE6oXUiUIkxuMecGNFcVrNOO/KUGbqeqZ8Yp4Jsbyl5TV2s6GLPbETrHkC2Z9qK4PJHKbg3hvk1bSofrcRuMp0IQmga9IaJS9qF+Tp7991Xquph+skUtXnqydemfz/uwQqfNvCJx71cFuwbQq7172tZVQmxTfPNyHAb3BQVQpQm0yeUnGciqk9wBWmeTQ5oaW2Nd1NKHQH3BaEB2RUnPVSrbmqRK5qqS86Iy+WpOIzkBr6Fqm5snboFw5Bc01vAnZeUyo7HX/wjbD6HE5dZwJzV24RfSDE2GT//t9hBRtjazhalefVFIaVATN5EDCFh2qNaGLolt5sNN9dPvCkXOjdgbiDvfkqEQ043Tw/QWMw2/2d69AwcAcDtCTjs7zTm7uFnv/75N/X4Nvb8itiTM6Ub6PJEMWMz7dhOZ6wWkGJol8jao9+awDJvR8EbEyJNimju2BxdypZb+Lea92DbJ2WP7zkZz3BwfPZlM7M9SW4+p5o2LxV/gbkBpNXPFDzw7N+Hqrbt84jt3vbtefNW0RcagyK4mfUR8WMfI22ufw7XIqtPzx8mrEIj3TWlCnXJc53USTXVKLnipdVRg6l6kEgxElOHBJftqQpaI+sc+clXX/C0XrOyu8i3secbc5y//SYEn4qt1SjmgFLZFrbbLVigbNdMuxHTTN6MlGmiTJkyTVh2X7U+RGIIpJTQtGCcJ4YodJ1LiuQqzEr9qdUMFoyX7yyItTLm4lJqAjFXFgUmM8Zo9J2Ra2GqyqRGnoxpV1qcCfv8IqUmmRYCMh0AXbXqSlrSNvWGN6jqXoI/HGUnzqKt3qz2YsJzGrxxE0UYojeXFjG4z1EQHm6NR7fG6wslLQsDgkilC+bYi3qOAwErk+c9eLzWahASqO/7tVRKdhJcaTmNzrl2a1jMJMs2wLWPC3H/LAhVXCUiI6DVn1sTiirZtFkvQOiEfki8fCn8SR64WWe6GDhNwkUnXAYjFqVWn2Ar6tNOhvLdlPgsV8bqSj+SWo2inlOJeD6oerTHzIQfYz+5qBTyqHsZdSdl4jWd1Zaj4URn9enMJEJtxB9CcOWeAqkvqO7YTnBxzye+189vWQwrbLpiaZX/9i/+A7/zvd/n4vyc2A+wuoMN51h/Sg0JGRbEfoFKhrymbp/AdIWGLVILqW4JZO7dP+fDn/q1sH1t6/Fh9vGkfUXxiRBDQds+3zymg4E6GLZvJJk1AjiHc86ygN/ko+6nBf0ZGDfKhz+u5H7L3dORZRdZnSUnrYlPznaxR0dls6s8v9rxP/+vX/KX9R5/8MMF8aRy7+XAbmM8e7Lh+mrHdjcQuhOX44+p1SitER1dmi+b8vmTK4RrwtDT94lgE0OYWIYJHW8YbaTEQOwCy2UkROPmOpB3A2ScDFsKw8IgGnnMxCSYKlOrF5BGim5NgZl41w1L8lQoUyGm6OB9gN1YMBtJXXIfuElhMkothBiQkFzaVIA+8O73XmJIhkkBG1GdMJsQ4FZv+fzJx/zH/+V/4hefPeXqJiFL4cHb9/jL3/sBJf+fmGS0fAjhE5YXkZNNZTQlUBppB1oJRBwG3nj/Nf7LP/shfVCC9MTQU9mR8xPK7ob17cQ2B9RcZjPXwDhOTHlLyoIx8Dvv/RvO+sDV8w+YCkh/gkiPcYVqZWoQR0gr3pGkNtUAACAASURBVP/d77EYemJMpDQQ6siYn1EtQRjcPkYruURu1oWT0wX9akLVJ6JD9PvkDZSBEHpSm3j8T+y92ZIk2ZGm9+lZzHyJiNxrwVJYGsQ00M0mZUZ6Wkgh+Qi84BWfgQ/EJ+BzjAh5Rc5wKJxpohc21kItWVmVS2zubnbOUeWFHnOPSBS6m3fIQZlIVFZ4eLh7mB3To/qr/v8vYYdJ4+XlnpCqs06DY4lDaAwpsBof9NhTuPziDTurLutMIEfj/Oycy8uJlI0cjKvD1HeLBFYc85FGCIkowtXVgX256fmNa4Fg5ejVJWTWQ2OzSrzaJ5DM1Q5evjJKe8GHP37AmF3ibnfYUWvrdfmKMd0w1RuQimo9MvQN3zRiDGgK5HlL1onZfE/AfEBBgnZ5bFmyUg6HPdYC548fMbevUULoxx99gwno1UVPJvZGqILO6sn2NtFqw4BGoOqBJjvca8ULjeizIt3IXWk6Q4DIGmz0YoAbqswYA4ktwp5mtwhKJhHkW0DioD/HYsPYIez8RidS7BZJe4rtKaVRyww0mjVPTAJQl0SuEbW6BJQaVgVdbbFppu0LUVyXuDb//K15gm/qmsdauQ8gguONy1dv9Dh5oU9lLBJ5CFah1Q64FPWpRfFNMvZOO0MkBJy2uSRHMbh/S+X45ku9Zctl6p9n8fZ1qb4+UWh3PrBx/P7YYFr+lm+Od+DoSVhPrkwCtgAq5pCkSJ9m74CkIEdplHsYelik8YInYwbIYpbZJVYoqCSiFswy2/MVF+uBLzm4T4gMnZ0Xu6yLgERSC126oE/qYljwSfiqzW2UcBmCaNrZMUKV5v4Z2hBRqmVWG8P2htgatUpjxnQgiGLqzamnH4zsXsy0OXBolchIDEZIMJd+YzahNGPcJkBJk7rMVVNvYDUhhMYiYhBrZliBMZNFSSExF6WpYLObjc4pkFJArRAr1AoSZ6REWpdZadWLJR2MapWpRGovIiZVSjC0VYbokhhBtLOyeuKNUlUouDdKMy+2QhBKqxAy1ezoG2CqiCraJoyIFG++mWVKnYhEl9zrzenauvapK51SW0WCkIKPBtSqSJqoLaBSmGomWiEGA000jagqzQZqaBRrWEjIKLQw8+pLY7ZKIDPkxtSgWvVGIoaVShA3TSxEzKSz1gwNDs7FMRIGB9nzOvPed5+6prd1EKMXlH6HnCatF6Ze7wT97t0kcIRb7twjx3/v/Y50gJGeRTYWHyZTvfP+C8B5F5yROy/8bh4LR0akN7oXFs3xGXbvFMYFEOYE2C7H25JX/+ghd/kx9MZf37skUJrw6YvXfPLiihLP2Fw8ZVivSestw2okp0SK/Z6JixSjYa3550yRlEZyzogpqgXRiraCVS9CQgyIVZo1wkpp2y11vmUsBa3NC3bbAxOye8NhfUbOqw7+eSyOujAuIoZPfPm3go+/329COlDuvjDHMyzLMnVmtcOO1htRfj8dL0oHXJel7zIpv3uujT6BT/eGwQGPBQxeeklmUFrxcxYioQMfag7W0FzeR8IyJW+Yeuw/aec7w1XVSDm7f0ifOHTSn2FBaRjFqkthtEpFmbT4VytMOmNtJqoeY96SgOUUfaKws8a9UVW5vvmKy89+xkb3qJ4jcfA8Sfu5jj3WpEzKmZhi9yvpe6F1kDeErj8uHDWI+xoO0SdAh3HF/uUt11evif18aIz9fjgBvKdrwD2Q985qPz3H7N7X/d6K3fuF+0AwvOtA7zex537saT32uL9PZZ5hr8Z+umWaB4Z8upeXvzPIMm3ZQWSWpkyf5Ldj++Yolfd1pCLfFuW4PS7NqOW378x1Ht//d87jnRc09WEnvZPHhqXZZZ1xZMsAkHTgyH8uKkjstVaXubvLWEKX5ozHPu1TsCkmf05vDC0x0vrPW3X2UqvN1TvK6atUc8/J0BsywU7yeLH7Gy3NdBXmGnhxWfnFy08oowPK38Sed+f46osXfWhTMW0ud1fdPLzWRj3MaJmgeVNOxBtJOUZylzULaSQNK48ZwFRd0siAvF2BKuXg79fUwAIt+kk+WwVWolh0UL4SiBjjkLERSnUptkkrVTMVuieYcGiFJjBPxlwrpTPx5qY+xBV6DOza/qpG7DWgGb1B4Ws2iLOBRXtuoHqKsx3gj+JxJwrkJIwijCmwDeLG6yZ8fJiYVfjFjfIkRwYJbDC2CT9XIXSpb+33lK/cSSs+8Byp2rEngyruzbtIN7alIUPP73tzvGPlGBCDkMSHTxzcEWYAhYLQVCkKh+pS7mrqzcFWeITxwbDif/yLJ/zHT2/51Rc7Hq+Es+zJWbMuaayB0qA2r3sfBePDoPxsdgk7CmhnFWmvxfyz3mfR3r9/vABpXsAjKXod3Zn0Qmdf9pinPXbaVDFTqil55XL5KUXm4s/b73cE+4qnTx7xw28/4c9+8iO+894zHj9+j3HcujR8jO6rtH2GxDWEAbM95eo5lQnhFp0PHKaJASVvE7lOoDNWZh49uuhqIXfYkovM9J2/cIknLnkvXWHFOvbmmAELM6mTV0COwwb4MnLZq3d8qk/bcq68lixi/PV/+Jz3fvhDvvV4zbAy8hCZq+c/IWaCKdNhz37nfle7/cz/+m9fwfABf/JnK/ZxYnWmfLgNvF8D+93M1fXMfrditgtC2GAWqW0mMCMhezxbmK9mtPkG0T1j3jFww/V07azCFMhjZMzC4QC7faY1H6Ybhw2DjZTDATVhPQyU4qovQRyzbbWRh0iKfY/rNgGqlZy9EVOqs7clGHE0pllpWkg5ktZ9KG6WHot9EKOaMW7XfPjRxuXxxFAtLvlvRogJrTf8m7/5n/nZ/jd8tYc3XyaGbeIHf/ltUvwt8zwjvKLMv6LWHcHOCVSgOHNaG8HHbh1Xisp//tP/grNNJjKSJBGIHMob9je/Zn898WaXaLJGmRzPq1AmpRwKNRWG9RN+8NGfI/U1Nzef0HhECiMiirSJOrt/dzBhffGEDz58RgoHYnI1IWGH1Wvc47MgRJRELTBNjQePN4S2A1FS7sxTcdndFNWlxkmIzY6ZN7i6vCHH6JKnIXempDKkgXW6wOpEaTPPX3zcc/FADDCkFZv1E37xD885P1+jBL/2waXeZYFqQiCEgZwHPvvkhTNRcW+oVqs30mXCrBHigMqeB2eRv/53L1ivRiqB0ozDdM3rz14TxxE7D5gJw7BiFYc+3P6IykQIBdNCs4nFnzPEBDnAKKAjSc98wJFIbZFxe07MmdVwxnq1Zr0ayMF4/fJLVvIItUy5bL/3vv6mwQRw3KKgXRp6I9gk6OTgZKiNzJ4YhaoTJq9JcehyCk4HbFSfjBHDpKEUsOaMJRIzt5goM3uEA8oEciAxUGyP2RdMphBvgEA1F5EymWjMfRI+ujmuVmLyYIR2bV4Wn4JKUZ96TQi1GE0jKY9Y7Z5MCjLhGUg6ngKi+PsuhZU1TkPvd/DDmhzwobOVjjWpOZgeEersFPhlUE/7WQ520l4W9ekhoeOYvTBaXmtpch3zesFZAVVPm/OCt9xRZjoWgubPd1ktO8rlfXP84R9GWLpDx2La5UWWL58fg5MMiQQDKkf94g5++1qIIKmDM8saX7yJOutDZh9WI7AZH/DoYSQ9n9EIJQLiW4AE3zAMn0ATcTE+CD1BVIR4bAC0Dom6yBJdxA8C2s33AikoV4fCaJFMY2gAiSoJaYFIIUjmq+cHcgtIyGjzabZxE9i+v2b+8g1aA02jb0paGcfMvihYQNSL74iQzQjRKcSxGdY8URk3A6VVLz4ODStKk8AcJ3KOEJyZsxRjU+k+Vj3umTaCCkWV0lxCsDZhVqNSffrKhEN1s0gXoxOaiReDBCbzJt0gQpTmBYO6twjRGVbUCgalehGpZmTonnS9iddcis9lu8WBrerTeoRIaS65kmmEMDsApQkp5szIWWm410pgT7BE09H13puzHzR6x33az+wvs4PBYWQcjDALSYR5bmC+oafoBV8z0OBJUAzdsyVAyBmJmbP1mocPLnj87IlLZy3TyKd5ad5u5LzNLDo+422sS+4+diewH11jvbBZgPUFmJH+/d27dCnwnKXxe97wHTvCW/4NfsidEyvcOxFHUNF/dhwS/0cBp99XWP/uoWpcXV/y8fNXvJmEsH7Mev2QtD5HBiAFTLoHhy2Mts4YCBB7E2SZYlUTcs4MkhFzeSp0ROuBOQo5mFusBRA9Q3TyKe/WqLVSa/dP2b2hnD2kDFviEJ35EASxpVkUMAnHhNqO62U5BfeTi+PyWUI3BguIyqJDv3i5eDN7mco/XSs7PqZ3CnqDoxeS1u6/R+ggtJzYTiKu4rIwmWyRAXZQQ5b/9NukNZd7iaEzExyR9x+r5znap5CPS4eei4QOFIjRWqU0B9erefO6dnk8bYW7PiqGEkIk5+wMjoURJcZcJp5/9mvG9iXnFxvOzi8IKSLquu4xucdgGjLDavSvcSQN/rjE6JKG8e7at3tfQpc7i5GUEkOKBHFQWELyaVDl3j1id+LNAqTLP7Ls74K39261vkp+Bwh+63fe1eOb2HM/9oR7safQWmFqjdvpwNk0sx4iYYi9seQsRs/HTv5IvYroQN8SZ/yxe1uW3Pm35yVLiBLDa4jjz8AZk0tjyV9tkW0+TuH5Se7XKThDTelT+oJ1H6n7W2dnNwTcI6lfI49Ty+ud9vvFZ8mW82wc14h28Pru9fZmuX8e94RTWmloVWcxNZfI06buD9cXlbNKvWkXY3LwGJdFbRbYTcKvPvuSm2HP5uLBN7HnHTs+/fkvfVCiM45Qb8R4E9arLW/kRW/wDZkYXUe7SiCkgRDXPgRm7ouzXQ20szVYo047Drv5eDVFvH6h5wjnY3LAUqT7Y7h7dQpdFi1HlweTTBThoOa3WuoN7Y4LT80ZlzWveXE58fLVNXNrSBPm6hJVVecuU+XDIWjot552dpPfI6rqA7m9VoxIZ0S6h0cExgjrAEMwLlJgDMJclPfWMDfj80PjtwfP2x/hHiTr2By4FCEGr21bc2lM1Id1p9bcx1KEWb2xon2YtvZa0jqW4h7XLj+5zNY4S9vXZIpdIUaNLHJklRWFg8KsQunNjIxxMUQsJH77uvKsFv71DwZ+8t1EskpUpc2Rq33jcte4uTUO1XOaxa/zp2Pkk6nw5Uxnb3Ic0lnuw1OiZz3E9MgsPTbbsj/5daqqxybNUr8vxyl8S889nYEZCKzGwON14gd/8iE/+fFH/OmP/5TvfOd7rLfnENaksPa1mzaEfA4pISEyH64pVx9ju5fY9Ip2uMaskdaD+2lFsBCp+xGRStKK6Mz5xUiMkVL0jr8Ux2BiC8C87EkI1npubPRh1b4HduxAuz+oCG6TgT9Bgp3y0nf40NZZFdqZabFyfr7hg8fPON+cIWkmBOurPhHCCAr7naGt7/8hMu0S/8e/OyCy5id/sWIve6pMyDCzPReefdDY5InpcMMXX1xz2D/m5nDGZGskDD78EIQcEqaVae9NptQOTPs3LtOPEDIMqwbN2F+taFMECQx5YDOcgYXuBW3klE5KLRhYI+XQmz+VlFcEYldlat0/sbEahFKEqRwwaaQUenwupG0gjXC4VKZ9OHorSoCHH2w5f6g9DhRUClUUlQSpEEvjsr1Co7K9WHH1HAgDP/oXT8A+x2SFzre0mr2hHUEjWHWlHtRtGtx3Tvjw/Z/ynWcfkG3FELPLnXPg5vArLm9+w+WtMpUMecDb2qBFKHs6+1X51g9+zIPtQw6X/yfT9AUh/IgYMrQb99luhnt1Jj748H1y8sZ7DK5tJG2ilgk1bxCKKhrgeu841MVZQ+sBSZWMgKU+vIw3nULGNIAlVDPztOfqsCemRWbU8fEUR86HhwxywdwO7K/2vL55javQGDFUzrcXqI68fvMxT793RmvF3wuh1EJMfr+GGMkpIWnkk89/ScrO2A4BVAKKM/sB1CImgdVK+eLvv6DWwp//9HtcTa9pF8r2cSCdr7idGyPejJcysztU0iDEPBJDRcVACthAjANpGIFM3IysdSCMkfX5QF4PrMctjx895Gw1crY+YzMktsPAYTfxt7/+LdeHCVPhvVm/7pYGvmkw3YE2/GhvBN0JNin1oJRmDNGougOJoAmxPWINZQVSEJRm7QgcIwFX272lkp2R0MFpZaLYSzIrgmyBrTdteEWTA8tUnKI0KRgjTRu1vsGYaC0j6pp2tfquHS24XEI3pl+aZXPf2NrUqLeXhNII68A0QSwOz1TzJM2anwft8seCB30axwGyhQCQNgNCoFR3gbRefLkElbeSlqTh6LmgvbhTQWagNGzG5fC6jBUG0o05l9xB4OS1BKDqXiR3GkpHFNTugKeKy9gorkOOv8/SsPrm+EM/fB0thYgdH1uaqdJxF+nr1YtykdAhTEOOk4/h9Jpmi0fmqVllgon4xigGokje8OzJhmG1R8ueNiRi2bCfK61GmgWfjJNu+Cp6ongLBGtoN/zDGt7+DWRrGIlgEVBm8+JqtMpsK58eDIJZZABMdphlpEGyuU/NRVB1I0gxpmni5fOJ3IL/3CpDAN01dtUY4nI/++cdO9MgaL/RY6XoQKvCzTyxWUXm0ij7Cs0l26oZSiSGhpUCJC8CxeWkYucWFA1IC6BGsxkNQm2ZgjMXXW7UMIvM2gVYqtEUJjViiFRrNPECc1imZ7sMS6s+VRh78XGYZmIUWi2oCBWnp2voBVhTqC7dlxPuo1QHVJTKSDAljQ2xiJSBWpVZDrTmU7mQfULI+ZhEmYkhIcukVRHKbF74mREkoaGy3xuhqTMZzK9+ImCaqVIJyZuTFhuaIpYFhggpsj1fw9A4e3bG2cWFr0+aZ3nda8FJEHcm4o7IPCyyOff6SP3w+u5OvLzbjT92k3A6tC2gTi+CrDcS7+GbJ/km6QXTXcjzXTxC8KGRr/MpWY7jFFIHHO5WeCc867RJyZ3r4xJU3azZFomlE1gpfaJRLXC9r3z2+Vd8cTkR8pZxe05YnSHD0NfC4AbU1lxmAtdgziqEHDsIuBTwzrJpWklkJCUHJswNTrVlcoxMeIO4HSf7GzpX9LCn5UBNkUNplFaIuyvm7QWRjIRIEo57syzgrnijyfAJdo7t+H4Sw3Lv2D0Ggi1gnnYZmdBl58Iinacul9vXYFiACRrasyDrDICmuAyX4UwqDPdXCjTV/on8/KvqcaJy7jEzBMG0R3HpTA0LxBSPF73Dj87q7kCvBAdumjVSikRRcn//YkJDsajOXGqFiUIRZaJyCIUaG8lAaiVWcy/CYKRVIq8TaRBanw5uFK6mz5ne/IynZ4GLJ++z3qxJLXS/CCGGxJDW5LwhjyNxNRJWkbQK5NGQlTFkn4ZMwVwqqBe1IQYiiwyiN/UlKDklgiRn3ncfLpVFQHaB8ft9Y6eBkOV7saXxqP26eAJ3XzLs7r11H9yF/zQAXvgm9nxd7GlL7JkjrUSKGpfF2B4ObFdrUuzm9aE3djxpPN7RC5YXJHSw/PQ3H+XNRI6NWlkAPLO+z0IwX/dB/bVdkrarGS0NIus1k3XJu+M+23M6v7SuNtEb2dpzsCPeqIapa+9r1eNnPH7eHldF3cTeTmELjO7z4E3IgHsKN3MmJrE30gX3YWnmNlizUmelFsOa0Waos3tMWvRalNSZStAbRQPEhFXBintnfv5G+dX1K1aPztg8ffpN7HnHjsP1JYs0sgQhEYh9QjRHbwCKRJoZmjKTCEkSaCDEAcQbhWNOrM83yJAgQNnfwG6ihMZezX2lAZHotUOIpKCss7Pl6bkA0NUjnDUkwe9zwZskq+RZxKEZEo3zVSTlyI7M3zzfsT/s2TflbHVOS+EoMzaOicPhQGvKfr+n1sY8Fea5YNbApMvomXtD4WxlV3gJJJaxYh8szAiDwIOAs5PMGIfIe5vEVBrPD8YvbwoPYqA0ZR0TZxnGYAyLVBbWG+R+z7tPlP+rQDXDFb/bKWcJPgCNGTlFmrk0Hizr3n83ijMiqipG8PpIjUmNWYWDCZMaTY119IbXg3Xg+x8IZ1vj6dnAuAKLibklyiTsr2biGLFYuK3Km9mvbULYhMA2KH95Fvk3l5WddinCO3uMSM+nHDDD9wnp6hR6isv4c7XW4/fLEIb2hpPvlc4EWY2ZJxcb3n/vnO9+9yk/+t4HfPuDx3zwrW/z4On3GFYXIBuII7J+hMQVEjLNlFIm6tXn2HQFuqNME22eqPUWnWdanbC6Z13XrKISskBaEefLLgcZQCdWq8G/t7nLn96Vc7bjoIJKPw/dQLz/dT6owTK8bc5s6L42/UVcwgrcr9QWQOPdPZz9AwuI16xx8d6ap08fMIwrJC92JIE8PGCbv8V5Fubdc1p7zsuXzynTayQK8yHy7//vA0FW/Kt/uWIabyAFUqqcbdZ8++nI7X7iox/smQ8/51e/3PLlqw84tMdIWhMkgyrTPNHYEeMNMl2zPxxowRsD42CMGfZXgcM+otVzqyGfkcKKaX/Lvs6QoGilakNCAZQUk+MJfdq/1nocksghuZy2lqNfzhAGylQpbfacIwUf/MjK9tEA0phupcvvC88+OmeI0mPF5PmEBkwSEjZYmN0/KQTGi8h40Xj6rWd894PhSCoo2lBcii3FNSlMXQ/GcxZpSkiVJ5sf8d/8yf/AzEvW8ZyAqwQe2huur/6G3eUlt7eZqglteLcK0AZljrRSUNny7NkPGHXm1eXPKDUQ88oZgerKGXNrtBYIYcsH7z/BZCLGhEgGSdD2UGKPn5UQCrFFrq4aLrBRqTozSiCH7s4efNxabWAI8TgQCIHrq+KxM4pfl2Rkcb/A9fgYSJjuePH8M2YtLvkblDFHzs/PefHla/LWPZ6m/YGM13rQIERCTKySMOTMzWXg8vYrHj724L0MyDd12V+JwjTvkDgybBp/9q8es/vxOaM85vDxjm9dPIM6kcJjUo6oTpT9RD24/cc6BWpc9Ti5IqZHjOMDzs6f8uTBezw5e8zF+gHnqzPWQyYnIYmz03yRJhBng6oIMU389McPuL56w2dfveJmt/+99/UffYPpdHhBogcol0KeQYtPkUgxzGZi3EIIGDPNKjm4nqLKjIlb7+liFCmgUmjsCRKcooxgHDApmCUiZwTbgtROBZ46MuNmhopSdMfUvqKWPVjBmBBRWvNKRUzQ6hTR4wR7wxs/bWEUBWp1qqVtB4bzNfP1pUvqgTdjgNqWDdy1jw2IJvge6U0dMagHZw9Qe8FFn3Tvpp2G+ZqsXbOxF3wOFhlRQWfc7KzhG+aMT/R2DWQvphaGCUcMVPvnWIqx35HFCwLSpyHM+t+0vEi/MHeB1G+OP+hDlibT8YKdqukFhtSl2SQLHN7XTocxfTm10+8cE7K7RSKIdQNSAY0jz957wtn2kuvXvaC1SgjVC4tAL1giGpQBB0WqBnJvCCxr0JPnRnNIlNwbZZXgnkxmBDKzBqI0Zlw+bgPkzoiKFgkSiBJoevA6TBSLQtTItFdacGL9IOZsRHXZE0gOVqgQDUJ0unktRlElpuAsoODg68WjLTefvqBUoVXBJNKqkZjR1Kg1oTR06D4nVQg0mkX2zdkF7q2qiIr7LAAtCCEP7FRdgiIEpt3sBtMdaJlbo5j5uYqBEEG04J68gWKR6AGOFKUbgmeCBqq6tmboxZIE68WUojIwkb3pp4AeMCItCnMxYhLU9t7ECgOkSC0HrGU0KMECtEiO0LQgoULLnflFR/EqWECDJ2K2mHriTTNfgxCkQApunj1ENIEOgmaXj5m1cn72iKcfvk8asxvEHiexT4eHVbkzkXu6U+5CIx5DT8DIHTyq3wYdIDkCb/2GuPO+cnrqvcJvmYhefnh69rt7LFJtJxmKt867nWKRLGjv14HBb2mj35es0uXFOI1kgIVEM+Py8prnL17x5nLnifX6nGHcEoY1ElyeSJZGR2fPhC4TFEJwg85lInzx5hDtMpYuNVIxhpycBYOv0zSMBG/TMne5gbA9w6aJur+hzhPTPFPVUKvo7Sumi0eM4wZk5RG2ryPzrfjts9sn/09MPGdA+gTg4uUU7uZSJ/JPf8E753157M4bLfOxy0l9K0XouUDnfLel+BdP6pv1QQU5rWPhKHkau7+HwzeGdQaTN6D6dH1vmvlLdmYF0icTOYLntTWaKBUvoA6tcuhMptIKpRWaVqI2VNvR/yHF0P1JAkYHigMcyg2ff/J3bOsXnD3ZcHHxkBgEOyz+K+E4fZ7yQMoDMSVCTK733g1vU07kFL0hdtd4u7WT/8MC7gRhGEZyXlHncndH7WnX7yZap1hy52fHC+YRTJY9vd9H/9zjn5SC+wM/vok9Xx972hJ7pplJjX0xLg97zg5nrIbYp1L7moP7G+DpL3fAuv9I+nkRwrGpfezX9ebDW9MUx6zzdD7l+F7L+x5VHZYNs5/rI1O+P1G7tLDF0EHDE2B671CPUy49KMc3a+qFkFjAwtJY8ob78f9DrxHNoC2eTIK25mrBtaGloXOjzY1alVobrbmniQY7qUoIzjJKPkxgKj13C1zvG3//2XNu11esH7zHg4uHHhO/iT3vzCFDdhBQfRiOENzzQ4RCoKl76iQiWSGPA8NqRbbEar0lb1Zs1gPjkEgYVgu231HrzGTGVTWqxu4r4Q3CGDIirtIz9LyhtxuI4sMZVQBrpOAKDIKgvfFkwJiEaYYXLxuExqfXOz59fehMD6E1JQ6Z7cq9rw9TJKRIiBlWhgQfSrPOEtHO0p7nQqkVa92jqw/RqerRgyQFYQzwMAceD4HZlPPkrjrnOfDDh4EPixITZIGrCa5q5brCJkaiwBhgCIJqY4weo1Qd+5iaHZdgdZ1rtLk32uLlE8zlyY8Df+bSfdHAgsf40gd5xYxJG9UCs4o3/JozE/z0G6uU+e57iX/xg4EUl/pBsKIu+1YgG6wjPFhF2rmv/U9vCrtZuDGYauJZhP/qXPjfLiv7Dn47BrSw/K6pJQAAIABJREFUvbXXTsHvV12GA+6GzaUO6TKr3b8t58S4GlmPa7ZnW87WA4/Otzx+/IgP3n/Ed7/7lO986wnb8ycM4wVhfEQaHkAYKNOOOt0y3b5EyzUyv+FQG3WeXYpvPAcRgs600pgORqYg9YDWHYddJY2B0Bohz5hAYXR/Tio5Ra8n6d64cFSE8OHKcGd/WmqphQHs+7NCf73OOJXTTu35qoNxyyDEuw5oed7je5iaM3fCasXDB48ZkiEpMk+RUjc8OP8pm/E9hMh3v7/ip//lFa9fv+T68iVXb15ze3PDXG/4xW92PNgE/uJfJiaJhLZhmJ5x+XnixeXMXJWr61tuX75A99fMN59yKJmzJ++TVyvMdgi3rOTAbrqmBR9iSBlWo9Aa3N4MaPOm/BhWZBLWZkSUnLypUGul1IlqlYaSh5Eh5M6gDMeh+FJmLCVf45KYq1sKCMY4BJKuOMyze0NHZyeWWFk9EESU/Q1YCDx8MiDBlV/8q+EDqsXXmRQ8bxDiprJ5IHz/R++xGfYcZoF261hYaK68k3pTzBJCBQJRjCE/4L/+0/+J757/FZUrgs5Uu2ayS65u/prDm1+zu1F2Lfrwb5kAxUwIITEdQFW4ePw9zjdPOOx/xu31p6huCapo26F1QtuElgAaWZ+vWW9d9i+ljBCIktByg2klWAbSkZTw5vUN45BppYC4rLgnaI1A8n9DZIwQNTrGbMqXX75xnCwKOUSPg9FY55H1+IzadtR55vMXn2Koy+MROVutWOdzfvHxczbvD93KxQfdtRY/byLEFEhpYBhW/PLvvqTQiDL28Y7gEKVrPyNiXN885/zhD4k0PvozY5o+54OHP+KTvz3wN//7x1x8+xHnZ9/m249/wPX+NS9vfsH6LGAxweaC7eYj3t884/H2fZ49fJ9Hm0ecjVuGMBLlNGbm7+6Fu7oIrTdcO2YaRBjDxOXhkrpX2gEud/X33td/9A0mv7cNIxDN0EOjfZFoe6i3MB0K4+ocpUA6EERdSmBMbigqgRljRlGd0BbIoTodMWQyD3Ei9cHlTpipEhAK0QpZBGxN44BRqfYKZAQ7I0mkElyexfKy3mg207RCE5fKihG16t3n5tJ+FEgNrNB1b3szqBgaG0SXfomd3WDVKeEBgwia7Kj0YNp9mjo2nxu0oidjXMO9Mvv7ez7gG58zosQ76NacCaUn0Ii+V1I8+XH/J6e7m8Ciamf4eyz+KfeKxyV5Ok76+bEkjPc23+VFvzn+oA8XAQg9sPXpd+mToeJrBVVHBIL1qUWQheUkC7l8uf6LON0ii8Qxi13WkzH35yQ0RC4ePuH9J18wzZVyed1lHJWUIq01L6Ct0SQeF6ikQhIwjbQqfeYjkrt8gEpCYqM0pbC0wJxJWES7FjOMXa5SrTeJg2vg1hoxS2SZsaAUFWwKDmKm5gbascstqDdxW+kFnUAg+x8/VxChNCWRabWSBjjcFD65fgnVaFOiqOt0x0FIIaFzQ2rExKgUJA5ECQQ1ilYOzTrw2cXvUqJYoTTxotUqZolDLWhpRDOXmRK/do3o70mgVsWksc5efJTmRrQqhkQlYF2O80AKgWiNWaXHjEYtGWEA3RPDgSajn/OlcZ0qqpFWoyc0mn1QoPUEl+RNfktEMUTKUa4G9SkrkwkzN2bU2Dp2lDrrqRcJFkmdyabiCZq2TEsjFg0G16G3FIk5EHJmfXbO42fPuv/MnaZQf3tfvoaJnRgfSpdo7Ov6aCZrHdw+geaL4Jj/onTwzG+Me8yot+5Kj8WLXBfH6W+7+4xjcH93j7sMgn/OdPLbwODSyHu7GefXQBfiZC+oAFy68ctXr3j+xQveXO0wMjFtGMYNEhNIPDGM1YjBWMzJXTYtO8U+hiPYuwC+rv/sib2DnJXaGlFgGAfGnNHqgESOGzeJFgNrBJtZrVccViOr1chuvyfVhqlQ6i169SWH1ZYhrX1SftmfF6R1QXOP6Kuvt+POLBxlkVyGJwCxe+h1gMXkKHEni2zq3STg+PrLo12267gy71wbrEtfyfF9zbpRdKMznJYPdwJyfYb+dH3NnHG5gJ7H64znW4YD74g3k6o2FGdhxRj8Ocn9AiarHKxxsEpthVJnap1BOzO9NloFmntSjEMiZvFYr0prjVdvnjO//AeengfOHlyw2W7ReWa22WPEPZA3EweXBHE/lQgxHtf9yZfmVKg6S96vUuum2kYgDyuGcaTONx2gteM5+tp75a375iR703+zU4z/UwFP/v8e38Se340902pkXI3k/Z5SfVr/zVTZ7G5YDwM5+fu8dWaWM9q/OzWXlgYMdFbPEjtCr4FkkVLr57A3ysKd+LL0ik6vK6d0k/ur9hg3FgDdcOY7vk8v99jbwxluyOxspLdjjzPE8Al47XFr2ZOt10PSZYPVB3r8bwnOtm84w6kYbe5f3Zu3NNfgaKbeYOphO8ZI6BJS2kCLUgp89nLPx/vn5A+2nD14yPqb2PPOHTKMJAkIgbm59HSlD8yZ+3mNMbEaVqzWI9uzLcOQEcRZSzkwxIaL7gg1CocQuVF4NcHeBsxuaa32nNN36RAC28GBddTrFsMYEpTqXkxJOh4hzvSJ5jVT6uyPMQWMxk1RXlwemEs7SmZOtTEgvJmvGWPgUBo5RRfbiu5vGqI3eYhCNWcHjatMstTrUGfUSfdkYlmXKBNwo46hPBwSMRnP1gPfv3Cm074q13vjuhqvp4nrCaIYSYwYxCX2xKWYAu7j4eHZmz8u+xkoqog1RBKTNZfqM2PsUn3JxDEs9WZWDl7NjrH1ITWP31UD+2IcgJ1aZ0p5ld0E3t8GPnrmChUhRFCvxWuvIdOQSEVYxQAJhqycr431mPjN64mvZuVW4bNDZYXwV48H/u2bidu6xD+lBoiSGQavlVKMhBwYc2IcB1aDS2imIbNercgxsNms2IxrchoYxhUpJ8bVlrx9wGp7wbg+Y3X+kPOHz8jDii+lsT9cs5p2yP5vmG6vaW2itj1lDrTqcSXFgXB+AVVIqzNSCQybFa3NqHm+VrUi84TYjO4nZnHJqWCKxgRBKNKIVoAtwzAcvYLp98+SjXb+Hph0+dLuBdZjvHXwH8MVVeAUi4Q+yKS9Cem8TrcHeIePHm5b3++sBaapsVltiHrLNBkvvzLS+iHzPCH6gu14jjGx2VS2Z48I339KGkZyyARzjEalclMbVGGeJr4sE4fpwH66pZQdr68qX7xWptk6w2Zmf/iCBxcXjGdKlD26v2SeZogByULeuMT27dWKeXZptVHWbMczYsxMZXIZWBnYTRMH2ztg36BaY5on0ugeg63hPksYOQ/U2rHdzjJvbfEhM0IUVutIbUarlcVLvCVIF654MxdltQFw3273XvJGTuhDz0jArLi8YhS2T0Z+/KMPSPIbiAFtfRBHiu/LCMOwIe1WKK8JwQhhxUdP/1u+++SvMMkknkJ0K59sr5Hpf2F/u+MwJ4p6TKq1eiwLCTBubwzCikdPvs1K4Oryr5mnGZNnmEz+OZrRGkx1wNQ4f7DtO7UPBQUJJIPDfI1a6fViwiygJfLqsiGjYFYgqNsrmBybtGpGDkNXFHJVoakcuLrZMXY7gxgjQTIhBtarB0TZ0uobXn31ktvDDSn4PhNj5vzsEZ9/cmAvBy7ytg/g+ICgtkbOQgqRMQZWYU2tZ/zi87/Dsns9xaW+peI+UY2pFva7zzm/+AFQ2G4uuHz1W/TJr/n+X3yLX336gp/9h79n96Lwk58of/qTH/Pl+yPy3ns8fvgt3rv4gIv1Q8Y4uPrRcr8tN53hG0M3yzQUa4WvLl9wmG9Yj1u26wvWqzOaKTdXb/jrv/s7Pnn9gtoE0/h7b+s/+gaTHf/bp7SK0b5QuI3UN0a8FloQCJE245q4KWJNmMMtLeyptkV5QtWXqO0JBhpdfkXsAftyQFKjcfBAY0bhDYlzhGcEW5GlUHRDInJot4S4w2zrVEjLKHu0ZkKakbBCrGHBJfEMpZbZx1SKYVPtjR7rBaRTLVMBOUxMZSIHg8GnhEzBIkcWgaRInButOlB9NOCjy9F0QEjNenOng0D9Naz6AO+RFK0u92CuiNUHjuW4qTgLwPpkE8fJy+OeaicclP6ai/eSLUXvUu3dbV69DUDdKb6+Of7Qj9SBEvPOYugJGafAeJQhUjvS7kOv3gXXsV5A8WNTSX0d9frmzlqU/nhfdEFYbdacbwK1CZuVcnOoJAkQTwWu9ULYNe190RdxqRS1iEo4SjNBQkU4tOCJay+UDKFJYQ4uQ5bEKKGhCtEia7wpqySqKDAhZKjegHNyjSG1OTAT/N5U8ZR1rj415RN3bliLVsQiFnBfuWJoGJlqJTRFqKCB2pvJsi+ETSYkI+mhN4AFWvUJ5hhpajRzaTmd+42pziCqPWmZyx40UGrzqdwQqOolferTsk1hNvViX6wXXn7fRipqQq10w0xPtGtTGkbRQGsRZyM0JLVuhpm9kJKG2OzAcjIoBasVDaAyUC1QpcuTttrjUoJuPNy6b4FKw8S3zxCrsze1+XpQlzmonfKv4tIaJhWkuTxebrTYqCEhMmAhISERorBeDzx+ds7Zg42zJGxpqHpDyRag68gwWoAuuwOxcAfsus/GODaglgek63xz0jing1MLyHa871gmHRdI5g6If+z8vw30vVvH7zcevn/c9V/4uunl+43Bt0BgPOkmRuZmPP/iBZ9+/pzr/Qwk0rAlxjUpr5E8QIzenO5sGFOj1oYyH8FGswYSPUEknkDl/hWC3xcxRoREqwXTxjQdMI2sUsRicG3mxVBIK1PdkZIX+nW1Yr9eMZfq+twC9fYrpt1D2vqCHPJpo+6gxnETt4UpZyz+JYJ0XweX+4qyQKke21UXcNx/1tHhe42k03v0ayKc1iTH5Q749K+fr9TzlkWapfnVuitl0n8vpUhtzUFZ83zISQI+7SxhaX5Fb+SGk6/K0vxpuIdAq4omj5tNXJJqpjGbO21OWmlaXFLZmk+BL6exT62mFEg5YsFoYlQt7KcbXnzxD5yHK7YXZ2y3F+Q4eO6p4sWxdHZYzu71lhIh+b8WBCQemSc+tayo+T4hzSUkvHm/yGJ6TIzJ9byXouUUkf6Rw04A73I/HO+1Ht/UuqeD/q4klT9N/tH78108vok9Xx97VqsVZbXi0GOPNmOuia/2e1apsFqNpARHqTM/m8tZPeaMxonFhADBPTX9f4UjIczM5YqlD+YcZZb9F3+XOCbHxt6dEw3cX7dLU9q/99dQ1d7QeKtewRlIS/PazNy8kSX2LB5u+DXosadvyy6v1Xpd1TzWEcBoPqhXjTY3911apPI6QO2yXHr8/EurJfcmkVVvos9z4HJn/L/Pv2LeKucXT76JPe/oEU2QGMnBmfohuAl9CpE8JFLKpBgZYiIHIVIZpomswips2ZyfMZ4/IaYN+/nA9asXvJkbV3Vgjmultilingual_clipJlqd++CTkEKAIMQAmyx9JM1rmCA+B5rF89IYxRvPeCPKGyLhpLEv3jitCq3nrFObGWL3P6lKU2W96uJ2IVFLY64FUxhzYLvJPFwn9nPhZoJprrTWPXYloBFyFEJOXiLGSMG4Ag7Jpce/tAoHJR6aS/2XglY3p4+mzBrYWUObS+8FW+ILLkko3dt3wTTwdbh41QpGiMuUrZIjiPOZ2IRIxOumIJBF/ZwFZ50N3VvyoNZ9l2DfIAY/n+soXGTho6eZVerMSBWsgAQXHc4pEceREJ1hkcOG6dCwJjzbFupwgJs9WQNby1xpoAyZ/+6Ha16QEBOGFMmrgWEYuHhwRkyB7WpFziNxGF2ecbWlFAhhACKlCiGtGIcNKaUu+5kIOTLt95R54vrLN+x+/g/Mty+hTJR5ZjUqP3w/ELURU6JoZtwk4vCI+bADyZxvN4Rm5HGFBEP1gNaRNCRnjAeYDhWbJlaxME0TkiNDVmIpBOvskKiYVSrZ12PHqGqvXY1lT+xyXMswYPeP8PhtSx8VsO7V2RuxcsK2VBzfUPVBS3nXY5EJquE4mEVQavXz9qtf/4Zff/YJuzkS4t8yDmeksAW6t7V4Pjyuzzg/e8B2fc5284A8bMjjijGPPHv6lKBnvLx6AzcNDYlDm2hx5sHTJ4ThPdarNZvNOWfbh+QgfPXpv+f25SXXt9dHL7Q8Boaxcdglbq4yWjJDyFysHhJjZjcfmFphkEQEHxJj2fchhoHalGmurHIiJVciKKVSayVml2usVfsa6YNyplgz0iBHhm+dOxMJkCSsI8QZcu5KEB1QDaYECt1Nr6+jAwQhxMTZ+w/5yx//JRJ/zq4GFxiXhjAgckOwgbhSUn5IrUKyW1b5gj//6L8nhXisuZaabtYX3Nz8R6ZDpZTgw7dNXLFKICaP+zfXgbR6n/OLC6x+ye7ml5SWsWTuO0ugtWumvXI4DFgorM9HwGs1Ccnx63ZLm69R9SiZzDCZubqE3VRcIs8aKWQf9KXbNUhAg3hzOygSnTxycznTtBCzdN8lCBFWeWAzvoe2Sq0zn/z2Y5qVzqyF1RAJlvl/fv4Vz76TGRJoq8cBGUSJMSNODiaNA599csWuXLJZB4K4pF6vfn1oIGZev3rlXqemWK3k1ZYyKVquGR9mHn4r8315n++tP6Ltbrn89Sf8Z3/xV3z7p/+65913Y8OC5SvGRGlXTHUmEFhlf7zVxmF/QKcZnWa+eHPFkN/wve98SE5wefklNk8cdjv21Uhh/L239R99g+l0dLmIJpTPjXYQDpdKmjK3hx1DqsTmswcMffLAlJxmiGuMBJbQEqjBIESMiSq3DuLaHpMJN8AeqBT2eskYD2zDM8xy1x3eO3iLMetL1CaSPGWID7ku/xcpjuR0wayFqb7G1Iu8Ns1QQPdOYQ7JtZKJnsQ0vJgJzcgBbAVUnOnQCzATqEGIQ6Jem3ddtW+ULNiOLKj8scBSdd3NmIKDQlXdZKyzShYvp54HHWn4Xqx2tN/aPSmcBaqkN6D8/5dpZo5sJpZG0wIILfdSL96sA6xH1tK7vhH/kRyqTs+1Pj3G0mTk/nX29RA7K8UwVQf3bIHDja64Cne+fC/s+seiOFVkkT9KGJDSlvefnZP+4SvQQMyBMkXffINPVyygwjLj3iRQzchhAToUuldTM6GEBjp0cL4gkjkxrVw6zlPMhIrft6lPXIQs2FxJJNeHxYj4VHzFC45GIKaMUjAqIoFDi6j1ZpZBip3BgwHBm9EJWpmhKUkd+C21S+D1JvTtvhBGGAiM0e/11vokXfImmASozSeyQnTJgDLjSRMGDKjN1NnPW9AOC4hRqpNyiwWXtuzd4yjGkKxLd7hueGvuP2DBp1D2pVFNmJaiLCnWhDY780lDRWwmaqD1RtZQoGmlaaXWDTORkBpCw728lKWlUrp8Qwr41Jp4U1ElYNE9ULDY/xa/Eg3tfVE5Xt8QjbOLNS2qF7eSsVCwBGmVSBkuNgOPn56RxwQm3RRckeBeDsuqXvCrYx8JkM6cYmn/9HB9bET1JpD/bp+EFun6w0tn/ijswJIcs7xH92A6rZ9+ndRf7y0S6Tt5/FPg7T//hb7+df2CBRrCV19d8quPP+XV5TUSMzFvSWlNShtiXhNzOkoSheD/em7h17HVpYFbqbWx3sAwrsA6M9AjGRBd1qWvxRAESanvoY0yzyQSKTnzMw4joylaZ3S6oeWBVW8wrVcj0zRzsIJZoNWJ+fVzbrcXLnEUVqcN3JaY3T9xnxaxO6a0ElxyNPQBATlu/D7jv6w36X5KcMJipZ9XtQYBIukI7Bp3JByPILMDN8vjrXssHZ+zDArcuXattSObann+wpYWgWAuieN/n9wDH12expv9Kv6IdfCXAHMt7KxQaDQaFddan9vs3iOdcQIgEWIM5CERs8exyRqaGq+vXzBf/YIPHo8O8KYBa14wCX34OwRCSF7kdHkqiZE+IdClz+ROc1lRrYgGrDlbf4mHvk86MLwwjO3O9ThenH/yHjlGrhNiv+R49Jb5koDeOU7ynHbvsXf9+Cb2/NOx5zDNTFOhtcjtQfnCrliNG2LIjIOzAxaQ9jg3bqfG0pG1InfYkI5c9yGjPjwR6Hnl0ni2r93btOenTiDqcYFlf+zruEtzn2oSw3osOcXGr7uMp/XQjizk0z5+n7Ul95MBow++CCxDgtKOg4FtatSpeXOpe1zWqpTqU9O63I79NRcGkvx/7L3rjyXZdeX32/ucE3Ef+ahHN9lsUuJI4xkY1sA2DBiG/acbGMCGP3hs2SPII4lSiw812c1+VHVlVT7uvRFxzt7+sE/czCbZo8HAM2LTHY0iqzLzPjLuee211l5LFFuARViWzK9fVz45fcX4R8/Y7Z9/t/Z8S6+UQ2iRcyaVTOkWmKVnjmqbSHPkIQ0iDMTvXbbX5P33qRffY9k8YzrecXw3c5wSt8vE4XjL3d1b7u7eMZ5zxwz3xKAJFWMsGaFhPaA9S5AyuZfuq21tTrAQ2UjRSRRn8PWEfZgWTvMSYfR9n829VsklXCGGomwGZVoWxqQcm3GcK7shcVhCFvvyItM8c3O3MC2NuVaWKQRupYQoJqVeuWlmv92wHxPH++iYilD6UHc70s/lUSugKcQqtUVtsJK6fTglD3ZCREJYaI9OLiqCWiNJClvStftIYJcTzy8ukbEw2Mwwwm4sbLeFzSaz25QgT6Uw24J51I1Fg7nbpMyLy8L77284jdCK4poDpC6Z1jGipoUKtKFQKTRrZMlcu3HZnD8lMXnGk3I3bfj5Lx+YZeBfXO7Qsonui7LFSQz7Mb5mzjQ7WRLSFqpXRCr1NPPm7R3zYWI+HWntiJweeHg40JaFOp+obSa1Ss7R3dg8blrZXOBW2cs119tENSHnLcdjIo/OdpNo1njzbuZie8KWLdNxZNhesnGwZQI3EgvZDpFFXGdEnPl4IKcNCxVtC6KZWRdKGbAcYoXm1vUAsfZG5E4nliQcsGLrWM+bkdMe5VRf923N0YKztf9qp4eEY8kfQNFl3p1HDNYW69qO/Pm//V+5PTygactmN5KHkc14gbCltchOO80VW07odOCru9eMZSCXDaVsEBWutzt+/D/9j/zrf/N/cmJmGDekUtCd8vLiPSQXStmwG3eUlFFRbl79Lcv937E8fMVsRlUlDcqwNaQp812GJaFtYLPZkfvnPS8zjcpSK9WFapXmIaQtmnGcsUQe2uFU2ZTIR8wpLPNrDWeZoYQIt1nsu+4WGVW+ko5OGQu1Vbw2XJy8FbaXkMqCyghuEWUQrco0CUG0akIkMBvJiavLa967vOLNVIHIdApPrlOQ835g2O5Y7A71azDlxeWf8uGz/wKzI6p7ANwjQ+/28L9w8+5jDqfM0qRnbBveDAWGwTkmZz4Vxt0PGIeR6fjXLId7sA2Rex2A8dJOfPVl4+1XyngJQzaciKOJlMABb29o9T4wZQGh0kx59eUSImupKEbu9WWcFwoumSQjQ4ZECCObG6+/OpCyU1S6NV5DUuVic80mP6PVI7d3b/nq3es4ExFE1OW456OP7nmoMz8ctySUVutqIUZK/ewiEu4A+Rm/+Ie/xotEjmjKlLLBaZGrJk4aRj7/8qe8/8MfYdJoPiOp0YhspjxuGbaZKb3ltPuSH33/v+cH7/0ZzgVeGzKkJzgocQ7t5p24ojogzByO7xh0F7yBNZa6sN2MjGXg4uKK6TQj3i0l749kcS6HgYf5gWrffPb5jmB6cq1WLO2VwQnqrbPcObKplOahxiJIGKyRLAywJB36htHIrYNudkXjnhOfolKodhcbwXpYkwtmHrhtvyDpSxIvyALqEQi2+MRcb6k6k3lJSpeIZJIOeN1gc8IXobalK9uICJCFYNvHsW9eM9QFNcF7y3SCrg7xCGk1PYO5mhJ52DFNb0mLnAmoR7mddwA1fk0llPRh36f9YMW51mmNc7cRFrWOpACsW1fX/aaTThc5x2eyqu8CC+/PK520CpBfVFaBNABPbSbWQuF8PYryvrt+jy+1NRvDusgnVA9ORSUTQdWGSAS0KwIW4J6toMCqomX9yHvxyqr6WQdDzA0xA1O0Z+fUnPng5TMudonbd7GYl+WEQyebwwsccao4NEXSAS+JFya8W2J+NM3MrVGROCRqTIrkRKEltfvvr51NhtI6GCFUGt5GlrYwimJWMFkYdQ2ebhQTXAakLLTphEim5mgNb6bxG1uAL62rl3XI2NKJXg/Vy5kI6hYU3kJ5IxKetaXGIXdZZjQV5haWDlobpBxrpC2MBRBnmirLlNG8pWE0JuYK3mL9SUJXLAfw4a3RPINENsNsiXZyNjqThP57WNiNiqDacK80M+ZaaJaQnLh8WVgOE9NdIrmtHGWf/4Z5YiZakas71RQjKrmcF8QKi/TOppa6mi/hVChB6mGRrEdOoTSSAah9Ew8QYvEU1lq54skQ3TBZ4qE5k+zisUWQnMilMIyZ/cWWFy+f4Zpw13j/Cnjr66IA6Wx5A/6YwdQXygDMYkz5avfDI7gubjyCV3HoWq2TvgagnIHydQY9LWZ6B926iK9g/m8H73yrrlUx/puXdqX770QCv+H63Spn5XCa+YdffcovP3tFlcy4fYaWAU0bUt6R8wbJA5IVkqC9RdgJO0w0yFx6B05rjYfDPdM8MYwjF/tLhjIA+WzTJr0FX1XJWSP/wBrWFmiKWWWejXFIkSWUc1hODIVWMowbbLfjNE9M88Lcut9/M6Z3X/J22JHKhuthQM/jQs9j47fGhazkUhBNj/ZTq3glvn4WifyGEmtdz9czw2pD8pQfOt9/78fs3rraWhDG61iPPWMdz+uZ5+vPEWYknM8quHfLPiLLiUZJPfOvg8YGHaztHQSJHvYa+XenpUYHE90Wry0sXlnqglkjddWNeIDcJReGsSApjnwLMNmBL774G16MD+wvrxg2O5JkfJ7w1tXPBvSQc01KSjk+31w6iRAgk1mINFbrM7MGrZKk4SmbgZOfAAAgAElEQVTItxW8D6FRxkUflf39YzkLQfgPO26JyJP1jPPao78DyD1bW/0BioW+W3v+8bXnNC8hGjGnVuOr+zsKA4N+j2fXSlHrlrbxG4s8HYPr/iWPhMZKMKwFyPk2yyNR8bVb+ZufwToeOzF13jb9/MCV5Fq7cx4/I2C1xpMnT7/+/Ykbg1gHF/s317f8aO2p5/19fWxk53qvv7x33oPNjTqH7WZboiOttnCsqK0FIJQe7xYISSN/CQ81ss3K7UPibz/7BK5hc/mMYbNDv1t7vp2XVbQBVZDWbbyEAMQkyKasGU+ZWTM179DdBQ9lhx0WUnvN9uWOtH2BvL9nrLe8/fO/5ebLTzlNM7UZ5WIbgCsa47G1wENMwn68n0EV6VZMQrIQoq5ngVh61vyeALEcyGJMvblHdF23OgkkztLArZLyyFCiM2tISt4493Plq4eFN8fK5Sbzfi5k4HLrZJXIUzFjlwubTaK5cZgWcilgYUen3ig5bPfm+YxmRKaMNejiL3eiE7F4zzqLzFzcuiUW4OlsYZWh26F1C1IRUkkMQ7dVSspuTFzvR1682JGfv88P3oP3r2DcbdhfXzGMNTLPerWMZpREG0bQEicbD7LdKTSbqAamGROl6Yi0qLW85xQE7tQxMIzUbasWSQy+43Scee/FyIl7/uEL43YR6mGmTpWmCxmn/vKew+FEnQ7U00SdT7R5oh0nlrZgXcQwt/aIK3XSrYlTuk1hFu1Wf0JKca/mekfCuXubSXVgGAemNkFS5tpYTgOqyrDd8ub1A7v9wuZixM05nW6xubK/3JNTxesDx/sTg94y5oYsI7Ms4QKkztGFccy4NHQoYRG7skgmHVsM68VwV+mjQ2NpVu811hOytPtFk1nPxvJ4AzoOFhvKo6Xut/VyOK+rSYQhD5CU13c3SMoUcdSVZTbm6QbhFB1veWDcXQZhJNo7QzK77SWC8HC4593ywP/8v/9vvFtOyFCodaLglDIy5sRut2EzXpB0wFrjdP85d6//ivbwJQ+nAxXBE+SNkVNjeijMUwEf2W327MueeZ5ZtJGLIpbCxrUtzHXBzBlKQrUDmLZQSJQxM50WRIw8BI6ERi1hZpQSrg1zz2oSXfFMA3dMGjqEAGCeKosZpRSmKbKeXRWvMf7MU3R+qlGGgTJmNCtDSVzud5RhoR7C3aH1KBcTA21YrQzFubg2vvrixD5f8cHz/4Ekt4iOiFz0M43gfs+b23/D7f3MMuduAajRTd0tldMgaBqwlknjNUWF4/1PWZaG+4iwIESkgM+VX/9y4vXNnh89C7tSt74PuCBS8eVdZIx7IskG8cCkP39927sKAzcZshJGeI54kGmDDuwlUWzDYpVWGze3t2FNKQlJsQ5vNgPXu/cQEm7v+OSTT2g+kySciLbjyHLK/NW/e8ef/NeJTUm4GM1rRCmg0bmumVJG9ttnvL1pfPXwFcNGKeoMY2EoO5SK2ozIwHRqvLn7kh+kH0AzWrdGTVLQVNA0Mmw3tMH49eELruTEv/pXf8aLixdwxr4F3FaKiVg5EmGvOXAxXrArO4QF8yDqBacuC4iw2+0pKTEfZ6ap8jAdKaUwlkyWuGffdH1HMD29elHQboG3jo9wet0oW8N2iUZYztkJZEzksRMztlDtLTrH4DWLVjmzTEsH1vbXPu2x2kJVIxVNAwd5zYZnGFeIHRnSyOKf4mlmWe4wMR6mf6C1I23ZUk8wTwvuLfKgum+xVlATagqvzzRsmE8L3oTicUhJhFJAsrKYw2RxWAv0Fnto3N3ckE7QHZ3AukWERTCtinSwJYATEqQF6rGi1sH+1j1NbS2C+t+FsPCysMyTtQCCMzAUm00vGOyMDUHrQsLOC6yWfr7Ke4BHyf6TJ1o7o1zOuSTfXb/f1+p5H5lET+GBRMjAHrGWp+pxpc9JHgv5sDcRzhVJX2Stg+niRJdfz3hKrqhHJ9P26jk/eFF49WaLzfd4HpFliVf1UKWZKaYn8MJmO/BwUiY1ZokD+eKGYiyqKJlrbRR3ZldMo8Byd5ZefaT13OhhAxG174y1GkWvzpDCukAloVpBFpoOXF+/YH74EmtGXRLqSnRQGahiElZNLuDLEsGwFsRwSSNNSxTttdGS0Fx706JS3BlLw5YTbkpdok7KSWmzkcdN2PDh1BYB0NFya9Q2QYmY3NYSVjMptT6H4/A0exA8kuDycoNb4+bOmBfFJTPmGVxotSBUpJywpl3h52ANp9KkUS6umO3Ich+flSyKZkMlLDHMoboze2GxICtVGiphIRiuBUa1jNkAUjFZgpyy8CXPnoBGnRMiTvMZVQdSBBNr7wwS7e3xSvXKdDJmBXYNSYrnguZMUmW323L57ILd9UWQh93yIkATA1/J1dU6rFfkX4NSpAPpK6XUx1P3jj9XajFL8G6N9xTZigDlrg6Qx6+vr3V+7TPI9duw27f1kicg79fBwNzBqMffVCDWpxVQ/M2PIp4wDrmitCp88forfvqLT7g/LehmTxr22LiDskHTBlKAOJLCPshFcF2V9n1NXC1B+zqZ1tdsTj2cuDnNDOPIfr9nt9uy0c35UJlSAL+pWxep0wuAhjdjnipSUqh0RdGyY9js0fmEe2XfKsdp5njsVm5CECO//pjD7oLx5YaxbENc0ipJMyl1W6kVnCZUnqstlT4dPcHeREe3BEQU3Ujr0i5nC7rz0aHfl3UUnzuf6FZ165lA+3A+dyoFmfTYKRUApj1iw+eBbbI+5/q5d4vWFp9/qz3fRju43e2QcY0xkuK8VAk7z5NNnGRh9sZkAepyzhupqIUIIeGgzkBhtymU8miDmXPl5u5jhoePuHqR0ORgC2bCNIcdkfjaISuYphAC5AGGER0HShn6mEiccw/Xc5k4Loa32pXnes4VDC/3ituC29z36b5+cO5vfFw66DV0ny5Kt3rxnm1xBlHWnw5rkG/KI7IVjP4DAnu/W3v+w9aeU197FoTjYtS3XzBuL0jlgouNUliARk6CJA0F+LoRIkEm964ZeZweca+FEFzI42g82yv449lsvdfx8CddNLr+Kwp1r3b+vPqTx8/1zqmzsZ48WvnxGzW7VCIi4Cn5pH1Px3vHv5+zVvy8tj2WQd5CMGTNqbNTZ7Al7MO8d4e3Fh3hQYZ7CFsIV4u8GZGUupW5MjHy8d2Jz8uXbJ4/C9vh79aeb+2VTwsuGvh1ViQVJG+wlFmSkMqO05rZ02JX1vsjJkckKbsXHzBsL5lpfPo3/wd3X/6CdzevmKfKsVZSViQl1GbMQuYnrArw+NTknEcDK3kUVk4xV92MZIYhiBraswybBcF7f1oCDFtaJzMjbjaJkzWx9JYga0JKcGqN3ZAZbO0OCfHq63cnisJ2k9luE7rEKaG1xlf3J1QTh9mZHo7skvC9iw3a4jfylBlLkAnm8d4KUWdaXyW8k721VkxS71CB0xLEntiZOzgTm4JQSsYxSsnkHF1MXiuTOQ9LQ+8rKd3x4x9d4QJHU463M4mFoYDbAXSI/HBNIG/jfJKEuoqoLUQErTnTUZGiiCZaXaitRX1njdYUtUarDbNKM5iWhmoKC1U3qAtv3038xV+9Ypomaq3dajhEft1onpI0ukDMqA2GvmykbqGIO96iAyOLk9GzZbF6d/7ohKI1J6dE8oYgvDtMXF9mHu4OaN6gKZFGqLVRcgGcinI6VKo5aayxf20vWepEtcrycMSXSjLjwWdyWSjJ0VapImz2FzRzhEIZ3+P64oJnFzexokh6BLT8ce90hKSKEeIm0Z73VKPrLg9DdK9g0cknciZREEJom/Ja3P0TrBj/H14e2dglJa6vLxnHgVQKKW3I+ZLN5gVjvg7iNWVKGillQDWjvfvEPAD9Kiem+RCiryTktOVeoWyvGIbCmLeMZRvjH2gLLDLj6synW25e/SXL8RPeHe6oGGgKa7rRmafMw90ANjCmDdtxh0ghqYadrxYim63F55YDW5mmBTeJLu1ua+kOm+1Aaxq5UhKi6oBaG3NrIErJOYQgdQmnB+00U59HKSfGNDAvM9M08+7N1OeChrWleN/vEkpGknC53zLmO0pKjOOA85qpnfAIfcZth/opsBAqrVUur/ecjsK0FF4++xd4+wWiH0aN1tn/h/oTXt3+O46HHVOVyNN2oiHAHFqLjqGU0bHw4r2XDP7A24dfUVsIoZODe4XWsAVuXsHN2xM/+Je7iBmwqLNSZLLA/BarExpS3hATTMLbOwvhLo2SPMh4om4LeMYZVSkSXVNmJ+7uDhyWmZQjPsIENBWud1dsN+9jbeLh7o4v3vy6dyKG5edYtvzlXxyZgN1eyHmIOtIaiy2knCAFtrcdC5txz//zVz/H8sKmZHZ54HIcGcsOYUYQhlL46a/esvhM0V0XUdaolSVcjkQHNts9213h7s0tN/e/4C///l/z4Yf/jMvhiv14xaZckNPQCaX0BOtZMdQB1WvcH6DdMZ0mcinMp4VSMlYr41BYpplNGbm+uEQs8er2nm3ecLucvnFaf0cw/dblcFSmXxjl+0L9wvFn4FeGj+DVQ+WThWVxBqD7OkHvhiNDPb1DSwfzPIqMwEANlUSrJ1CosvDOf8qUGnCJ6APuFeMQBy4vmB2BE5oMU2Kg5pnD8aEz1L1ldoE2O1qAaUZNkKnhS7eLiIYGWlLSfgezwN19eCOowyzkSfCDIQtAFI+RJ/OoCMSi7dF7eKEOAbQkA58752bxevRuBe82DXgUNTSQ1oHcDk6uG6yvnU39ILZ+fyWbwvYhfCyfiOwfrx54KCZf/57L7/jh767fz6sX6G5n/CQGlJ6/CzwWkO5nXjG+3g900skHETzKkuhyks5SdnUlEIqxbo9nBNgo20t+/OF7/OSTL5gOEvk9REB1lYTikBpmIybG8aQ0b7yqDZdEMiExELk9RiIOCL1KD//XpZMkIojEkXsxoVmE2LqExdwowuTGLJVccyjGEEYCaCrVOd7exUHcE6lENoK22EyDrsihjvFGSh24HQeyC/MSE1IEasvhYNPtAPG4e2kxUhPUlbkRoZBUau12J34K+DSn8Dn3THXDfIElQCVvzmwzyePg0zCovWNLNOzmxoE2t7CLwtGmFOkt5zV0KINkVJcg+FoJyxmdsNn57OMWOXEW60ljRmoCBjQtiDSWmllq6i2+xpA8QhnFSVhvJ59YRHFZcIluMDcoDtF7ULCO/oRPcg7LOzHwAnRCXzQMsHzBreBF0UQU3EkgOblkdhdbrt5/ho4Drfu2ryA7+Nmq64x0nefDIziyQl3Rq/oEDFvDx3rnXodOHp+PrwMp0kmq+HYvwPvPith5KfWOYHlXaH8tS+JbeEV7/uMlsloKxtw82yZx5kKgg1pPAV6noRo5PC6J43Hhpz/9mM++fEvVkWF7DXmDlB2St2gaQLsqu4PJ2lX/K8AbxelqJ8R6QvyaZdx6LcvM/X0owVNK5Px43AvQIhS1KSVUBzw5bTZsqUytsRlDZa5lQy5b2rAh2cJm19huJ8ZyYp4XnAVz5/Bwg/3931Cr8uL9HyKyJcuw3pkgmJ50Fpy/tv79/OusVgcBqkjPprNV6rne73UuyFN6yvuj+mv1bL2zrmS1eOQMIwbRJYlWrX/lEazoT3kGvVagUpyuRo39RaJkjIKvC4rASSmFVz6N1hrVjaUXoLM0ZjEmbyxmzMvCaTrS2gwWKmElsmBENFTXKeawSEKSs7QDX/3yL3i+qaRxoKSEmgcYVGvcv955slpcaUphUZXDpmq1LMJDKdtREVaVsrjHnBDHvXfDEp+F9e+Z1fj59R49HYz+9Fb6+UsrIejyZAQ8AXS9j9PzudD9DOyu//+Hdn239vyHrT0P69rjC0sT7k5H7Nc/x+of88P3rrgsjuRuvel0sozHifxb11N27umi1Mkik/M4XkfwSmCfF7G+ND3tfvInd2btahLv494M6R0JTztj1n15vVfnx1pfiKS7NvBkv25EraS9W1u6sMpDWNiq4YvhNYR/thA5SjVq2lor87xQrWHEGWjNJI3spIzkLuxypVrhdhJ+8vpnyLOMbLbklJHv1p5v7bUQWWuLpLAyTCNlvKBstmcN03w6sZxOmDdKDlX88XAfTiKvP+HTX/wtrZ64v/2CaZpjb1Tl5Ys9H7y8ZDlV3r49BRTgQhYJRTlh0KxwJh3OIhAJQk/7uqEJtIvKIgOxK66JvFmrlZI0FP3dSq8MkcE6lIwl4d3hxFAURzku1kHCxLK0qAdSwDo391N0FImGlbZbnA28MSRlk5WSIalTepfCbE5NkBSyJ6oYi7V+Po6u50qj1siCHHKfKQZjCeeI2mCpMdqHoigeZIQ1QNAWfhDVI5unnqC2xsO80G7uGJeHbtMehx8V0KxYi8cLFemMtaSYZ0vt+WeE2CVL5liDqAMn6VpTxLyo8wJ1QVIwHv3IE/W1SmS5kJia0aYDrQWW1Pr7saWGDZi3WCOE8z1aemmOrh1oYX/nDjn3TCzREF3K6oLRO8xxijZqt3e/f1g4HSO3LzEjVclukKJmW5YZzQOWEuILOxlZpnuW6Y6SE0kdlom2LAzDAhbWotPJsdnIudByQ4aMjAUR43JUXu567hy5izJingkSgLP0LF2Rvi6ms/h6yIW02fasOqd0YFnzQC4jmgukhJRLREe8fTPI+224VJVx3HNxcckwDuSUGYYLNO8R2SBSYr8k4c2oMqMOJRf++Q//iFev34TbCDDbkePpGC4FOCoJspJLIefMpmyjU0SCXFQlPo9m3N++5nD3KcfDG6Y645LRLGy2IZy/v8vMh4GMst9twhKxSbyeG6Z9HhDClgyMWbFx4PAwU5uz2aXekS5YdfDKdjOytMq8TNFNq9L3vEatsX9mSXhbWDPvxXt2cq1oEoZBqDVx8+qe1t5Hk4FvQE4x/qySBWaEzX7HZtzE3NUHbk4fMdeZZluEHAtsKqgngscxNDuX7zX8rvBs/x7NPkZkIA4+Cr5wc/hzbu/uOU1C7bivepwDozu5ohrr8fBsy4tnlzB/Sj29w32MmBY3Uk1QjbYIrWXmB+N0kN652s8WbkgzfLmH5ohkVCP/+u0752SJlJxBEmNyBpGe2x0EtQJjIsQNPgGNV6+i6yknJWljVOV6k3l+8T5JN7TlyGeffMG0VJBMSondsOGrV8bf/ezEh/9S2YyRWbi0Rqsz6t7XN2EYEvvdFXfvGq9uPqHkHK4UeWS/vaCkDfN0jK5RBj7+/JfosKPkZ3GfozsEmDDCrnO32XO53XHMbzgdX/Pq1Ud88tXPuZ8XLndXvLh8yQfXH/Lhyx9xtXnGWHYESZD6MdM6+XSJJGEcAy9MHNFOfJu1GLMuXF5cYLXyfH/FtMwcpuUb5/XvIcH0u8Cp/7yHOanCw98Jz/87x94J0w+E7YsAHcwVE6OsDHJkdwWRUjsYZw3XI5igI5CMXITsGiqP2tkRDLEDKpV3yx2lvGSQzMD+PIGwSl1OQIRJH+dbfH6gne6h1jgFNXDJLA7UJYiexZg5QXWSgyxx0PBedOpi2CRxBOhFWCjnnNS7jbznJv32Wbq33q0HwBYHgKVaqHmXDmSaRxGzZi6t92lyrEpXuK3etHC20qn0biPO3UqC9Pfk56/5GfXxxyGiUXy5rUARZ2TIq//nHkrfXf+Rl6GodL//XjGv1hnSSZA4DetjEc55vQyFQnoExeNHwuYlCtjaAYEOKrrjTVBxRBqu1rt/Nnz/+y+52n/K8S6jqdFSw5NHaKF1UL1n7rSupAF6Vo9gVFzlXCDc1E7WiLBvzobU/VUDXDKJjqfoZAr1k0oIy7wHYS4CSutKrrhfzSt+UjKCDFMU4DVTEFxrdDBhaIquHtMRcmYoien+RLYorqs5Cw1W8KNa2BKgVO3KPMCptAbiA7UJPh9JKLVlavZor3bHPOFSo0uSgi0ZWossJHWqt24TkUCdpTY+/+wG9wGvgqYDldbvbWXxOWw9idbiKN7C7s56O7KfnJZSrEfmGF0FawVswFKlckI0Iwy0qiwahJ6S2L1w3t508DqdaE0wywEWW3T3mCQWIphzmSuquXc+SG9LN8qmsNTpMYelW2qJxucsqZHyBsmZ7W7g8mrk5feu+nPJ2dIGPbdesCLkqyXM0/F/XpvXcf/03+dsilVZ3EGy7lFq58Wyz5EnYFp0awQRtz4O6Pd9JcH+sK+ViHsa9P349d++pCucmiuffvYVP/vFpxwnR8oVOuyhDBF03oOMOW9PQa00866u72NGvm6FcQY3z6/3BCQzo7WwPHh4eDiDwylFqGxrDhrF/Jlk0SGCaTHaPLEsC6VbVbVxR5p3JG+kxRg2W3IZQI4sLUJBmzVu779k+fSv0WHg6uJ75KH0m7e+53W8PY679QfOBfhTkmkFt/uAtyfj8imptAKv3u2mVrtjUX9EwP1xPD9+phY2Dt7Ozxjk0Jrbx+Mr9ff1SOYG4GrnfQSwOJKJBGDq0kFJMao0FncW67Z4aszemN1Y2hIFiVkEw1rr4dGx9m+GzFBiz1BJccbRxueff8RQX7F9PrDdbtkOO8qqIO5ZmKl3msRt6iT/EwDd6QDe19U4rFZR7g5WaS6xf0r3zjLvQGGAW4Gfr+As33B9/Rv+m/f4H7lEYk38TSu5b7tFzD92fbf2fPPaczicWJrz+d0djU9Q+VPkeSGnVS70+K79vH483TM5f221LloJh76shO04T8ZcJ4u+RiI92Ze/vj49/RxhtRl3997l/UgamtsTomV9QCeT1hqpZ9E9Cju+9grx8yK4ehf6Bblk1bHqtOr4Itji2BKK+ehCcGrPDTGNlQ6RWMNzCbBXBWuJuRV+9vkr7od7tpfvs91cfOPao9+tPd+K66ZFHmtWgoHUxuUQOSbv3rzidHdLXY5QI0sjyOaw0jEL15Q4szZySozbgZcvdnzw8oqXVxuuLrb87OPPuX3XO3rMaGZsNxHWvk7GRNR6tVdrSBx/wy8CvEVnkHvYaGPROTRbY6qtW461sPMDhlLicxOhaNgDVYPTFP1wuSQ2Y0KBJQlTa/giZFGSRDacEvkdrVvzJVHGDA+zsR0S4xCdmW4tMq5de8dzgMEpZ7yGtbZIIucuA2uxKqlEhnWLsgswskYg/SqQcWuMKQNhOYUHFpJykMltCUqniXA8zFhOWKu02udQC+ypVaNkI0nkc0Q0gpLyGPbsKTJ/jnVh7vdWo60g6sxKr3GdhOISFlQh4hHaevbpnbOGBIG9BPa01LCQcBpiqZ+V1vOenwklwbvDsiM0NIwmEPP4uz/mzUJ0KIQggGhy7Ovxw1R5OC2MSbDJIWWaQyqNZpWsGWkGQ0ZdmXpOUl1mxjIgXsnSmGfD54oyd7uyI5aBndKWBQSKdzt1TyQdY59zf7SKZa2uHJFEyivZELlimnMQliW6zEpOiEYHnuJohlSCoNLkkKLzBZn/E68O/2mv6+v3efHsfUrZkFIh64DqCDqEi4oLWUvPD0rnfXtZJrAT9/evOLTa9/eKZqUMI7kMJM2QBnIayVrIeaTkEWEdY0ZJhcPxhvt3P8OmV5webgOz0IG8hTJAPQr1oIgrY4nMx1pDXDfNh+BYrO/p4uSS2I8jttQ4Oew3HE9H5mkJEi0rmgWrjaWeQJVxHELoURspB/Ho5rQWZELk3Me+HvMGEKdaDfeYLJymBw7HyuW2d0hLDrtRog5RF8Yx8fLyktt5Am3cLLfM7YDZnvW8IQhJGlnmwDpM2Qwb8jO4HBTXgmiGjjI0e8Wbd/8XhwfnuKROCDtuC2It8GSPvWPcGtfvXfBst6cdfoUtKbIWc3QwCw1rlfnUSIOz2Yatv/TzQNLUu5lm2nQILK6nkivw1esjZCHnvp6liMFoANJQySQtbFJGJNPshFXn9du35y7BpMJmTFxdXHC5/T7eFh7u3vL5F79CaRRNbPPAPCf+7397Im0Tz180LreZTVKOywlhpmicg0rJXG2v2Y0v+MlPPqKpMSZlozAU2Gwvuw3sRMnKF1/c8eb4mg/232dTnoPXfl8crwutReDNOOzZ7y/RfMvdw1uend7i5Yp3b77g889/Sk6Zze6K57vnXG2f8f71D/jxB/+cD9//MTntUErfBwmultilingual_clip3JW3O/ZbIV5nsk5scwL1Z2l1jOu9Hw3cpz3vLm7/8Z5/XtIMP0eXGK0zxS7MXwwjq+Fiw8F2WVMCJBWIWnG5kouaxi1Yybh/909c6WtB4RYEs2skx8VPGwoctmQ1DE7IboBBPGBVhfMwurBbAnCqjVsmpEpiKRaoU1Q+gFhshqHdh4tHiIgVoJsAsbm2P0DaZaw1UtCq06tRMdS7PCxYCZ5Kv/9+n3yIIJaNdrJaCcnm/TOIQ8LPO8FV+t/FkGqxx9ZWz17zVB7TshKJHkUVaKwWktEYdW7Vdbian2NXtWdXaDsyftsPJJT312//1dXJ0anRA9IPY8FotDsnve+FujSx30STLyrfYmx7NZZeQMLQWp05qTzuAm7mbWzqevqRNlfvuCHLy54+9WJKSmWEpobWo3c1R6Lh6JhBQxWhCHmfpAEiRxdUhbe9GbK7ELuRIu5klHwUJHKOejVyCpMZojnILlxMhWRnpWE0QhSdkxx4JeqiEW4ozi4BTBJ68W/K1Sn1hNpadTW+kTsxbetbfn9KGZGtUpYeCdaMrwprc6IgJlSHZCwdioyMC0tGGZNWI1+JfcZ97CZi/y2ATdhkQUlAiHNoFFjzi7GkqCokc3JRAeau1F7/oCKd85ewBWzCSM9quVixcV8QY3wGXY6IW2YZNwSVIe08O6YOUQlhUgB7+SRzBjC7BnzAR0PvPig8OVntz1Iu57Dc52GLwQOnZQqYcsYdnlAljBvl8puHHh2NXLx7JLN9XUHYR67NMICZrWbeQQW9QkuE4B2P3x7FyjImSLqyIs9ZtbFRxXPK6udTnTWrV0cvbk+Hncmq6LtfiWnzqrr/qSrUvgP9R5vSYYAACAASURBVPInXQT/PiWzJOXueOKjv/8lv/7yHU026LBH8iYsqCTRTEgS1HeSBGnNpBDCGlE7HvmUFHl8fVhtnrSDa9F9kJOebVgA5nnm4eGBlMJ+Sgi5n+hq0xSfWlotjKzhrdJaWJ5YGtBhS7JGGSsp5bP6e54XpmU5AwzHt19y8+XPGYYAgksq3eYzNmuBs83WCip0eJUVqNXUi3CPeaSkc0bTqidZVejxzH5edq2HpK5lkj/JLVkfsM6KaOiL31FFuzow9ounpx7p3n7yZA42D+VXvHonWVO/pxr7UBReDU/QEJo3WoocvErkMFWrNKuYLVibwZYOajhZYdDEmJU1cF6SQDbuTzfcvvmIHz7bsN0P7McLxrwha6JO9/H5duBOJfzcV4f/AErbI2GxklCPo/f8e67B1AHwQhgkxz3ULppotf7WHFnH47nDpY9TzPsZeBVa/Q4C42k3we/48//X67u153HtcZ6sPYCjvH645eM3r9gMHzIWDVuoJ0BvvO0neVYSpNNKCJ3XlS7mMO/5FwJREPVFZj2HPrkv6xN8ze0hPg1W27bzItXXufV+rjZY6+OfPDTAyf521wXQjfP6uz5uJZbWuRvivgBzaURmrQlYgOTWwhKvmdG8k0sQeXEqkb9VElLyYwmI0izz1f3CL+++YPfBc4b9M3b/nrVHvlt7vhXX4XDHU2/Y5vDuzeuw/e/WclHTrISn0wiyR1UoObPdjby43vLeiwvee37J1cWG3cXAkEPhfrENi6aSIotNVqJ5nU/dHlGJNSwpmMXr1d41r0QsgFlYUK3n1epC7eMNdXInBN0qu13hYXLQsHjcDonmztLH6XHuXXQqXJT8aG/tHaMQaBXoQsEQ/BmlJPa7wm6TqNWoOTFimDjT5Lh45De5kAY9i8YUerB7RA20Lratbqgo27xabfXvEXMyOrke53zSwG5EI/upuse5xB23yjxXbAnyeMVPhiwU6Z2A65m9tQDJ/fHzFHHmFmcVFSFrCJKbARJWmvpEABkNk33d6F2LIZBzxpI5nhbqHN0H+OP+IBq2diaxXmXocx5EldZifp+FRkgE2Mvq3tCCyDbriDtUC3eQlJSKcJoqeRMdS0WDBG2zUjTTcqW64D6QUkJaCEKnKXPKxjgI6gttbjSbKTIzjANNnepQamNZGpIzpBH36HZDeiOIrmO0Id22D+/kmj9m6brlyCOsBktkrHgZkJKiAzcnzDLJR7AUeSy1EiPom7sIvg3Xn/zwvySVDSIZkZ71SMZIfc53zKaLFFQUTQlB+OmnH9MUci5ginsBiXW+1golUUTIWdkMhZxKWOtJkJvuFVtm3n71t9TDx9zfvma2iicNcmOTaNV5eCjQBsYysN9ekshMzTjVGcnxmbfWEHHMG9IMa5miieMSbixlSCQdwgqytn4yaCEO7mL+XDK0TK0RXwL0c1LELaQU9pjWc8lUoKSMecO8cTodefXqlqsfXXfBTCJyjaRbywmWhOcvL7n/TJAGtYZwotlDFDFWEVswywiHfp9mxEf2W9gME6Jb8CPIFqgc6s+5efiM01Gpc+qkT+tYt5/h4xDMwQffe8E2O9P0MYs1Ghn3THLDpNLceHhwhhGurpycWq8JB7IXrFXwB+pyhxv9Mw3hwc3dQh4rKS3RQCH9PEAmSyGrs1Fl1AKWUIe3N7fM3rt2BEpO7LYjzy6/T057punEP3z8c04+MeSBXU403/LXHzXenYRn78P1XtiPGZWKe6WhlKykLIyjsrvY8O7dzJdvv0REGApsB2U3Dmy3V1gfBJI2fPTxTzDJbMeRnAbMpyCY5spkM0udACWVHZvtnnFXON2dmKZ3XG5e8P7lS3755Q13hxve3b/hJn9BlsJQ9vzdL3/CH3//j/jhiz/ih+//Cc+uP0S04K6obGle0TSjudGsYa0xlgHcmNvMUDLXFzse5imI/W+4fg8Jpn/6A5y7oe+E6WeJzX9r8CVMd47vDR2DpPE5AAJmYiMpEoArjho9lDkUY9WgCaChtEoaW4Izg51Q35PYgmwQNxpHqj8EGGEL1SecUKDlGmoJ7WClZEEOzvJuwsalgzWhdLUGNntkKVkQObXF+6OCmmM5LKuKKbZAne1st/BbwiyPUqnZ46IXbCrIBEx0O5teZPXH+IoxW/j6isXfvVs9eJgTxyZij+WF99/P7enB3h//1x//rN9eya2ONLGKpM95TmeS7J9+nH13ffPlK9EDRGVp4Jk1Y8t7Nx5901yPnmsAZq8weUQV/FwceQdNpFfN3Xysd8S1jsk7JopQ8c0FP/7gOX//q1uGh5m5AykiC5VEKikW/uXR3iZqpW4dsH6lt/YOxMG7SaOKM8PZuUxkVX1ljBn1pQf6xUG5EgdpcaGqMUmAsqW/VqKSTVmm2FQTQlOJn18WkkTe2oyQUiUraE00CX9YFQmLlCZ4Cx9aVUiSSbJQreJNwJSm4aGuUQZRW6HVAGNsCPDHWiHREAu7DCdhLQUg1EN81cOvxUwRC/LMxYAIukcK2Y3WZrL4GZA26yPEHJJGh1OUmrgYzRw8wl9dCg2FFAHD1lKoWXrx1p4UrZ6U4y20fuBXWUCPiO2w5TreKxPojNM4npzGJhb51f6mA1fm0R2hDuQEJeSBnhM1J1QzZRjZbrfs9luuXjwjjZtQAXrFPXWjic6K6grS9/G8Ek8i5zVXWS13+txZByQr1NU7NFweV9M1u+5MKnXIbZ1va9bTOe9p7YpYV2s7F6y/uW384Vxf/81+MwD86ddEhF9/8Ya//uhn3B0aWi4gbfE8RsZJBzFVU9hgpG5BpOmxW00jQNQR1jyWFZBci3NtdnZvchU0p7Cd6sV4SukMoC3LwuH40K1cSuy9SCdPOIOUKWUohWoROr2+F0kDqWdmxN4uHKeZ+4eHTr52sNaMh9e/4u3uOSkN5H0JFWyP4+59BOvTsrYJxO8W65l3kNbpYhLtdnmyqnlhXdMfSaM+ZkXjDEeM5XMn0nkrWM8T0vHi+G8NoV3/Wy1XJYXK9AzIQKwbKrha58UcyX0caIC0zZdQYtuqLDYWaSxE51KzhvmC1RmvM9oWkkUXpmBBMIkwZMjqpBL5a5KFqjOffPa3PBtP7J/v2e+3bIcLtmlA3Lld3sZa0PdGXckxly60cbwZbV5ADC2lg69dAHVWB8fn05ywcdESJLakKPQJdXJbw77lkYZ+nDXSP5a+VqggGGLSg49/ew4FeGxfe571e78L6P1DBn7j+m7t+V1rz11fe1zibOTN+OLhFZc3e3bDNWPpCnAlcjU7AOmdXOqsxVou8Jul8uMWut7/flBbH9f32Sf0xPqoLsBYOaHHc6iv33xCsJjZ+d+dlenP1k+265p3fsLHo+15n+8Pc+s5SgZWg2yPGiwseaznMDWL7vGKUcVpEjlMJnIWxUgJr68kYciMJ6Yl87Nff067zozPv8duf8VuuGDz3drzrb5OhyNR9/T9magLxKFK3JNG1BSalJwzu83Ifr/l5dWW9663vHi+4/Jqx7DfMwxbhrIJgvTwloebB9SMoShLi32yZKWUyDANke465zqV2MmLSoD0uGFrm2HqWINod1uJvK4hpzB3kbA6EnemObrkxBNDyrTVag7Ag+wRERYLvGZUuj1oWCipKmmUwF7NeDhZ1DruJDHmGnZ8G/UQAmviYmvQrcRDKJJ7dwyIxM8ZTusCspwSq5OoOdQuuF3zrsVCpJK6i8KaYecCi0X9ljVs1pIoyQxt0W0lA2CGAZHJ7r27Os5I2gvQ5hYlRgNJYVG/LDEfLQfm5BKCBJXAc5zoFFVzXJTUW65q6xmuGoTQ/WFisRBFal+zzVtgQwiigUnNCt56JzrtMW8zKqq+JaykTa89REJg2SCjlC6qVIdWG9M8M6SCLRY26KqkklAJUTiSIkMnJ2qO/dC1UETQGhl+1ipWZyoV0yDqxGEYDXfFybhsaTWRcXZDkG+y2oxKInl04auE5SCJXs8qmgzR6FJJGtV+1gXRTMojItGlorI57wvdRPm3Mvu+bdeLZ38CpG5BGZ3853xBD+Gr9ppzzbBKqXfzS+q4RWRwa0zaGHdJSKvlpxeWyWg6MwxCHuPza23h/v4TDrc/oZ2+ZJpPQeipMG4SRRLvbuH4UEgycHG54XI3cLpXGidqq6wZaUjCrFFKWMdN84LlwrHNuIbVNe7kPKDiLMtCW+eI9xpEhJwTKQutLo9zYCV4veHiaFGsKrUtQchrHBJsdj791Rv++EfXXQC9IJZ6PnTsc0ri8mrg4s6Ya2OpCm0b3Y4601rD2gn3hlCBDBK5ZTsSMNP8gPEV6t/H/DVvT3/D/fGeeUo9Tza6rVRCFOAuZNU4r4zC8/cvUe6p07twVBGLMU63vmvO8UEoBfb76ELCH/EP80ZbbmjthKmTJWGizLNyu8Tnu8lC1kZJqx1cImsmq7EtI5lL3BUs89XrtzHfJTGosh2dy4s9+90PqO3IuzeveH3zJaOObIaB42ngb36ReX2/UHYTl8+d68vMOA4h4mkWr5WcMgi77Y7N5pq/+pt/oGGMWdiVxDYn9psN281zvC1oKrx6fc/r+zdoyTzbP48sNptBlOl0G1EZy13UuXnPdrxmv9txvH/L/emG3fX32Ywj+2HL4eGGxszkDdPMskxM04nXbz/n48uf8sfvfcx/9c/+G374wZ9GJqtnkl5ifooMpnYAgWVeAq8jugNdhPevLrnYbr5xXv8eEky/D5dEiOlHwubPHKMw3VTyXii1oXuQKjR3dBGqOeUCUlrHf6jHvEWAXLTr0g/tAYCsFnSNE3O9I3dlTLRvv6X6XTDhdsSOYYUnWIDWFXxxLCVmB4hOhTJ7YJxDPwgbQRbNAT7SBXjLDFKjtdrx3iVAtGtXQnW/BLETK3sQQALnrpDq0BZHmyBLdB89bSE/X90rXPrv6xYHeO++2+fqrN83VmC0Y5yyIlEW7+HMOzw508vX/xnknj8Weev1+L7+MAqCP+TLoy2Fx66NfqA6gyj2CG4LZ+JQ1iK8w5hrJ4hItK3jHZx37+DIanHn/dC7wu/xOgljzlt++OH3+N71Zzzcj+jxgCRBB6hLqEhSL1zTqkZy6R7APTcBP7+X1gOMTaDhTP13KgILIB4HftHCos5i0q3eOoGilWyZRvjNRiEfNE+oReP3UjEqEYqrFgddRzFNXV0f4FHS7m8unXxYfeeJELXkBp7QnKiq1JZQz6yqXFftarvKQhwMhhodYItH91VEAof/v1sHgf9f9t6tSZLkuNL8VM3MPSIys7Kq+gqgARIAyeGMkCNcyu7Dyojs6/7pfdm3ld0hhyQI4tZXdFdXd12z8hYR7maq+6DmEVmNxnA4MhxhQ8qB6szKioyLu7ma6tFzjraEtSgUckq01pnE+ch8s86CbS3UZCZzv0ZyiLUG0Gq33yGuc5ppXrDWiwjvc5IwGplqiaYCEvOYNCleJX4+t57AREFanfj8gOstrQ/QVBrWErvq+GhIFar1OQFuIbLLvQBmkWeDJ8GK0rKScmKzypycjUhRHrz9Nkj4nB/8/hdwJPwiOMgwu22d9Mp8AVjieA19OrL9At06AOvH4LmoQpf7rxfBh3tEo6Hbm3ZgHXjs91oH9V977T+gIzDGY4HzbQAvHEHYR48e8Xe//IibminjGaYrJJUghRCKuaQZcsHzQE0F10L+HVbH8XkXYHf53sygD5B3BR0KyTJeSrdX4TWAF0B2dF/5U/I49H9fmjehehNN5FQgN2qd8K5605Qwjblutc5c31zz6tUF01QDLKDfv5pp88Tlk49IeRXF1CYxyvj6eYI+x2gpzo6fV++0OY8XIH4gcJxBYnS16pIWLPfH0lw6qgDj9+XOky62kBKA0x0rvbuY8oJD+6JKX7YlP15vksZgXw/yw4Ee0SXcLtDEqXJULTnBUPQWDErajLbam2NOEiF3gCtgFEVLxtR4/PwLmJ/wznsrNvdOOFlv2JQ1Kx24vbqm2pJExRydpIm0rAkPkpQaeA3Sk6QSgN4d4P1wjURBoxkumkCj0bUU0wvIW7515d7J4ZYTd9i35c4lv0so4bC+78LFd++Bb96Dfygg77cdb2LPPx97jhrIzK5WHl095rQk1sMpmgpliJiSlrwhFnbc18s6lNgMl+W5PMw7lHfYLJfzdMBrfPk/33zYYvV2N+bcObFAAKCyqJTgtS7X3caHfON1vTe5xaXP+O1OFba8n+U+7m9haSxVi3JKCBWHN6oYTf3QO+usosNXdSe5Yg2+fHLBS9+yfv8dVvcesllvWL+JPd/5Y2ehu1/mtKYUCsIkSkqJ1aZwshk5X684v7fiwb0T7p2uGNeF9ZBYrwvDOJLW71JX30MQ2s1zts+/4PrZlzx5dsF2nrl/uuKLp7fUFkz2JB4AcSd30EF4VLvdvZHC0yHWtIfVU+z5FvWSxsyikjLbOVxc1jkz1Wi8THNlvRrAPPZpYvZr0lAxRD9VWJXEfop76WAX6QFeKjB5RUWodry312VkyNKVKjC5MWZoHjN6i7TIiapRFxzFHOsEr0izo/ExZMHFmJsgkqitURKspXTFVTQZVhLEuUasy8Qx5rqH+qyooimasGmZp9ritoaEYp1sEPWeqJAWe2AJ4m/SaL55s36OhlBkt5hxqwCLQiCqJloLm3HD0WAHhYVfb9pKf3/W6YBhcw8xpzhI0KUrymdv9OmDh7hamyO9QZhLqFhqXfIz70xlR0yoTSkeloi1ha2mtaiHMdgRzQt3GIZQzzRvMa8u97HhPsSnmUJZm1rsS5tcOt8vbAkvbww9L2xOM1mVccwHfEus9Zw2mqlZhug6auSyaCKpkrKiuYRriCqaFc0jmkqPfwOa1/H9Ibb7clG/s8dm+H40SqzSPEBI1wZewwqwz8zWbpEqGm4vMTMyFqBK2Fji8e+SUsxBSoUxbyhpjZB67eBM24nW9mx3L3n57Gewf8zt9StMHVKijMI4KNudsb0ZoRWGYcXp+qTn/sZuf4NZZXHyUFGGofRcJhqhu7kGyVSFnDOZTK2N6o1UStjT0hBJrLSgOsbMRG/kIcV87j6T9TjLy0KdRcTIaZpwnJQDi3380Ssu/2zPO2/njh9EcxNvgU3IjCp8/92Rx88bV7vGqQjYBdbOwaTbdSvOhqRCbhWTbW/wVl60j/F2j1O95Lr+lq9vfh32xi0h3jqJeED1DJVrkBYcAXWGBPfOThC7oM07aEN3nWiIp1AkVGF33ecDlVB90oimtDWwDPtLzHI4XJDB4fJVY4+xKjG3uyhkib0/o2QNMsC6rGL+NY2b/Z6Ly6toiGQnDy3US/e+j+qK3faSzz77AtGBIY08fjrwy09mthZY3biGkzPn9LSQizLf1nAZyqB5YBwTm/UDLl8azy+/JCVhNQjrnFnnzNnmnKGcUKcb0IFffvIZVSZO84oHZ2+hWjDbIiiXVxeYGXONBqDqipLPOD054Xm64Pbmlml3jahwfvaAl9fPmacbWt2iecB9z2Q33E7K1fYZzy+f8PLV1/zxk5/y4x/8KQ/uf49hdR9kiHPviSRbpumaOk2oljhvdaZ542wcfu99/abB9HsOw+GRMT0T9KzRLpzpQWVM4KMspFVsH8wSn0BL+O+TgqmlbeHUdni1bwaelWYD87Qlt4rbBTYYySZURyYDk0KbbtC5kmbHq4ZRkQptAt2DFBhygaxMUmODLbFhJYlNt9UY7Ir2QjDHfJIctL8DiNOqL81hcKXN1sknR6AnpNrBBJSl4dNiDhXQfXGh9UaQdlszDz+YUDq1YKPVrjTRFA2hYNz1BhMcQZ6uQloaS3dwpvh7L56OuGoHWu9gnQsQdawA3xz/1o9FXbTUhGETtgx0jcRKZWE5RfNiaTjERnynAAQg9YIgFlQU7KlLsXvDStshYYwavQVrUwrrB2/z5z95j8cvPmV3A1YtZvxYbOj09W4eRUaSGIpY2xzsVU/EUNV2KI7UQxlSIYp3CTm4uTF2xLQ6ZDFmlmGnXaMjxy6uCVQqGcXE2YkxCKgpzTMZo3gHKkXDKk/ifJo1gq1faK69QdwjloBQGMRJWsOOzlJYVnhjUO1xTagoYQ2gkPbMlnqzL+Pso5jy0gdgOu7buDA20Byq9eQwzZhFKu6tIX5C9RnTmckFyTWaaV2NqN6nX9VCZY97PgzZrBZxPGkDnxByzFHyKC+T5IjJImQ1XAkmrwM+kaXSJHxu40+DNJNSYqqNaiuSTew1hvXOolgx6NL1WYXxbGB3s2dMHvO7ZB0NvKS4OOv1yGozMqxH7j085/TeKeB9RhK4RRPJ6DFXgtW9aJWQo9pjiW++oFQSa/kAui8FPESc9ADkl//dbUqJ6OH3FnjtGHAXbGx5LlgC7h8C2HJXCfD63JFjY+/uRrTkAqoBqH3+6Cv+/me/4sYUHcbOuBYW9YuJhne1KuQOnB0agHdeG3oiWZFWO3gQSrvlSCl+X0XQlEmpkHIJJUFn4FprzNaYdpW5zYCTc2LICdGMejoULct/XTUYM40+XNcQb9AadW48f3XJo6dPuLi5iZhB3I9O7PHiznz5nMv0a4ZxQymFNAxklbiX3BEaAWYcGawLMLs0/ZfTr3TwIE7OARJcZi0tOcDhavXmaIBV/bG+rOglK5POJqav6ePzy51lbNaC/dzPvyI97wiSTEqhyGwEG9ncMO/AOEqWRQXSrZ68hX2HV1qrWA07BWxCbUabUcRZJWMg7HgkCWIDnuBy/4Knz3/LB+8lTt46YTWesFqdhEWVGLvpKXioXGMNZ1QzKWdSTnhgE+TFVia8baJAVWJvUIl1lYaepBUkFzTlziAPAgHSwtZv8UP2ZZfzw3rQXhVHk1s7gC59VkE/0X2exvL349d4bPQFuzqUiNkLmCaHmPTdt7B6E3v++2MPRmf5w+X2ikdXX3K++SE5Z4oqkrt9+eEzxudOvQlxp8VziBBLHFks88SjodNPWLcUs8OlWa6WLA2qu/WJ22HfXKyeDpeyLTr3JfYs1ytYz8taj77NQv7zAI4b2BxKSnPrQGvEVdKi6jmYS+GEAiKs8Vq3x4vmt6WoT31ISInXivkXgCkvXlV++/SS9MOH5IfvMo5n/9XYo29iz3fnGAbGUhhL5nQ9cLoZOF2vOFuvOD0d2KwL46gMKbEuGc+QU477p4LXytSU1LbM28dMVy95/uhTXj2/4On1DZe3lfOTgQcnEvnzvjE3wFec5BKzY3v9pl2V4inhXSGgfX6Xi5Ph0JRtFvtq82giJIHZiJliBpKcXApzbTHDNhmrnA4xTjThApMZtJh9pKLkhYGfU+zh1jjRFfsa7zv4XkbOBRU9NG/TkEgt2P4msdbwsMorqTC3FvcGEVPFHYbCNDdgsTrviqgUDgZzC2A4J4UWSjLR3vjNvebpTi+lJCT1e76rmXRJdLrKIazD42fNK6Fk6jFRlMmcNkfTLRclr0oQLz1FXdYJ0Wg0ZAJI7I0iCyofATtRm/Vcb6kV6Y23SPhEu4X7gp6Lhw2hw9CjlnVruZRLNHs7SyB1JZB1AlxKsWeophDjomhS9pORpXVgFJoIVjqRyR1r8f5qM1Luc35auJB421ES+H7CW0WaoWrsJwNN3DTl5Ys9L6/hrz84RdpEsh3DYQ5UKJNU6I2jTqwqGnldUkRD/Svard+WuCkCktGckZSRFLPwkmYW1xX3ith3u8F0Ku+z5QLVPdUqqjPmFWkzdW5Um2h1wpnQHGq/GD4WFq5BZki4dA2TxPpMouQ7dnianJwGkiitzszzjuubr9hvH7O/uogRIyqkrKzXCq1xc12wqmRNnA5rtA3sdrCdtrjVTjyI/D6rhp01HmrIVoGGeJA7RPscrRTYaGtzzNPqlGYVUDWkxCxq86jn85BCLWgVTRL4lhH2kRLz27bbmWlyhlGZqvHxpy94eP/9UKfj/bzA7OE4o55Yjco7D1ZcXTfunQ5dSXxN8xXNBqqFggpNZAmCcR5WiFYudo+5aRvO8nNe3H7F1e6GeVJak8CpXEj5hDI+ZJ4aqvuYdSvRaNusN1C/xtqexgYoCAltLZrx1Zmr9Sb6gnFUvMdCtT11V2MsDTG/G+DJs4iTJYcaM2vu1oCJMUfusS4r1ukUJaznnj95jtkOTaEcW5fE/bO3WK0esJtu+OK3T9m2e4zrD/jbv/mUL19MmCqqE2WYWW+ch2eJ0/UGB2amSLG1kEthNWzYjA/4zS9/hYsxJFilxJAKw1jYnDxENOMCT59c8dXll7jCvfXAvbN3o4FpoW66ePk1Vo3ajGYz5ivMNpysTjkdR+arHX57w3h2n1TWPDx7wOMXN7RWg0hEt++rIHNmt3/Oq+vHfPj1P/D+xz/gR+/+KX/247/mB+//lFzWpHQCrDk5PaFOt4hX1gqr7Qoz553T+7/3vn7TYPqWIwoDI11ldh8pJ39SaU8F/6FQm6FzgCHmdD9axSZjMLAEVhIujTQ5qfXks4ME7o6MI2fDX3HlH7OfH3c/yWtEo3tpckbzFfV2T9052r05KQUoSNth1bB9SJBb7Q2Vokg+DnOt+wB73OK1G864OqFdbrEpfDFVBbEuP7duO9W6/Ys5XoS0ykw3M7aHtDymglSgSR8i2UkG1l/To+jxGXwiOm/9MbXNcY4TkfxbL5i655V00Ggx/r47j+mY5dMLkzt/F6A3H6Cfs6Ux1Q4Y6Jvju3B074IuKA+5dC8OfWFYdVu4wCJDEaQa95sYB6uW8LS8Y33U/xvwQsw6OliALWsOcHXcMiJOK2s++OEHPPzNI+bdSGuNSoPamC2GaSPgC5DvEOYGqXtMN0zmA1ifRUge9h+LWqZKAzJZnXsj+DzzKiSJuFeStg5wFFQWL+ewFGhunZkXyEb1zCCZ6sbkoY4a3HGdUW+kliLxFUjJgNoBVw8LOwURpUihNaNmQ8x64+0IVWRRmiuzJtwV94x7wySRveFtokpDrPlaCgAAIABJREFUJJpLbnGeREG6t2szRz2k7CLBqkUqok5tV3i3FNw5qAwIM3UBJ0xAjGaKNhCpNJtpdUOTFFfcGolgQJtMeFsFG1J2sQJEqIQ1HlW6qkowhcpM9WBHiQLJkTE86Zvc4GTONpnrr6/xPIA6ZrVbuTR2txMopHVmkkbLM2W9RtcF2RTyunB6b0MZE+//8HsHQIjjyj4wkKN489cYznAEyA8I+x0bOw6rmcPzHsH13siSsKV5HSTpj5ZjPH39NaPxFY+s/XeF33lz3+FjAXjlcIIXnrx3gA8WW4Oo1QtfP33K3/79z7ienLw+o18Q6GzN6Hn0c+fBrAqWd8xxlA5C1laZmtFaeF/kAwu8F085kVMO3/dF3ZCUtFheJe22QgIl4qi7YbVyc3sbMxNEWd+/fwCYYVF1EkWvpd5s6Wo1N7w1nj1/yYcff8rLV5exvYrcsZfrBPrmoMbNi0eYprB/eTjG82kO4C+6Pv1kd8HqwgiR5XxLX9bdasQXwDBan9FzXRKB11f80e6ugysSoJMdrFW6VQsdzD/kD8c7sF9krBNttN9nSh94TzChqzmmHPYYNIBJk7CNac2Y3ZjVmG2mtkr1xjzPWJtpbULrntwq2Y0hwyoLUiN3dE3kpOxty5fPPuXs/JazB4n1yTmrvKHkFbkUqHu229tgfUuO99ltRKQzwg9zL1qwg3MJP/dWK1mG+FxmaDqCTi4xP8KNYJYv97lAq+FzLr5cvjsXY2mGdwVB150dVADHJsoCgXP4+WsNvw72i6ZDQLw7YxTvFlvfdZC3H29iz78s9izFQFvAfmt8ff2c9QC5/BFDPkXQINno0Y7rsF0dN9G+ZvuPhIPoRZfHHRwShChq7iiH5bhf9491vA4ewDFL5+l4w3A3j/V2dw1HfhOJ2nF/DXvaqPO89q5ar4MWOzr6y7QWJEOrfV5ua7QWyqlmMcdyXhRMGcgJGSI/JMI4khI3O/j08RXbBxt4+z7rkwfBDP+vxB55E3u+M8f/+b//OeM4MObEOBTGIaPjujeNHaYdtc54rdT9hN1WXAq3dabNldkatQm3u0e8uLrm2cU1Ly93bOdGKYmicR5HLUxzBRH208RXLxqX18pbJ4XT0TkZ+6zSeQ+WKCmF5qiPiA3tCiymlkv9NNeK4N3SLq6N4hjK6WZkmmfmKQAMt2hyzy1y3to8bP9SAL3VAhsJwp2xr7U3TRuSlHEo1NpQhVWKxyVJnKw1cgyFpkqrRhm0E0/Cfry5hwVcjzlm8f2QouESqyj3XCVIK7NEzagIklJXCfbGqQRg3Tw+g+REKQPZY11PLUgxc9cMBZKtVJPDOkaCpCASNWkRJeW+5iXirJtHzZsiBpp14oxEDRUkUBBVjMCT+q7DOJROcITZWicg+BHDAcSlz48KW/EDrNNr+4L0wfYxqypJV252QncPoKjErKVwszAKwtxiLpNiaI48rnZL+6IKFpbueO2qoQK2AKQFmyt5nqnThCDsacxFud0Zj15cImsjFaUMK6xu0ZzJQ8catJKl9GZWBTHyULpNrcV5TzGbTHOoi0VTfCXHCs4Z0QHRErW5Wig9euIs+btdd/0ff/1XfPjx5zx+9pit3jKlhktYEjZzZq9Ynal1pvrEvJ/ZtV2QTwXSkChFGYYV4zBQygoBVEc0RYMu5VC6eHNm2zO3Lbe7Z0zXH6O3X3N5u6MRFsJ5Jeig3FwKdV9QT6zHDeOwpk4w7Wd20y6cmITAPmigDes2eM1bNLXF4r6UUBMuBE5RQU2pc0NSNInwUFsutbx7t7ttxOMlY20OZCnF/dRaxIkyFOapsd3OlFF4+fKW3dZYrwXJAboIQiKH/b+D+8x6EJQ9Td4i6Utq22E2QF11Mk3tmBsUbeQESGWar7mYvuCVXrPd31KnSm3dsrHv17XObE4yygoRI+XAd1JWViVj0yu8KZF4BJEoeODh9KMpU3JjXxv4Hq8Vb5ELulZam8AzJgmVDDbz5eMbyjreaxGhpGh4iUZeUVQ5Ge5RdIMI1P3E02dfx7iZrAxFODm5x+nZ+9Sp8YtfPOFnHz7jx//+f2N7I3z+9DMkpcP7TWnm9LTxzvmG9Zioc6PVsE7NSVgNysnmnMsXW15efoVoEAdOijDkxma14vTkHaiGSuYXH/+aSmVIibfOT1mP93DbgzdaE55fPMUksEUVQVrB5sLZ8A7vri+4ur4i3e4oqy1JMu+ePGB3e8Hz24sgEzDRfNdHgBS2dc9uumG7e8XLV0/48Mvf8PNPf85//On/yv/y7/8TDx9+gEhBNTGsBty2LJb1Z/Oes/PT33tfv2kw/Z4jSO5C/Y0jP0zsvzLGa2Ve9ZukM2wE8DRi1pi2M5K7xZYlWGwlJqBIB7Fhup2w8iWtXQdQIrFpUQ23mdZiYP10s8f3PeXIkHWFT0q73VGnUBLlZWhpV/qIxWbrM6QKVnuRMYc91e32Ft/2QYdd2RTe2NDryaj5JBIsUmIiGEHZA/AQI+Y6NbA5mDANj1qr9pTPPJpKvbF0UCDJESxdzrPfAYiC7deB/tZ/YITHcj++qVo6wKm9uDxexPgT/sz/Y9fHm+Nf94ih6ctY4Ehal8XTU+v+DwHxxVooYEIiQLkFVlFfnIq7jUj3tF0GWEf9vgx+jleHAMwNicAuhdN79/mjHzzkyYuJUhJTdSjOUA3DqB1vcHFaC594k2lBTQCnCuhigQfx3sUPjRWRGRPjypXqygyoREnlXoiU0kiu0I0jqofKBqV7PGcMDSsDic86W2d2ejSJB1GkZiQbVMFbCTKpNqwVqhZUJ0R3wa5txOBCDPMCnoNhknpzAkFaALazNWoSaOG329w7I8k7I6wQYmUlJlApZntg7OcsrrBLJDrePYfNhDlHEWkEW1B8jAaJ1EiaJFGbRBGpO1BoKOa5B6ESP5cUii08mCOtgVXccjTB8IMVX2VCUNQz4WTVGIgmvEnl8nlIOH3c4zcJscw8TtgaWq1szjOrs5HbywbJmemJx8nIyb2RUgpnD8558PbDYzAjgLm47sGkNI5KpSMp/S6aFVYBh4LtsKCP4NlxIPjxNZaB20vr9VD16bHcXR4fr/2NptNCUOjv5w7x/g/yuMt0Xqx8MHj+4oK/+9nPudzuoKy52wuMRmdnWEifd6Z6KDwWVmZrlVqDFbeAXSlnTCUKXw27mpQSmhbQN+KhptTB4kW5cgSpY96Exhyw1pj2Ey8vLxnKwFsP7vdB8tGwDTtJ7+CadjAyrC+vLq/59OPPePXyMhrCKAvksyyJ1tUONLDamB9/gtRGSoWHb70fdgZLvDWCALC0dDp+e7Ci815o9dUpaQF2j+prYQGBPRrO37xecmfNSwDYLEA00fKPl7nzu994GifscpwA6APYDvCHDt4sxf6iB3SLfagitDYzubFvM80a1SrV52Bl1gmtE8WNMYVPedKYE+LEPAfNmTbs+fr552xWT3nr4czp6i1W5ZRV2TCWQkmJ6+tX7PcVJRiwSurAUQCzhwHKzWn7OVQoJT77onFImpEyYp0hnlIOtij6WjQA8NaY9ttFQ3w8ccv6+28MBgegi2Nz5ZvfLwDYN9UC9gcA7v63Hm9iz7fHnuUwCZCSKtxujd++eIq7k/QnyP2zYJCX0CNLJGvBnI93e/wqr22TEWNU77ySIJ04eEe6BN+4Q472ev23ZAGRQw3lyz4u3Ll75LVncw+QlQOA22ehWLcJq4viuatq8OM+3wKUtea0KZjAtQX4OlvMg5vFsARSFHL/nBLxNqGoJLbTwOdPbni1UezdU9arc1bllPFN7PmDiT3fe+eEGCSYGNcn5LFQrbDfTfDqkv31K3b7XbDca6gJmzk3c2U/w822crnd8Wo7c7WbuZ1mqsX8i/PViI6Z3WS82vZ82aG11ptzws1ujzm8cz7wYJW4t8msYoEjKWqx3PGKxV7TnJiz1P2nm8fcQroaLlnEymk7YR7qJHfBzNnNM5nMUFLYYnkQUHKf3VIUKIqmgd3WmaaZXBLJBWszIsJqzJyMBcVoZkyzkLOSE2S3iItJkGAiM03ee+oxG655jD2orbJ3ZVV6YxcnJcXcSe6sXZibMRM2nwq92eo0j68xNy/M78SjoTLPgQ01vdNi1WUf6fedprAOJVJ5Ie6tlAc8JZIsjXsLxcaxl3O4LyIfs0NtFu44fpjNmXpMNzOSaIDE3dasdcUj/d4K0nPU763HT4PeMLSw/uv5nvQYtyjEZfkkbqj0PQ5nmidaLpCcvVdyn+eS5Kh4pDtftLkR7fFKdSG1UJbVusen2J9ud/Dl5Zb9XHj4cGDtzlvvn1PWJ8yXT2OfGUJPqbrqFp/Wc1/IJROzdRQtq8jxUoomiCZIBZEBupOEdGWOauopbijNRNMhtn6Xj3c/OOe9759zffVTPv/8KR//9hEvd6/YpxtUK0LGy0Bu4aSCh810bTPmMw2jTZXbaWLPnpyvyTkzrNasT85ZnziDJrJkXBpT3bPdX3Dz6jf47Ze8enURmK4qeWiMK8fmFdP1iMyFrIX1sAFXbnZ7bvZbqndwFT/MeUzFQQWbYQ6pHimljld6XHcn5pql2BeThkKv1tYtO4VpnkKpJMd9qNl8UItPU8ykTiWgJW+Oi1FWidQS+/3Ezc2Oy5s9w7Aik2OPl0aWFDGX7v3jtzGbbD4hkUltDBUZGbOZKopaRrWQdY8w4T4De/bTluoZbzO0CbF9Rxti3bZm3F5esEobdtPEkK1jVImkgtqMd7cW6XHLbAaHee+0mhizsisalpfVgqxthrcZsW047kgIJaZt4tMPr3n3352x2RQ2OTKHBn3EqDIWYZ1PSTribc+zr14y7yeyKjk7p+sND87fo9UV/+XvnvF//80XjPfP+Wm+x69+8Z+DPE3sS5qcoTTunxsP7hWSTMx1ijw7ZfIgrMYNY7nPrz//R5oagwS5IWchD4X15iHD6j617vjy8QVfXT0GlLEU3nv4LjkVms2AcnN5zc32itXprjfUhHUVhh2cnNyDk3PWuz3ZJ4Z2w4SSpomHm1Nu2jXbeg3sceaY6WWN1kkabg2Vmdt5z+65cTtd8eLlE/7qz/8TP/7j/0DO68gPdMBppGHFuFpxunkzg+lfeHTAl4Y8gfk2QzOmC6PcAxkFHQX20QfZM/VOoqAZfDJcg8UiLq+xzlMC38/4/rfRsVSgWEjBK/jcsP0N03QL+0rutL6mjf1uB3uFGwvAHSe1ADRM+gY5deujRsxSahGgEqCz41ND6UPY6A0i/I6F3PHzOw7bil7B2ISFYmiLLV6fMyUopSh1nnuiEBaa6tqTkiMGqgsq5Bweu7x2WIwtVjL9eO19RZJk32gieX/c4afy+u90mvGb4zt0iGu3ouiMCJFOeNJe2PsdHPxo/7EMfO4c1EPT8Qgy+utNqkXW1pUcLMl3X48hPw8GqZSBH//wPf7p0xfU7Z5pFvYtoSlUQdqWqR9Kk5iPJB5zfxBBPWPSEA8bBAgrvaweRRuKW8YQtgh7jxkcsy8DaRPJlYSjqWKtIT3BKWnFOjfujc7F9Uyt4UqfPBGWfx34dBhUMasM5qTaG0fWC2hrNBfaHB7GeYyBjmLhH21E4006kGTWm+3u4a8vNcqMZmCK4ZgXxCe89fLDomlmnVmqkruAUpBaMQzREfdg2VRKfEZ1as3gFXSi+Yy3HEVEmrB6ClJpHjZ74hmYCVtBg5b7fKrUB2s6WKJNwcazFo2oWENOM8Ul0VrYEQT4HUXUpPuwJESw/S1jHrH9LSYzVhQZx2hc6cx2B9t5Rkoil4KPmbQauHdyytk4krLyo5/8hFTKEbSSYxwMVVwKtlQ/95j1Ku8IqhyC3qGDv/ysJ8E9SMbyjp8tQ8oPnf/+HN6t8YQFoOz3j78Gl3VG9pEB/Doy9908FoD0LsAEwsGi7ZuHw1wbH378KU9fvKKlEdXj/eYLwxk7sOelzzUIUKPPG2uNNk8HECvnTM45wNyUYvPsX2PmUbfaSAHcLcX+UvzfZWkfvw+WpCLspomvnj1Fc+bhw/tRCDUCAKyRdoLQaqXOMzdXl/zql7/i008/odUas99EyGUIpu8CEIh0a0dFPYEbN19/yZP8D5Qx8fBBwlMBcgeoOfZB7/6dZR3H98uaXea2HMBdjzhu7Zg53FUkiXdVVc8bpA+aDXACjix1WNjp0Uyy5cofrnPr+0Va1kkHdZr1BrD3OXkQHuZdTSECZDooN2NWMZ8Rm0ltRjBGEUYVkhNznMxJaQj2aoFnV18x+dd88FbldHPKmE8YdE0pI6UMJIHLq6sAdzSTNAbaJg3QQvrnVLo9FTEnjm59nFLCzJnnSskjq3FNHlZh9bOcMD/eI9GUmNjvb3EP259FdRDz2+Twxw/n8L8/ONydQXT3z+/eq9/d403s+ZfHHrsTe1p/nVjliXkyvnrxkpX8lpz/lHR/QzIheSO/tmSWhhh3Ys7y87vti4gTi/pA4LAHHouRb7SJlj22X9/Yw53FWu/uPu4C3CHcLc+xGAHSupJfwvqKpdY75LYcSHu23CMi4Ilmlda8W+J1O2BCASAl/niXdrl5DFFXpTHw+MXEk9mxH5yz2jxgzKeU3xN70pvY8508nj+5pC6WTy32MaoxzRNuMO2XgfCNfTOm6pgW9pKZZme3n7m8vqZZKOOWc1QxZrPeh3Vu9jNmMZfIWsNV0RZOEbU5X73c8yIrp5uBTRHurRIPTwqDdjjAjOZhqS2Bsx8aIxmnVutquf4zFcSMLMK+VjQpc3dpWa0kQNQWlDdXwcSprdGAlBPJDSPsRavJYbZKa8bcCYVJCOvwJFE/CZRBD/nE5ILVUB0UlFIiDkwNSMI0R1yZZwtiIIqmeF5fgo9EHbfMrUwphesMxqBQmyDNsUyMG2hd4bM0hPr9oISScZobJcOQE65C7nPNVBzXmG3UPMhnYbEXpE9Tpc0zSKiFFlVUSop063bpIdE85jAlXb5K1LrLbG5AzA/fo0J1P3w+9bB2b72GXvK/5HJotIiEGlfEGXLGmsXMQQ97VdUccwGt54K9secEIcEIssDcWtTFZWTeG1oreaWUBG2a2e8mptuZfW1c7Rvr9cjDhyekIdS2eVgxbE6pz28YUhAnXSTmA4uFHV63tztYDGKozqQU71M6cB0LaI3k9YFoFe83vk+poJoJJEERSf9TYsS/1rHYtZ/e2/Af/uKH/MlPv8fHH37NP374ay55icsc2E/OHUp1kg9kawh2nH/qC604WpNtTtxc3rDf3TKf3bIez9mUzCrtud5+gd18wu3VU3bzFPm7CsM6kdS5eaXMUwISq7Qik7Bm7Oue2ec+A9EP+41I3ONVZtwh57jWizNDa8bcQr2Xh8Q8R3Ml5gDF3lStIeoMY6G1PmtIBFkaM+40a2hRmgs3N41UFNVOSPWYA75eZ6wa8xzxO2kKHEtj781qLGmLe8Lqlqtd4V55gKTHaA3lZ1hOKlB7kFXctjgVkRusbXAf8DaHNaYntBO4u8cxYsbZeMY8Q7NX5FwRqcz1Epct4hkxP85/sz5rcy+crlfUmtnPt5Gvzg2roYYQ2eO1hUVeSrg3tjfO1VVleOY8fLBiSIL7hHg0j3ISTsY1Yz4FGtvbWz579AWzNFY5cboeeHj/fW5vT/h//q+n/MNHT7EB3j55m5fPX/L84gLN6VBLpuSs1857D9ecjCvaPGFNGDTma69z4mT9gIuLC252L8kqpOSMOdLpcSjcO38PPBrbP//1P1F9T8pr7p+ccv/8fdwr7nu0KM+//hq8sZFT1nJCacLu4hWrfWMYB87He+jqimnXkPkWlYy0iQ3O/RL77dZ2mM8xzoOOsUr0BIxCo6J2zcXW+acv/oar2wueXjziT3/8l7z98EeojITCxFmtNpyebH7vff2mwfRth4B4waSiu8T0G2P8S2X60jj5XnRRhyq0QWjXxqoZSYNtQXWKGT76AbBwILXuANd/1qSiWWAfQEmrrTds+jBRSZHsz2CTRqOoziTVGDpf42bcd2mwJUdrGH+5OTZ7Z3YEuH4XbkQNSuy0vl2sbe5YfBnxbxYWDNoB/ta6XV+Tw+wlb+AthlJ30QleBW29GLpj3bAUjYuknRq+oF6XwuhYRLAkRXAAg4Ik74f5CAHgx+8s9YcDatEMc+1ss/DSgAPj8c3xb/74BpNwqdvloOroybLEfbAwRAJ5UNxT39jjeltviKgThcTieyILfGCkDiXaYX319UZstrMUHr7zDj/9/mN+fm3spmt2eyA11IzUfaxnd0wb6hWVQvOMpRltOWTyHQSpRJOgBWJAJVhNlqy3A7Qn5JW4XWpPiJ0imdabSy7aZyImtvsdCy12ppEp0ZTKAcrMLrhWZp8xFbKHX7Yx4bWAZmKIykwyqLtKEaEiBLvRQyWmIc12ESztMDfUT4BEbbGRV59xX7EAKQHahv9vQxGbEMtYDhaMJCd7RW0DTFFwmVItVF5uTtI5lAt1wDysEKxF5RmFRbcb9FDVuKdeaIYM23BcGqbR4mt98OtshjCEYkn3VKDkFea7sL8iGpBJItbv40qBeIBcVdCaacmpSszf8/aabVZJBR8SeVVYnaxZrwdWQ+b+O2c8ePc8hnF2ezvv07aFhWHeOlgf6160M/ZkmQ/Vga873Z0js3bp6t+NqXZ45OsKjkjuDuxuX+6tpVl75x49DLDh9X/4AwFcluNoU3U8p6+xlgWev3zJZ48eM1tnpQflMgqE1oJh2Od5LOocd6it4dZi7fbiX1QDRNAUtKvuTe/yGiwZcVEF6TNPVLoFVH/c0jz8Jmjd2zSIKvtp4vMvH3Gzv+WDH3yfoYxUr33uRDCMp/2W26tL/ukff8bPf/YPTPstOUfz/AB8oDEc3Y3clX/uEjYlLUCFm6ef8GQ1UIbE2ZmiRbuVpLAw+18bfnRoMsFiS+X+epNJBVy7WFyOv7b0Vw/Q8GHhQ7PKYu+4aBLiUXInZzuSXA7fy3GZL6CKLEBut8tbbPlCrRkzaxoNtYZNRvNu62AV8X3EQJ8p4jHz2TzifYt7W1XJI1zePuF29zVvPdhztt4wlDNyWpG1IN7BoLbn9vY6gB+UlAaGoTBIomiJInNRmTgB7konKPXiupSBlMKeZ7/f4ySGcUW1RYnaQRMC6PNWqfPUr9PxXC4FN8vezR3mv3/j/uEIkH+bGuD3Abh3H3tUyvxhHW9iz++PPfJ7Yk/MpYgnMWA/C49ePYtmbfoT5GzVFVxBMln2teUz3sk8f2eP7KVQPG7Zr6Uj3b35fGysLc/Qr2EHXOXQbVrCjby+Zfrh4Xd2c+mh0A/3SmNBiORO0sqxwdRjkwnR0G4Wg+7FmYmZS1UluuU9tWg991jmdZqMPH1V+ep2Zn77jLw+R/+Z2CNvYs938vjo069jL6sO5uy9gYVyZqqN2RtTU2YTNA2sTu/z/k/+I2+dv8Un//j/UfdPQ3Vii+PCsheG2kB8CDuv3hkyIn5goaKPJRyWYc0aVzcTF+48Evj++YofnI+h/hBhwWRVYmyB9UbqZE7RRBVnnsMpIBOYySpFXq4irHK4suxnYyzKINGcnFsLBYJF5VerMeIMq4GSGlNt0WDq97w3Y55mypAYisb8JA+735yCYKdRMrEjrHZTVszDQH2VErNVTkoOx4Sk1HZ0nMCNqVk0XpPiJFqfkasQ82LIMZNFhOqNjLDfz6hVshLW4C6oLa3WIAbmksKWK4G4MptFPtXJnWE13xu3nThkvVocVmOoyYj4oxJ1lPlSJHg/D3EuzfSgvPIkhwZ4vO14vSTH50o9NqDRTBZSz7WUqvSY4zSvfa6n9LVQYy6T9HtUtZMFoRLrRFHopJ9ogkX9Pc1Rj6c2gy0zfCvb2y3XVzvmaWaujVVRUg5F5XaaSLe31CqcvfUuSYTbmwu87hDJ5DKieZm1lGK/FHCvQfRAwPqcPd2Br0BGRIY4tdYOKiV8sblt4awiGWkVl0a3AfjOHsf4HFaSeVX4d3/xI07OVvzdP/6GF/Mzqu7wvu+ZtzDsyAFhJ8JKN+oI6WYeGkpnlR43RjZ5xdurNZ/99lNePfkF9fop1zfXVBySUFZKGWKm835XaKYUHVivThASN7st+7aD3tA0izpfUyL1Orz2udYlZXKKz6bSm4ACkzWSOGXM1GrUufaY6FHLtI7+JEE68O8eYoRw5FOMhg6w0sT2NvCRMiiagjQUc77CNrSasJ+MMSuuc8QvGuIpsGTbYda4ub3g5Owekl4gegtzRtKKpPuYc6eOMzLNW2bfIzS87WMGUJsCA+51XEIYFao7t7vK5BO3FbIMpGSMothuR0t+ID+LBJFWCPLTi8vGx18aP/3J+/zFH73HJ5//55g1WUP1Sq1gI4k9yQcahevrG1yMZ0+u+dEfnZPHXr1po2jM3jsZ3yGnFVZ3fPTRp1ztttw/G7l/umG1PuMXv4D/928/4fnNjCkMKfPw4Xt88tFvwxlA6VlLZRgrD8/hnfM1JTnbKeJKViGVzLA+JZUTHn/xM9DKSjM5h2X8kJTzkwecnryD+Mxnn3zB89uvEU2skvP+/QeMq/t4qDgQKzx//AUbydxPZ5ylt0i1MHplICGzsCob9mWkba+Q+ZaUVlBvMNuzlj3Zt7jvqRYE78DTU8fJSog+NNFsYpoTVwYfPvkVF9stXzz9ir/8yV/x0z/+c4bVuhMz5m6f/e3HmwbTtx1+KOnAlOmTyvrHmfqqMj9V1qNjxfAmyNznMq0J1VKDVh2LeWlo7Za1XcXUamy6uScb5mHR5TO0WfpgQVAtmEOdKj4FkKFGBy36ezRbXJ8iaDSQ2cOf16M+bBZfDwqfBUBxQlaZYLJIKksMDYjnb0DYxQYzsEUhZv3n3gKH9to/b2/kNHOkdUXUHYLeUvTQ/cU7Qb8Ppe2J/F21khNs4EODqP/Yj88n/QMdilk9PuZQXd55H3fLtTfHv/UjEuYoyAMAWTQV2i9hGkkdAAAgAElEQVS0dH9sliHIHSI/Fowd4HAONhreGzpLS2cp8OlsTukLzC0sYGKhBvvDAYaH/OmfvM1nX90y1Uqdb9iaknrP1gmGqLqSLAOpOz0K0mcomUCj0q16mQ+1b8URzDOVSsJoljgtCdrMbUtUyYhV9rXRJKEEU2vHntsmlJoZaCSJhoS7UKWRO9Cg7lQTshRAmNxIpH4vKa0lXAZUnCGFWkc87Dhdo1ssCtViYLdbwW2M5FdDvu5WIrbREBM0CZoKc3VaGxAylqZuZ2iolVDnJGe2YOGlFgl3c8d9BAKcrQ1SmuOet4Iz47IHK7jsukpKCTOJJU4YKTVqrV3VdPTxry4YFetCagFUHLWBaZ772tAOHku34AF6sYw2jJCrTyq4BjGgKkju9nt9poGvnDwWNmcbNqcj4yAM68wf//RHlJJ6A25p9PQmkzju6cDOWlh8ISvvzR+5g677Mjz4COYdgu0h/PUYLERSHn/rSV6sgyhCl2Ix9gDrDVHhCKSHTZMcLMrc4n75Lh/fpiI41j9H5vJy7ObKR7/9jOvbHZZWXTFrmDQ8hU1lSvk4E46wYrF5xmo0j7PmYKQeBh13AEMUFnbisoEfNvIARQ/o5O/p6wUAtnwe6UshbGk0Z+bW+OrJU1Dhg++9i6YcoM9U2e93vHz5jH/6+7/l1z//B1rdc3qyjs9yWGNLQyXAJHzu6UOAADa3YNJa5ebLj3i02fCDHw+c5zGS094MDhvKb1gsLst6ycgWS4q+nuO14wLF78kR+OV3nydA2kX9FOchFAX62q/cdRy5S3xxlf73BdxtEQ9UYyZBb2qZWS+EoyRubaZaTEEIZl8jiwWz9dBYajRrBzudnDO5JG62L5m2H/Lw3p4HJydsNvdJeU0uK3JOnb3nvLp4yTTtSCok7fZUhMVeKFLCR3vJmehM7NQ96hENohOJ8Doe2O+nsCEaVpRcDjFwAWrNwubvm/j4N49DTta//C6Y+88rA/65vx/ter67x5vY8y+PPf4tsaeJBFDTm2i7yXj88iuynJJ+8AFJViQ1tFvuyp0e9LcRJKJ8Wz73nUbP3W11+YzfegccA5DffYyDyELwuPPYwz57jH3isa8f1Ey9xhGORDv3uL5u3sFTqISVmZvQJCg+lhRXBzFMAxg2ixktIv1e0sLzm8YX0zXbd0/JZ6eM6wdo3ryJPX+AsefzJ5fMzZlbgJSzhYrHHFTCvkuSkNNIyQM6BiC33++Ytze0NjEOayCskVTDwSSlRBbtjaZQFiaJhgYSQH48TrqbSVc+iaEiJBGm1qjeSGivCRw1J1vElymultilingual_clip6sKk1UyyrpkSFDnWNeeMkWjiXQ25gBv+3qsZkxWQZRVLuQEUw07tP08kzxh1UgKOSfEncnDbqqMI6sx7sPqhlnkPaAMKuBhGZ6b0yxhQG3O1TRFHiPCkJ2h5xxGuBW0udFqC7OClALwaMauOmYwjpmclKQpZr30qQzSY6xKnA9vHmqvtDRhhZIyQycJONFIUpXuQpGCfLCE9yhKQsVEZSwa86CEQyPKFhXSEss8oRpzlJJDyaDJmWonrnW4Z2qtR8Nu09RBzyxRpxp+Z+/qZNI+L6t5V2M2QwFzYbZQSa2aUxKoWcyi2gwdCzCwhrsyEaRQ0SBZzw3wePyEcnE1IarMdUZaGM9Pc2Wuwlv3zwDYlJH1MLI6P+f8rXdIdcfu4hnMRmtbrFWSjr25ZGgWXKM5ZTZh6qgWREdqnQMjIDAPMLxtEc2QCskbbn1+uQk5O1ZvYuad7v9nhIh/teMw+27Z6/r1/uEfvcODB6f87X/5iM9efMGOWyAU/ylL2ERK3GsuhsfGciC9FA0VtqiwGtf82Y9+xPTqOa8uHjHvnnN9/aqrKxNSlHEVDZ6bq0SbBrJkTlYbRDK7OnE7BeEUbX1dOqjQLNApTV0dLjEfUMmkHPenSPB3Bw/r37jeKdRILdQ+4e7CQbnUFuxrhnn5RyyU5xLEjM2psN8brQJZQmguME8zu+2EeGKqe7QlhsHxKniyUDlSwRy1Rpsrr7Jyvt6Q0i21TbgpKqcgc7eybMzTLbf7CaXido3bCmvh9CMpYs6QhJqFlEJN+ujrL7l3/x6no3CWNwxpYLq9xjYdwKbjVSIxhwlHvPD0+TXPrj7hg/cvOTsBn2OGpM0zkndBvJUBtJA8cXU1oQVknLm6ueHBZsXQ7Z1LrpxuzlitHtDazPOvv+L29orz03uc3E98+BF8/NkFj57PzHPgPEkSY7mHaubZ8+dLKESkksU5Oam89/aas82GZrdIayR1ypAZxoHN+j4XT14xz1cMmsMVSBMlCaerEx7c/yGaEq9e3vCrz3+Jq5Nz4d5q5N2Hb0Wj3SYkDWxf3FK3N7xdTnkw3OOkPIBZ2E0xh9UrpDwyloFZweZdKEC94vtb5nYLvedQaYEn+aLGChwoZgwb1cMWEWK2+rPrr2liXF2/5OunX/DTH/85b52e4lJxfn/e86bB9C1HbHh2ADD8Qth9YoxvJa6/hOEesHJKderkNBOm5KTAQWlKSCVNULcYXCoetZpA697BnoAhpNba5yB5nzvkraI1M+8r1LArWLr7h8Ii4ipeBEuKzY3U+kbfa8W05NJdmLQUZqkD9hNOXo/sLyds7yHNbaGAsnlp4tBZF4FVWgObQWdgvoNvLjXP0tS5UwcJgcnctUwX7Q0rOAKVzqEhtCQtUdAtwOqx4F6AzsNfekLkveoTwu87RCzLm3lzfBeOw1rrTSGI67mA4q85sjvBjOuA+7JevFNTl1lpUYgvVhfWZ/0sTahlfSzFZQf3e8ojy/dFePfBD/mjHzwLWXWbqLMgPiNSaXNDLdgzS4MgmlsBLVaRnkwHe0n8yIylv8fDJqZhs3Rdcyephoy4SoCxVRrijUQ0rQaPm74JVFMSCZPYOCpC7vTmhLHyYG41EmrKIE7pTbaGBJsEC4WYQfYUNnq5hBKz9aad94KIhkkMnwxvdAUSInskO6fvKrLdcf1iwOaZ1kC65Z4uSdW0JZobMSPJvQSbjgpMmDizN9xWAQbINhqB9v+z925NllxJdt7nvndEnHPyUlVAoQB093RPT3NGmqFoehTN+CI96bfqUT9AphfJTBKNNrwMOZzpG7obBVQV6pqXc4m9t7sefEdkFrqbNqRImQBVwAqZdSrzXOLisX2t5WuB+IjRcDnhPSNqUU8qiUaMlK+ZV5a7pVYPkaZgnVE3CmFk0WhSoO/HluJcyF15NmdlyEIpB1oacRljf2ucs6pKGjOWE7rNpJ0yXe7YXe4YB8HFePT5pzx4/AR37VkMfld0723m92/j/ZpYMat7P39ftbsgTkv9fe8Zw55hmW7qc6X9qbqn+Vps74GIXaiw/Fy8/DJt1c/5+4F538FNUlpBppVckD4RANzfk+7Om3fXfPXsm8jjsRa2aRZ2G6I5HvNFARqVy1tYZaIBvommfstcqgO9mYjjqegdgHlfIW9Bsi8hyyy+86J3wer954U+KSSdoukkoaZo+L959QorhR/98DOSJhrGV0+/5K//9/+NZ7/7DYMoF5eX5JQ6yR+kp3d0dLVk8hLNP3EPr6VSS6VVpbXC6+c/pw6Zn/w48/BCmWQhuO9q7x3RuTwex2AJlY6HZTnrYh+pds//u+MjHcBd1wr9eRZgOJSvsVtXIL8/fvckd1ePE8Igb0tFD3XyYqPqEmu9IJcM90azilo0HngXMWCoWawPabgX3ApWG9IgDUrKwqG85bD/FZcPZ84ePmA7naHjDtWR3G1SUhKwwts3L1GHQQfGNDBqJklCU0ZyJg0Dg6Z+HgopdZ/0bhe25BxqSkgaKLWSpJN+1mL9KJkV/RanliOthVAj7rV3dpm+1oe7ddwC8K52hfeJlHt/FqLj25kn64RMf/5v/84ftZL7jmwfas9/Wu3xb9UeI6ZerEY4uJtyqJXfvnqB+4T86FNUprCDksgAWSy16DUlvlv+v4BfcrfGFIKkMeKz2t1vxPnod9fA+gzLRXD3qHzrOrl/o15fv5/ki5huvSScqCkidwRU//ew04l6hWonpvo1I2HhbiJ9zWcBIGmfipaB13vjt4db5geXDJdPyONlrz3TatH0ofZ8f2rP06v93XklyzULywRkXuoSAW46jeu3L3j46U/5/E//ijfPfs2bV1+DLxNkThZlmxNTCnW/OgEOK5xKZRwyKceV0VpjGoLsbrWLyDyycq2GaNVTWK2ZQ9Mgcpbr7nyT+ZOPNlwfIxNqLobVRsqZ1ozjbKSkDCkszbo7HWPK0Zv169NbEBAL5rFe6/13SnFUw3JvECG54S0HaepKVqO6gAWhtqSd0PNwB1G2ozPpSGkRal8MDtXRFGRJn+/CRZhGCetPi1wh0cX6qnAqzjiOjDlEjiJBTiTX3p9JV9zDciGohz2mpnDyaBbkDALVg5QJEDV6hCRBMIoLSVvkOTnQieywBu5T5X6/2439l1TRFj1hseXaI96jRk+qEjNZSeIxlRA1m9lqn2miZFVajeO42Q3sD8foPU051ehtR5RRYOzkd+6Wgt6MU60xnUsl5YFTa0ziTFn56GxkOyqbUfjdu8LpXcW8MaUgFKNuxjG53u/Zbc/RpBzmwiaN7M4e0PZvKbfvIl8mj0jK/asiaUBSBlWSAi3ei+SRJkNvxQrMM24H0JEQuWoQTJrj7pwStLnbkp0QC9HAd3n7Q+T8cm8/f7Dln/2zv+TTv/uYv/nVr7mxV8y+77lFfS2tEhhQt+zNKZFSZtBM1oykzHbYoPXI3//qr7m++gWn/WtujieaCjIom62QB2d/k9hfZWjCdhzZTRPWGqf5gNPQJDQLMW0eBCRwgBB1GImJ1EWmzYwy18iytMBSIouwTxK3IJ7SoD1XqE/RadRJqEEaSwaD+Tj3iTillciyEzWmjVJnZZ4bMoFmpZmx3x+xukUHOJQrWtMuArAgHrw7uRDl4XR7pORLVE6kdEUpoYJOOoA5zQyVwrv9C8ZBUHtNrTu8xpR00l7/kpKbMqZGGeF8VN69fsfHn5/zYJw4FuHF8xf8+JEgpCBP3clOyHw9MWTh8aPEzeHI869/w+Yn57S5xZrO5jDaYepCGRB1bm6PTDtjc6k0L7w7CI/OhO3gbMYtF7tPqaXx9bNf8uLFc+aqnP1gy4vjgf/z352oRamWaOaE8FE5O7vkxbNnQSKq4MR+ywM8uBj45MHEKMJcYx2W88BmmtiMH+HtjBdf/xJxZ5NzdwWAccg8vHjC2dkT6tz4m7/5V9zYO4YcVn6fPnrAo8vP8VZxEklG3v7m7zg34TJt2OoZWc+Y94Xj8YhaheL44CSJDMC5nIAKtdLmA+YnYmKEfmNbEu76utQjS147nlfNkAU/9BtujiNzK9z+tvDly5f8+Wc/5i//0U/ZbT9kMP3Hb2Ix2kxFTCi/cqY/nSjnRw4vlGErDGcwDE6r4JUISBWwCu3QA6CTME/hqy81lCKmHmrXLKStkIqEpd3yPIC1gp+M7gAW48cttOEKd4CIdzwvhZWUxeRojFNLqALic/jd4rEL4b1PRbVDQQpxLpZofsyjYWmzoUFkrq8Zdb/b5LWO77Oes2uszUIyrcSR3yn1ej8aI53t3g1m+eLLX+UOHV0eE1al0/r35Z+X1/b+fb332IftO7N5UOld19QBjBhkZiFRopnUtblemhqgq1l6Y4kh3keUPVrDxaZk7af6xbQu0/oJnfo0h7BA8o1xuuQf/6M/4cU3e47XG8bpSEqOnSqpRRCttBZKUV1sA9L6HoNY6uSQQrNl4sT72CphPeKBeNxg0Jxt19AaiSKpE2397bri6Kp4EYkMubg2+2dGEY/gWCMsHLKFmqG50URw0ZjnUSNpWDW4t/Di1oE0jog06m1DWwBBRu3kl5JdGaRhFJCBLJWZRBsjY67lRlPDag4g1SO80CKGETw8lpvP0MEIWwDgZdJRS1c8haVgWGeeeiFIAdYu0z8o1RS3iusCNFs0rUS2klmEe4aTc8UZyZJYgCDXhjNgnkBKHK+UYGqUlsEmmiZEG54L5BgpTVkgOToK425EN8ruwcQ0KVkzZ+eX/OjPfoSOfb6uh1VGF97BElfWwaUF9BLpddTvQKtuTXPH0PfOmLRO5X2rjPZrISYArTNW7vcLqLz387LmePn6+ytQtlru/X6j8J3bNK0g00pMvKeaIO5lBIHyu6fPub4+4qJByHoLcUkrJEmhjnMLx9hm0YgnJ0sOxb6uxp+x95b7tsQ0XUDDkT0nSyByP0wRPxTnLwAp7KdIPRelW9KoyFoXRH5fbe3EYvLtu2vcjR9+9pjj6ci//pd/zdvnL3iwO2MaIrBaZYFfA/QWcbJqB8TDtqQt9nBWqbVSa4zT17myLTPHZz/na03wJ/BoF6P90kHt+H/u6+ClrsMK8orFNCYSwhy8e+qH5d7yiZYz/j5p6sjCqdJ50V5f4ppzW9Ck+xaSd2ClqfW6vgC9AXJHTZfFyY9OrxFTka1bufZj31W+sXiawU+IFbwVtBnKwJCFY3nNzfXP2Zwb2wcfc7Z7RM5jqMk1s+QTemsc99ec9vtoLiSTZSBJJuWBPE7oMJCnkZyWEOlQpFsXM3lreGuQhx50rozjABKvoykCpVtfdy2fYz7uA8RjmQrzfu0spMT6ZTmEd+fcfbB3OVrLY/dQ9PvQyf1JA3vvx5Yn/o7Xnw+15z+p9vBHak9rPQi8zVitiM08v/mK/JUgfAZkzrcpxH9LLmPfYvJd7u6dXem0zgsL6/W+/iz3zle/+9sioKOv4OKJFsGUrMTS753xcvc87kS23bL/ez/FQox1NHxZ3xlR26wr5lHpeUxBKFWcAlSB6kEaJBWQgdfHxhe37zhuL9hdfMK0/RhJG0SCWPpQe75/tSc+T5+QXG6f3JHETsAA1ipWM+Vwwl1IZ4949JMzpocfM/76b3j29O+o85FJh3BqIerLmDR6I5whCUW120FJBN1r4lSMkSA9Yrqni9hMOpELzZd+0MiSaeaowlmGnz3eUVqjNCgl7Kqu5sqhhnvMoTaaO6dqZA0sRsdwNUilUnqmTQhzNTKjhSB31Hv9MoYx4SXU+iknDON4rCSN/BaAQcPG81SF0ylyUHKK/dkspg8SAU5vRSk1RClzbZQ5PlP2uGZHwuZNRdhOwpwz14dKKU7xwpi34N7fT7xvWf1S+33EBdVeZFw5zhagaR6wZmF5Z4J1xwNh+fDLdQGIBOnb11xLHrZhqLH+nLD0vd0Cq1u0qrBmcxsdPPLYF+4WFmGeqa2LjCTyspJK7wuBPr10mivRMwaJdrEboduJDSn3yEAFhdqMozk5ZYYcGVgXm4FNDlIpeQDUKSn0e5ZbCL+LVRRhSM40DbHP0sC02zJME3MtjNtzHj16Qrv+W3Q4w3UTpFnuwJkIkgckDZGLooqlyNpCE2GY31AJEqr6Ld6O/Rho9GkpoXmDprEfk4LkuJ+stqvfk+2+HbC7o0PiL/7xpzz66Ix/8W9+wYvDc4oc37Mra25YNdBAPsLqd2IcNjjGqIXfPf33/PrLf47Nr7m6uaH2u/IwOrspUatxuFG8jow6cTbssNI41YrVihLnbdIQLldrPQsr+oTItjSsBdBfPNZd5o1hyKhCq32Cu9cSx6hlsbXrEJYQGWKd3PdWEXWGQZlLQzwy3mp1aomJ02FQNGfmUwkCRODmZqZU2Ixhr3l1mJlK42zqazMUcyW5o240n7m5dR7uzsnpRKtB9LrF6iYJNFWeXf2anz35CLU3tHmOAQZrUf9SRWoIcTcDnKpzcakcDo3ffFXRT4UXb17xyXai+TkhEpwo3kW5Ct6UTRYePhiZNpV5TuGCMbcgmUpDSKhLTIHJQLMNr68OPHggXDxUthu6RejAOCUenJ9zurnlV1895fbmgGX46CcjH/258y//J6XJgCRH6oJox4TndjPwzTfPYs1jIawQhWl0Hl9suRhH8IimyCkxjRum8YzNZssvf/UF1/UdYwpWPs61gfPzSy4efoZo5hf/9t/z9c3TEHGrcj5lPvvkM4RNiKNaxsuBm+dfs9GBgUyWc6RtOF7vsXlPZ/Jps6N0DK0Vip1oVoKw9hmVivSJ1lhO9eGWBbwnrqdokU+BIbZTEHoISOG6VVSEX3zdGAb4/PETPvn8D1/HHwimP7DFmjHUGGjoT9K7xOEXlc0T4fjcSZfQNkrKjaxQThIHtwsRtMJED3wcMrXMpMAbu0+6YLNTqjEUQhleFhWcQ4vAynDqCq9Ma4Z2Akqkn7DV0dk5zqWHNMZNv1VDhlgYtnpn52AWr90syKHU4n3LHEXEepiBqjIXWwlPgVDwmMfChWUMXHB1kmZK7Wmz9/phbzFyuhBP8TzxhJJi3DnA1Xu/18Xzd42VrDec946TLceK94ip9SfNP0QufVe3ftI5d/Yly6QE3NnkrUd7CRdFVk/9ELoKTuqN9do1sfx1aUDv/QtLPpNKUB+hZpTeeGTqIDz46BN++oPnvHxZmAY4NotwY5kZlWjgxSkWAanNhWrhX53MUHeM1HOEnGUyS6QilsEHmlaKxBJIgNbtTOLj2mIqQBPpBm/WKYeMeA1iycPeLWJQnIwwaNgttBTAjlmEPpcF/OgkV2uwM2GwoSsPnXqYO2gawBRDDmuCUhGPG8rOE4OBScVEgZlnv3GMgbk1Wh5phBXBKIXw3TXEh4UuQW0ZfQ+IS7pdoVsNNSOxMGvdszemlU6Ek8SweqE7OTKwqNEw9JyrMPuL52xkoCJiYFOcd2kfe9SmnhET6kHSCN7IYwvLvjnH5IQIkgyXsavSFB8VJiHtBtJuZBwnNuOGISeGMfPjn/2EiweX8XqdBLpT2t4B3bZMNyHcYXPLhFIHVBZlwqIEYGkShUWNewfs+b0vC2jPe0S8r9ffct1wh6b1pnOBHbq27+6773iz88eCu+NTK9C6JRNcXd/w9ddfRyPUJw1i0nKZXqRnrtHV1ok8SM8A6QrOe6+Quso7SRzz1RzEGqvNJxEMG1EGCdUUqs/+fUoZHRKa+uP05fK9l1pyI+6EHYa1gg4Db99ecTrdMnrj9nDk4vIB05iYxiEmEzqJs0w5xo3YunQ+fHPNI6DWvYVdXKvMHjYM5TSzm2eOz3/JMwH5kfP40ecoyrA69d/V8zgP013nBV0hGzWZJKikVcRyDxFmkQwsBP57gKFAWAZIABMA6O9b7K0TT+//d/8R6+Bc66+5nAuO9ewDR6Urv61CO9HaLVKPeJlDzVpqWEpthNmvuH77c4btibPLR6S8i/dmywRCNNUmQqXx5s0rWqtkTWjPbkrDwLDZMm42DMOADlGbSDmUnin1u6nQahwXTRnNETAskpi2mXHa9M/X90tfbznO8XAD3nozHOTIovb9o9fXsv+XA3Pv+wXgDdsde/95/F59+dYLfNftqZbtQ+35f1Z75A/VHqsUD4DI5hnqzOvDl/AUzD9D0g5RQ3ILxeY62R77RZfb7L37WsCvHYRViWkuX+6JHZSFezf0u9tov3g6+ArLWHCsc4U/eCa/z3vcfe/Lr/ceykMcaJ18ciVqTieEmkf+0rE5s8Q0fMNo0mLaiIGb2fni5g23wxnj2Sd4uqB5Jpt+qD3f49rz+9lU92yrBDQptUWP32qllROiI+cPf8Dp8Irjr/81frziUhMlh7XOvpSYfBoW14gQ2uWkTFmoLaYOSq2IgGrmeKorEeM9tL60gstA7SRLq1FDitSe1xP2VIdTxVzYDCF0A+XRxXYldU6uzDUyIq9Phf2xxYS1gWqiFFB1Rl0N12PCR4yEMqawvKqtrJlzV7eFB7uMSoIUz1Orc+zTCWiAjipLZosjOeNeEdUQ6TU4WZD60xB1uJQSojMUrGKEpdzYy4dqONtsckKsdvvIyL/VpOGmIbHCFyLKwS3WUUunOPRer/ZrLmn0i2E91etI7wE0x3ux1hBbeta4ZqJ9uOsxrFtv9+qHujMAlsI6s9S4z4zBD0Uyr4VJfPbGQkzFM7QQ9RGEXpBIULQDReI9miHuCUkS4xBTktucyMl4uBXOtwPbzUhWJ6WEaEbFyWL984eNIw3aXKA1UlJKq4w5SPFTDQLLWuXJxx+hVrndH9k8+Jg8jfjLa6YhY1PcDx3v07xTXFRdOGLiMUGbBnDB5hvMtfe1nXjyhnkBRpL0KSdvtHKDh9URKcXkXP7Dd43vz9bX9U8+v+S/f/BP+L/++cSXV18xcwBVPGUy9BoSREXWjPrI4Vg47a+59re8eflvsfkVt4d3nFpMxaWsDBsDVY5XiXocSAycbXZMeUsplVLm3v72db3EmidJCut9iYxla8YwDOBQSok5RIGkglujWmQJ4uDVu2iTsPg0j1xLFVprNIOUw7qyeohfUWPcKMdjkFTDRsN20RtoDdHwkDmdKmU23r7dsz+c2G4SqiOI8fZwpMyJy42R09hFNXEdJQebjxzSlmnakXKszaznbWsKLOHN1VPGz/+SSf6Wg13R6qbHn08MeSbXEOGqGdvRoDUef5x5+bbwi6fX5G2itRO0i8iWlrZidzBAMsZRuJgmEsYpdYFiM9qp4eWEpVh/JZ0QSVid2U2VRxfO9ky43E2cbTZkdQ5v9nzx6pb9vvDiBdjmEf/d/zjy8aeFly9PvHpZyTnjKCk1msb5lvNIsxb3H7eo2V5Rgcud8sn5SNaBZgUkMwxbpmFiGh7w8psrvv7md6QU9xARyGNit93y6OHnbLYP+PI3X/Hvv/p7qitJlSklPn/4mIe7T/ASkQ9K4e0XX9P2M0PKkCcGvcRr5vbdDXWOOoVU5uMB6Q4atR6Zacw0ioWFZnJnUqG4Ui3TpK3CqehzW+9fYyW6rPqbCXNVXAqFI0nDF+jvv5p58eoZf/Hf/A9/8LL9QDD9sc0CJF7FZjjtC2Pzk8wpz6SnwrBV6nljnIiiUAJMLpOvxQ5z/DaKkwxhgxfZQkZtILNQF/Cv+w82uIAAACAASURBVGaLQW5RgEKo4+Rx5HA44ScnDYKkKEqmPbiwElMGdFu83nfhvtra1QYQLKf0fKXWoJZ4T64x0eSzUEoLFppOWpnjJQgbqU479feaQJNQ54pVUOtKXgsIyA0oxPNyD6Okj73XTizdy3RaF/ALUbAo9fofp18L95tW+mdYFDQOvoSafNi+g1ufHBJYLsIAS+LkdlsYJOVukqlbp6zj+WHLElYPd4+vEnZs/Z1YGC+v2b964Bay5H5IKK6qOuRL/uynP+Dpizf88nZGNPUQ6a6cFVYlVGrxXkwb6o0hK30oKQIctau5NK4dFUG0YBxxDyWUa6N4XNuJvhCV0MmHb7X2uqI9B8RI0oORO/C5KBOzSvhOJ6cmYrTWE5UhaoSDmq82GFlap3giu6lZ5I6ICqmWsJ4TRTxj0sCVxIDIzOhgbcNsJ5xMs3PmZphXMi3sWxZ1nVRMYkYzuUQN9SCShEbGKR77N2mEV1aGvkCJTCnsiPtMZehgbjx9d/4ky9IMNVyNZhtMKlBR30IfCTZPkZUlTkuA1E62ZzxXGkKtFc8HSjI8bdDkqAxoFpgMHxPDbkM+3yKjsj0bGbIAlY+ffMIPfvwZkiI4FwhrPbrtj2f6zSJahz7JZLKA1QvQDiyWkV2FHJ3fcj3cAQerRdgKvMd+N79vsNABmoWA7R7u7vYt575l8cGCYsXvurGQvd+H7X2bnIX46PY5Irx4/Yp3766Ae+DVClR1CymPG632xjaa2/vHZlH3y3t/lteJrwaL0r3bQdCBFVtqlibQ1D3eu13SEqbewWT91uvc3zRlksO4EU7zgXfX7/joyedwNTBkZcwDechhKWmO9mwhb7XbyYSKRHwGN8zCSgALwLd0ILjOM+V45HSaOb3+gut2IFF4+PBPSIOuk0ABuIaQJtSufWavP74YO4IiOX5P6vKZ5B5pujRQ9HP/zkbS+p9VoEtkRNwH331RdC/L7a6evk82LVauMT1g/XjFH5XwLncLG7zWTtTTHueAzCekFKQagwjjMDD7nnfvfo7IgTRtoXuMa9oGSGxhW+M4tcxYO3L97m0XXUgsyhbF7Dii04QOY1iraOrEQIw9aFf7u4W3eVZFNWEtFmTH44nmwjBMIRb25Z4Sx/d4usWpfcIl6oEsNf0/cD2t1lX3r6/lurElT8dX4H35Xek/FwB6h/Pl/a/fl+1D7fmPrz36x2pPSGyxMlOPR7yeuLEX/O7VCZcf8+Sjc9j0/B+cpN4nuOg5oHG9SQcKRJwmXUwoyxp0EXX0IyK23CGjhuDv3UPjUPlKXixEnN7fNwtBtRz3hTi6f4ktt/J+yUQNiue0nh/Z3KluFDdOrXJyKNKoEiQ4WZA0cHOEX12/4cpGyA8Q35JkZEq7XntC/fqh9ny/aw+wfngVZTNOiGTymKjlFPezcuLqq7/jad1jh2tuXnxBOe7Zn07M7iRpTAkGDbGsSiJLBjGSJobBqAFSMKTIRqo2x9RdJeqVSIhlNWEGQwf+hj60WJeeBsUbbHKiWmSUTEMGodsdAeKcjcLFNix5n1zEuWgWWdXbbYD9p9o4Vbg+NuYmzKUxtxZ9i/U6I/Qp6sY0CDnBlLXXuCBukqYgbww8d0zEnGrR1wybTK0N90yhMSJhv+2+jArAEHm+LoooDBbXsXtMCGiGPMZEj3hYzfWlSne36H2CAWhY+ELvMZdp0Ji2cARToTVQ6bapC4GkQU5njz7ZlvWPxFSXGrjamoEUeeF3QKWpUrWT360F5kWies8+BjqLT0ngbmQNx5HaCBvThVzqIsiI4HG2Y2LMiWlUzsbEJivbMcglVSeJd2vVmJQL1wZHhyHiK+ZTiB6SQINSGq06KQtmUZeqeUyG4H06KnN+ueP49i15GPnks58wZafO72IKol9CUePC0cJdkFYwLzQawkDrwoxWD0g+7xP4/cYiJ7ydcGt4PRBmpoAVWr1BvWHDFBaQw/Rfuhr8v7Z928J0sQsWiVNke5b5p//0v+Lv/vaCX371G279huJlvXcKSpJE1oGUMqUemcuRN69/y+nmKTpfc3N7SxVHNDFtjHF05pOzvxmQtmE77tjkDaKJ2o7UFgQvEiS4qNI8MlNzVpJKTFJ3XABXUhoim6ifdyECiaxBTULOiTb70uj0HjtqouaEtkytBU0BCnuL6U3NjXHKlGIcD4U8JFJWFkGNCEzbRD0J1++OvH1z4OJ8x5j7BFRLXJWoceeTc5YbSXpH4zGJeNofUD0njUfcC/PsUMPpRLJQb99xddvivnB1E+/N4lofBiHNA+QQ4e5QkhkmJx5r4upa2Z+U/dE51CDmVZxEI0nkMWoSzrYj59vGJ09+zPXphufffMFxbrRSsHLCxxGRYSVw3fc8/kjYHsOC8GIzMGZnf7vn6VcHnr1W9rdwfS3oWeGvbpwf/uhLXn95yaFu4jyTWM+mFOuuzWbL/vYWayFYcqkkqeTBePzxlovzHFbopuS8Yxp2pHHLmzcn/t0vfkHRSnLBJDHkDWfbCz568EPOzz7h6VfP+De//GuKzyQZ2KjwcLvjR49+SG4jNh8RRvx04Op3XwaApSDDhGwv2B8K+5sZPMcMn90y1ys8Hzj4zE3dU6zQFKo3RBODjGw97jl7q93itPersN4nY7Y9ROGCgB6p7pGBpcbVAYod+Gb/NQ/G8z96LX8gmP6BWxODazj9XJmeZMob4fjSmJIyNyNnIAmtOpI7HpF6UwIRYOlAoytNBG0etlEiaIpcpNpt56SFp6c4zCdDSoU5CB7TsAhYJpgDEvHe8MViwBzaKRhpDZwysk40U6QAROjr7GDRZHpztAdUioBkoBpS+3tpQSBZD5mUWA8wpGBCF1UxsBJC3anqjlTq+1M6+bUQSyx/+uRTPI30Zpm1ibr/JLI2wSwCh06qcZf39GH7Tm5GjumhfvBjWid0OiIxreHdQi5sXfoJtGCJAsJiM1cDfKRbhABGCsUSEGeSrI2zeOuqVe0/66uaVcRjkSuwu/yEv/jJD3j+za8pZExhsBJTe+7UDvJ7MkQbqQEinBwgLO282z2ZKeJBHbnONBrN772+C7n3SaasdgQmQTqMHYiI4fA+AutK6UitEI2WACczJKWwFqGhKUXdEaNYELVZGjMSwzHeSB5e4pqmGNn1upIxlaETIRFa7xITWu5QcMScKiMFpzGHzYtEspLbQDxz6ghJQzqhVfrskkgiSWPJeUiLEpCESaW4465kiTSoQmImrUXBNbKbTGDUhppiJAozTRpDrjy8HLi9asxWgizrllmmDUNxz6ESJ4LRS0tBDCahiaJpxtMAucJmIO02yJAYzjdozoxJuDwPBdpud8HP/uKnbLYbsNRrXa9zfYG85CFpDy+Wvn+XY+6EWjdAqTsTxH5hcGfrtVbclXyPAhkXyhqOzh2RygrAA2brue/3fm/5mfuTHAtQab5MF353t2/nLyzbmvgjwlwbz16+pLQK3NnA3seabEEvkocXvSzH4U4xDWGHspLcElaV7p1IFMGTBkiXw8PdVWkamRUeydN4B3hNdD0n1hWIExZJd2fJ732y5cckZQbdMeTEz/7yn7B/+YLD/hpvJUDAlAJoaRVtNewnPb6KOIOeBaHfaidVKt4qo9V+z6/U7Ug9FebjzPH2OeW3cA3w6Idsh0sG3YLRo2D655AAtIPfCcJTPcDtsC3qAKcv5+pyZi4N68Ix3R1XW61UYzojLih/T7xyP/dpyY6xDlLEE3sHdo1msQ4SXa7X1m0GCtaOWDuBzVjZ09qMzAWZQw09nm0pdsv18Rnj+ch4vmPa7NieP2TcbJG0Y8w58hbEqacjZo3b6ytOxwObYYzPIHGupCH3qYHUQ8J7Nk7qwJov1jOyyjRqraRW2ZxdkMYNLj3/oCvHF+LNrDHPR46H68h8WPKvOskd4d/vn2nfvqZWuymz92pW35l9X3/reAVS1pXV79utrblF3/HtQ+35z1d7+L3aU2ibiTbP2HziaO94cfUFyE/xh5c0j3yUTCUvVrXu6zS441115Gttcg9hXtByd/fJ5Va7fMaFoLjjNJbj1uuShMDo9+UZdz3VSkr1V3N8fcysC2q0WwsTj1VxZjOqO0Wck4W/fpVK7cKmnHa8OxlfHk7sp0fI5iN0vGQ8f8Qw7SDtGHIOJf+H2vO9rD2q76/bpJMQIkJtjcFDpZ81wMCxnSivv+Srl09xc4YEnhJNla3AoGEXnpJ26zghy2ITmxg0c9K525EpSUDcQ63v4dgS9WTB1jxsP/G1N8gS10DutnTmTk7BPvk9u6ms3ZpcJNYLtSIer5kUdsPIw62y3SaEkUWkZQ7FjNqc5krFOcyN/bGxr1Crc75VNiK9J4G5OscaQEROrDabqduG5o5TOLF/W21kMlOKCa9jnanmUWerUVrrWWdBlNDJm6xBLJlYrIOWHlaE4tbzy+K1e/QRjSD9xZ3ZguQhheDOSmOTMkmFVkvUpXuTrtKMxdmnLiS2BdhirmGxTghg8DtrRImTqzevvc7L3WRH1ADtmFJfq+WYLFGHTcjnmFQZhsS0UUaH7RBgdpaY4JFEtwUUhiykJdspXqhnnFdIGj3p6RBZcq3n5npMkShKbd6JBMNaC0t165ImcT79/Aln5+dcv3zDR48e8sMf/phUbynzOwYtWAp7RE1BcphEvy+tYZKDdFsAPK80n3GuIG2AAZcBHXfYSSnzNdRrrAoyncfa0ht1viX28gbR4b9obfj/yubWmOsJx/iv/+oTfvazxzz95iVffP073txeBZba61idK8dyy1wO7PevOO6/ItstV1dXYReclDQ64+RYc463GWsDu3HH+WaHVedUZ+ZSQrzvxjglNGfUjbkZB4uJpiFlhhyWriev1NqorTEOY+QtWYsakEKM2VrFpZGHONfimlGsi0qbHUkp7C4Pp3pHgPriHFXZbAZag9Mc12VKgRWYheB03Cbc4KsXN3z0cGR6mJjU8GkEZuYqvJ0Lc22c5cSkgvqAiNGscNrv2eiOLA6pMdscApOaQI3ffv1LHm4egb2KuBQLLCLngSkVKoZbpmLIRKwzxBmSMR0S7141Xr4VPttuUbmhm6XGJKgkdrvMxU45zG/wVjnNhVdXxkePd9Q6ILbYqo8gCW+Nx48vOdvf4rNzKIWXV4VnTyvPXsPNwZkPiVoy1k78H//rOZ98esbvfr0JbFHv+sbQLSR2Zw843Lzu6wJbxUUPz53Hj8IRoLmRZMMwTLjAV1+94Jdf/oYi4SqmqmzHiQfnD3n08Anb3SO++M1zfvnl33K0EwPKVkbO88iPHjzhcngEp4pa5LG+ffqc42EfoLk4edohecfVm8KhBOHnNrOf33E7X6G5IMk5Wgs7T5QsCdfEIIFliTc0K7elciLidMxjgr8bcnaQvrG4Ijlzd9NRTg3sZCBKKfs/er1+IJj+gZsjDKaUXzvTTxwdnfLKSJOg51AnSFPcyb3E+VjdSVMOpXtzJHUFLtGgkMIXeHF7gCCGaH3SKXo0koFVY/BEoNexaAnlXidpTMN/1AF10jBQj+HROxCZNbUzL81CYYMHWSRLwhvRjzZAhoSLUU6sYDEVKKHyWIKxMaiHEtNLctcwrUA/C6izLCy0W9d1q70lvNMIosslbprO3eTSvY5rwUCXhrofnPgiDh0g9+Lr4x+27+LWOrAOAS4aYf+VV0hb+n9YNBMWXXq/OVhf3DaWcN54qq6WEllvaAur6Z2EwoO0gQUWuHfj6T9tgOjEDz7/nB//6DmnX76iFSPlhA65hxYSbBA930dqLMQJkrhZY8nISYQarPXRPO9pa0uormqoSxZ1qoj2G0H87qIosxTveOyL1yLOkkpSk1DdgqbzzORKBhqlhzz3sFBRXAayK9UKiFDp/zYX8vIeUBTl4HHtqXgoCT0av+qL0ixA17CPCku7xkJOGFkKJgVsWA44uQcNIhUhiPLcoQh1ITMAiUalSut2fBG4VhhpEh69LnMcLxlpHu9DNSyADKVppbnyrhonLYTbuYXqWtayGEC0Cospe5Gw/ejegZAFHwQGxXOIDIazCR8HcOPBxXlYWeTEn/7Zn/DJk8egELf/2HwBmojzN8AjJaaXFNeunO2TZcu5CXelTu594yvC9T74cfc4KxhGr92+WO5x97v3C+kd6HJ30/C4UOKnnfsxFt+rbQV4EUQTNzfvePHiG963H7y3LWCghLXHMm/zPsi7nvKAhPik55RIB+U0KZ5DNYcGgCc5wrDj+4SkWCDTJxRUQlUXntbS1X30Sbfff7/LKeGwKluTTAwPPiZPF2xur6mna+ph3wGibkfkDaxS67GDvBY5G+4ksbCsanMAFseZVk/YUNhuBlqt1OPMPM+U+Zr29d9y5Uf0k58hqoy6uQOoFwA8dhPe7U+tW2N1I+OV9lzO+RV8dWchYZf7x5JRGfeXBRDvFsP3z+EFLF5evO8x+xZQv3jBu4eFTEzaVmYvSD3h9YDbEdoRLydaqaRaGUTYbgcO8wvMD2zOL8kfT1w8fMg4bBkQtuMQVhAaTai1gqaBabPh9Te/I+fIvVGJKYE8DJGxI2FVZB4AFxJh6/R7YrMuSNC8npPuzjzPEZA8ZrabLU4oC82XutQ4HG45Hm9jLejcnd843myBlvou7PtK7izA3L2DN7b+PtyrSeu+ZX3cuz0OzprTuNrydJuy7+P2ofb8p9ceqwU/zlg9YUMmbUesFOppppUNpZ14efs7iv2Qzz/6GMTZjoECdyPjeN/9xAs731gTLtNNRDvH/UqxfLbVGvy9BwEWk+O7Psb+Q+fvt+7h60SOxN+b3+nznD611JwixmyN2Z2ZAOebVZq2mFwaJ54fZ16XRNk8Rh5+ytnFp6RhR/LEptce/VB7vte1Z+2ROrYwJGXQmMrJGCOOzxVMaOLcWFiAmwe4+XgzMm0S4zCFi4p4n5RJkCSeL4UQbF0wxhhQkCDhy8nQr62U4kdKbWgxiu3QPuCRk3YzXVmzgOqytm/xnjRBNaNUqMkYU7f+bC1stESwFsRrtRMXLfc9kFmmXJKHyG6TAyj0pD3mwFjezDLRFsOildtTf81m7Lt1eAxR2bpmF4VqTi2RjyfeuC4VVShFqWYMPShDiXyUYvF5IktPkeCaSKTAPpbrvzQ8x/2iebe9snCagY5TamLMrNbxVcP+cJ4jyoG+XjIDtFGbdocFqFZxoVvuCVgIFWcLy8/W85Pcw3ov58SxFqYxM2QP26d1eipsARdbYu2XnXaHnoVANIs6t9lkHk7K0DUPQQeBr319zylfexlAlNasH7cACtKQKKXhNkevLopUQ1pMtRjQSkyEzDXyezfjiJWGZiHJxPFQyWPio08/5+Mnj+H4NfPxFuoeqblHQFRsjAk0OjmqnejUNESdMkH0AW6GyAg5RFLmBrmS3FBPiBdUb8O+UI9INpCCe5CU35ftD1oE9/5UJDEOW9wrp8ORd2+fk+o1P32848HGeVeO5GFCyNxcH3hdDxxPN9zcPiX5a+bbt5zKjCnIIGy2zjDA9VXicDWR2XC22TLmkQrcHq8pUoKA9Yr7GIiRWbg8SeSqaZ+cXG4QojExXW1mzBOahVJLAPsSpG21EgSA5iBYw4tzJaLcI9t6HDPHY8Es3KtSCgGsmZGysknC8TizWA8HJObUVsmDcLvf8+7dht20Y7sbGAGfwoqxuLBHKcVRcyZiAnBImdyg3Tr57II8HGLAsFRaCfu+16+f0S4+DsGP3eA2gmUyE9PY8KMwDouEG3LKjMk4FmGTG/tT4dXLK374kw0qJ9pqzTyCKNtpYJoK+5srDvMNDx9kXBqH4zU2b4BE0gSSabVyc5hpknASr94Wnj675XovnGbn9qDMRyizUIsjLfHbn9/wv/zPf8bV1ZGUuq2ytdXRRdhwcXHOzdXXMeljYV94toPPH2c+ulCcGdMN4zDy6u01T79+w9X8lpRhzJmzaeLh+RkPznecbS84nU78q1/9Ne9u91Qag03sGDnXkY93D3hy9impABiiA/N+z6vnX9EIK1jJI9PlI5on3lwXqk+4VY7lNfvjNd5OpFYYhhLng2hMp0rsJ0mRoZcsk0iYJqwVZlqI8Lug2WURhMUkE+6YV0QqZpUkG9xPpDR1K9M/vH0gmP6hm2tweSc4/I1z+WmivmscR2c0IZ9LkEADWAmgTTSIIatAjsAxdwulxSC0TaJcVYYurluaizWPaJlQEuLm04ipIo0FuzePaaLqeBVa6Y3XCGVu2HxnrOHi5JxRGTi0is2Ej64TJI/KqqhbyB4rQiu2Aq0xYGDQSbF1Hd67mpgoIt5Pb6qiKYlFfFg/CK0ZuMQkg7/fkq3jsfQbTV+oriLiOzyH936Re481pyPYH7bv8LaSkiwTFcuJBwugt2YFeM9ZWhcn3frO42a4LGhDIRWKL13YIhFEKjEPkliUAo5iEgTOXRaZBHjYF6tpt+Uf/emf8OrlzP5wjYgx5hT57R4K9hUEkqFP+XUyaLE7o6vtCPI4fMqJSS2vuDiPRLjxQvOEGoSP9kItGTMJFWgeaniXHDZvGI2CdiKt0YGIapBHTC18dRnDGmEMNU+1Ru12MdbHENUT+EwVoYmANDZTou4L7iN0mguvFDeaxmsO4pgvQZgzSZTW308RofZjpdIwaYiPLJM3JgPqYd0wU1FXMkLMOGWaG6XrdZsHtdY8GmBhjM8vNSJUNRq8oKaiNTEik2A+xNFV6cdDOovukbHgmnoD3OJ11fEU6kfNGR8zOig6ZPImI2OO71U4G0emMSz3Hn/yiB//2U+QPEYjdd8Dl6X+RV1WIILyumO6D7EIaNKVOwEK3mmeQ5G4qqgBVhLqW8CXL5NLzoKQLe8jmrXYN8FnBcnpfcT0zkIprjOJ4t8XJqwTUd+37f2ZLeH1m3dcXd/gkvrevdPtL6RE0vBWXsm4vt/VDfd7+w7p105/dlFSykgK0K4pK4BLzkj/g0ooxJOuPxtfQ/EdyuE7BbjGm4h3ad6vs3tg2pI/pxHI7s1gyow5M9Ut5faa4/6GJBKNlQQ4YrbDOyhjLUDAJBaBrX2KSU4z9bSn1T20Gaxg44hVo86FUgq33/yCd/OR9ulfkHZPGNiAS1em9sntbpWHdP5+gcXMWEaP7oikDg7KAjLqvTVHgLt2b+1lHfha1x73NmeZUrLVSsltUcbbWovdG83D1rNZodWw5PK6x9sR6glaITUnKygzVzfPyGPi4vIhfPSIzaMzxrMHjMNIak5tDa9Ry6ycGBTONxO3tzccT0eShtpfssY5gK4iHG8NU12Gu1gg7TVrRBxplezGmCJrIOWMu1NrpfmBnDdICoC4WaO1mdur11gpsca0DnD0sfZl0iseuteALCz6eh7y3jVz//H1PF3u997XxveqG+u0pKzn9Pdx+1B7/vPWHhkKNk5Y3YXlSj3xujzn9HLm84dPePxgYjtUIvi4sewlXcglif6pq5n6ajSO1Dr/23ujlXfw92vK+vBSj/qtWP7wLbuDHN7XlX0N6r6SSksds+aYhJ1dEEsW5FJfK1XClpmUmAVe3BzYsyNtH+MPPidffkLaPWIYNmivPVZj4snLiazyofbA9672TDnWjkFILxK3mNyYaexbv696iMlGTWzGzJQS05DZjCE4k0QnHBdbzCCqBYkppQ58aYpA+NYM0SATqsT+VY2e37CwFBcoBhssLBGbUInXEYJMzRqv4epoU05zTEudbXIEmY+ZcTMxiFDKzHys5NXaSvHueKEeubapn08xveg9gySIRmtRz8IOzUgyUDysq/IU5ETWDLLBaqiFS3WOp4JrYsyxdg83mBDfnWbj5bHyr3/9llNt1FoC9+m52rNFLhLOaiuVNaautVtPNjMSMw93icvdyLHUOIoaRN9uSpRSOez3XJyPmAv7Y6U6YQV43JOHDL1THfLAdlRONQDO7ZSp8xyTbYSFXPPoGVoLG+PWJ/3cO24jlWbONmVQw7ptOxC9t/ZaRu+xOym02Kv6whxh3YXD4xzVRCIxlxIYVSOsTbP2tWKcZ6LR6YkE8Yg6lMIgidYqOuS1rmqfYtiXSrG5d5Yw5QGBfi4Km7MdeVQefvKIn/zlf8tmN6HX12jeIjIArU/MR28bwgpD0xBTAJp7/1q7/fED3GMaV7v9szroMERGICBUNIck9Hj1dRegT3FN2h8Heb8/W/ToIIgMbM9GNtszSjlye3sDPOfwzQ1n5xt+9Nljbm8O/Opp5farXyPlJVJvub69oZrhozBuEpvRKSc43GSkhmhC6ffOWphbwbqINA0ZwyitcJpjojH1OldrYxwUMaN5AzHSEGuvUznhhD1d4J+RjaZJMBdKnTEPAqaZ4K33M2lgrgWTtmaqleoMG0GHsMxv1ZHkTNuRWuM+nYYgMJsZ1MCEn7+85nIShrwlTZlRBJeKlkKrSpXo7482c3VokRvrTpaZ4XrgsycjYwp8BT9itdFmZX974nx6yOF4RWtBtlt2xk2itoRVYXKjkCAb02BsWmIuym6slNu3uH/GoGeYlk5iOENKSNqw3TZuj3A+JNrgpKxsB7DTsZPmI/NcefXiGW/eXvHq9Z7nL2feXp04nqBVpTSlFVlx6eoWItgT/OJv3nDx8UekoeJ27Neg01pjM01M48g8n3pMDOy2zqePhc+ebNiMyjAMDHniN797zZcvn5FG43wzcb495/zsE3a7j2ml8ZuvvuBw+oY2n8KyUwY2PrDxDZs8crnd8MlHjxlzjnz1NGC18eLpl5zKPtbzMrK5uGC6eMSbK+e6ZTwP1HbN/riHJiRreDlifkA9BB6p5xmmlKii1AaDEPenXLE+4NGIuARxv9cbhJh5FeIoQMOsYjJjzCEQ+iPbB4LpH7gpFsF8LtTnmcPfw3ApyF4ooyEG6ay3Irn3Sn3yKBMXuXXrObdwu0vnI3lMcKxg1llt65NJrGCJ5mg8VGIKqQB1jowkaVCbQIE2ZybEWQAAIABJREFUh+rHCmiK8eyFxJFGKIZLJc2gJ6flBY8XbO6LgSowO/VQkQraBHI0LkJX4tSuEIG1icIIL+3amyTi57yG5V+IALvqsHdD1r61IF+6q4VDgGhSXFgCdt8nl+TuTaiGTMd7T7iCtt/tRf//Xzfv/obLnAy9qTdbGsf1VEHdA4iXrrLyRSkWlh3CAgIKrHk91s+t3pSIhB0DsvSpsSiMpSl0cCGeM95j5B1NPPronB//+BHvbmfm6ohWsheqBXlgbWFbBbGwPWseuQhxLQQNnAgv7GrdlkYcq7FIvVXDW6L1BbkvFnr9EjCkKxCCuDGvpExX+mZmr7GI6SSKSwChQ7eb09o4mwZO7UTRIDJa30dTbwzNa09CUqbthv3hBIyc9Niv0RRzNRLHpLrjkqhG1wFbqNI8QLEmxtzJ6yx0SiOymAJPdpBGQykeCEWWaP5OGHDqyiZBpHVaJVERqmRyRMdSBaorRgWBKjVsRZdpIIl6ZuIUjUDzpIKKxdRQGqlUmmeEEdUWwFoWSBXpAFvKQSyl7YiOiTwq20k432XGUTi72PFnf/5TNmfbFQDHA/xeiSCnn7sepGlnbryDSZFvF9NDS1bYCpb0/IP3pmThHhByb+u+pYsCup+gK+i3XH8QC9l4ngX5Wsil9cnWhvG7ruL9D22RwRaTka00vnnxmtakqxO7ZloWVLHXIAlQN7EAgy0AT9W+eFtA4zgHs3SANUUguqliksIWNyU8JTxnLKUOGnTboZSRIX5PNMV0XHS4OJ3I6E05BGAdJEmDFtNwS+zQcgyNaPDJdPvHxDiMkCfKYQ9Uco4JzBh+0MgOsE6g2xz3e4l/17PCOB/heID5FuwUdawEwXSaj0y1cjw+5/TsyLtHP+Xi8kdMwyXSEuIBgEUIbkx7WwdcFrtIlz7S70RN9y6w0bBwcG9dcNMftwW4NZaRcadb6QjvAbmhCDaa9HnRdT+1ZdGBuXW14/x/s/cmXZIkyZ3fT0RVzdw9lozMrMxau7rRWBogOTyQV8435pGPBz4+8sALiYVDzKAHRAMzvVV3VWXlGpu7mamK8CBqHpHVhZkePOIB2Uirl5VLeFi42yIm+t8EWPA24/OB2g7hYKpTOMJrDIu9md/A9IbN6QnpwRntYiRtE60Zy7QP+lYThjDMkYdesjJuNqSSuLx8iXsfWh1SiP7Z1+dUFwdoQEbVapAErUbkqjVSLjQaya3XZRiGwjieoqlQ+7USDlClWkPaxHT5jNTaXRu2uiqPZOD9HuzYtHGH8toxEgfuiOkjhLsef+7cDes+hDh5cZoEvINW7zjI+/dt72vPP07tscVY5oV53tNaZao3fHH1Nbf1MU8f7DjfFDIzRVooSDWUxUcy26O2ICs5HWKkuPVW4FTB79wv0bAJ0sVHMU80jkz8/460uv9cXZMeYq0f+zanhyL3OuZQ1184s8fsmJVcMomZJwvC1c2eF0tlLg+xiw/Rs8f4eI42waeJVSFsCGWewBdyVsbN+L72/A7WHhEJsqNK1AtibpI7SBKKKtucKSpsc2JTgtRI8c0r10rJmZIyTsxCWsnlRLhp4ChLInUFbKQ5KEmhdldMrxRYNSQnlubMNWYRKXfzZZUAD1MWUoqRA54UWyptcTZjQTcJTUJyi2huScxWqXWh5BKEFs5qB1wj2+4EixJOpKWCtWNvHrUr+ma5d18mNMwISRAyNKMuFSTjHgLgYUyIGEklEhrGzJupcVhaj54LV9RUw+UEQvWYWBQrnTh+Ocf6x3sJXNz4+sr48s3EvESCRzwm4tjlHD29vJlpDkuzfqyDIMpTj6A3w+UADmcnG84T7OsSr/SAW5J0gtst8C2NOX+tO/pUU4CWOG4hWBQF9QDxRSCXhC2xXlQNN5OL9fqZYjwD4QjQ7ubBBWkOySgp9hXrYCV3ElP6OpvayCmeees928zwZORhCLtUi7EReLg5rvYzSw1nXhLDagUR0jAimjm7OI+es+w4/+AzklXmq2ekzQNgBAnkIOkA3ucBCqA51uS2gCSSjISzYNtrlnWHbl/HJUVapS03CAukiG8UFJbLqD2p9NlNv5vbKtD9Deezx/U2jKcM4ykPH33ED374xywt4m3nq59z9eorbq9/SrKXvH7zguoN14SOwrgJ8P3mTaFOhU0Jl4k0YZ4X5mWO+Y11CRFuL0tzrUHkdlK8lMTcnP08M2QhDQqtz4gVJSdorVHr1GMXM/O8AIEvxL2xMLeKau4BT3aM/8YcSbDdJdri1CXSWeJLjjVDUtS/Wo1anXFIpFzwFuT1y8uJrzY3pASnFyfooIw5kZMyzY1lERoTMdRAqUQ05O28ML25YV4u+N4nW5JWZNjFSJRamaYbhrSBlPE6g8X9M5bMZlSWdkCz4lrBDUUpGbYpM+LczhNvrg9cbDPZGq0WlIQyktLA44eJ/XRNHk7YbITNmGPmnSSWw4TtZ25eP+fiwSuefTPx819Wriej1oHm4T6si2A16kictxRzpZMzT3uuXr/h5NE5WALTIE9MOTv7gG3ZBplmzjg4H3208NmHmcenhc0wMpQTfvofv+LXV99wcpJ5cHrGxdkTttv/GvKPmOvCn/74f2GeXvDoBM5S5kQHRhKFRMkDp9stDx9esBu2QeylhKI8f/YV1zevMO1C39PM7uPPse0FX//qwCGPuFb2+wP4gOpCa4b6ArVFhDQShpQSM0wTQpYhanetIeRSsOZM3ojppoYS8Xou0Lz1GX39+cjSxWKBp347jvj+9p5g+i03A/Cu9KsL018q6aPMkhrDqHERWDQKjLA0p2iQQ9Fgx8N/RTe0Qp0PYGFNPGLXKp2QiVVCx7mPra0ZlGFgnhZ0juYqSY4ha4sdrd8A4QkO7EMMskPr/I7mIKJWEohKzH1qAtVJVbClN9fRd5BQaF192EmzVeDXZ+weZx+5AVXw2lVg6+s6h7TK7lbCLdYicrSTwx24c2z7/e77AKSt4CiR7df3008Wx0id4+Li/faubGJdrY52N0rkaq+XtqwxXsfa5oj1WT7k+Pv6RSEWDeGl56hklLgw17lM3q+bFUbXoyq9N3tyL2qP2IeLIOkBn376ES9e37KfGvtJSEsL5VRXS/iqYJIErhQkgEkJJZtLzN0RKgmonvtgVhAxbjBKJ7sMC+WydoLEIVrrmOMmrl2NAJErvWaoalfjTDQTmgm1ZZpPFHEyjcmVGSGpRUzDkKlzjcG0Ip2YcurNgYby6rDHvCAkcq+BMzHYt5nTqMx6F52ZRbul1iOyk4jTE2DuLqkhG1NtKPFAtKM9XmMWnoTKsEiNmtSvjUVhRnBVRIzGgTIIhwUOnjAfUOkFUMLGLiJk7cS0xHwj8ch9dxGaCk7BJIDlyLedSdnxNIJukOyUMaNDRjcFSqaMI2MZGUpiGAqb3Y7Pfu97PP7w8THShg4CHsnzDm7HlXsHAMbR6vFbrArhLhzoQ4/vsvHakWQSv1ukrztaI8HuLmSJ17sfQfL7BFJ/4gXgYLUXbz0qe1cgDNZ6/fc3G+/65nLEH9gfJl68fBmW8t/me3sNCJLw7s/r34M40bd+QX9yCR3A+fYi6+7fNIWycgV61ux5Pf45dhZDYPv3rEoW78B0/ySqd/MlvNdNMwEaWYXxwQVzKewvX9JMKCmFMjkJqJJLZEebbzgqOSXqnywzbA/4vKMte7BwCbS6sJ0XWl2Y5ol5mdm//DtupjfMDz/n5OQJajt8TtAgq1HXS9k6INtr6dpOxbMjPt46y8M8ommOOG//3m8blo4q+PvnKiDpmHvgXcjQf29ewxtgHUzwOWYuzTM+TVg9YO1AYgFvbFNj//xXtMMN44MtnAiy0RgGPt1Q5z1+2KO7GRlGhmHD6dkZADklTrYDV6++4ur6BTkJQgDwY94w5IFh2JDHAdVEKgMplTj/NeKxpF8fycNl4F0BLRrzUqo5Nh3Q1EjDGOQB0aOpCofpltuby29d4/eO4Fpn/hPb/Wv5tyWm34r6vPf/I1n+O9rqva89/7i1p82ntDqzLBPLMvF6+ZrDqzMebz/g0ekpuzSROYA0TGJgvGsLcRP9OB5Za+/u4/iMvsanudPl/se6Eofy3jPZ1z4g9nPsDHoN8/791p/f5iEQah79lgGLw+KNxSoLldmCYKoq4UEuia8v3/DmMFG3j2jjBVpOUB2QaR/RgemA7hYYRsZhw8n72vM7X3uWVvv8C8ga8XhDyoxJGHIm9eikJHeEpgCuciSnwrmobLZbpukGaxVroJKhz2nrDCkpJcas3NS76DiIeXFtJVR7DWmt8Wp/YJPH0HX1OUu4UNURVaoL1pyk4WoromwG57DfQ9pwNm7iOV8dWxasxroGcbI4cwO3RkNwr9QaMqshhUshmfb5dCBrQHkXBzpC0rssAasNb4mDNcYC9dD6LBXwlGOm1SiU1JX1EuLCIC4lct5wWrNYy/X7BomMAvW4hoeSg6jHSfRkjv4+VmLQzFBzHCNLDjeiWadk47otupKzhPayi95qrVHrWiMNhZQTvoQIj0QQSubM1TrJ7iGAs17nWImi1SXenxHcRdwtNY5XKplxzF1EUWna1/C9rh2WymaIeHWxmF2sPcZ0vfmcRLOIT4xI8Xi+NIScU0TutYYkSJrQUliWikimLQ2Xxm1t1MVwI5wiWETQpcQ0zzx++pDNdkedrvj4kx/y5JPPkcML6s2LEA9JBV/dfzNucy9JhtgMklAtuORjrKhrfw66Ya0GHpY2sUSrSwjUzWC5jTlNegplDJ+ZG2bfISJ857a1gMqRVDp+5V5x/c1/v3ttGQYGRhDYbk6Y51vq9Irl5g3TPAUxmoTNqOSsLDMcbjPKyDhugrSuxrLUt5yx5iHSrw7NJVxyTo+gjPhPFaHWBdFGyUM8l1sL7FRLPP6t0XyOuddziyW3JnKCpVaWVns6Scw5W90nCIhWhuxoE+ZpwT31i0xpVLRAGTI0p86QctROF2denF++uGUYhOTK6cMN42ZgsQZDJmljSQO2KNUrzeZAwhJkE7559RLzMz796II8zEGKakZa42Z6zpg2MQuxRe1tKGMe2Y3CzbQPt6qHQwaHlTvLDt88v+Li+5+ySYnqlegoClkKp6dbPv34KdPUEG0xQ7PNTMueOjdyS/yrH2Q+/KMNn/3RK15dDvz7nyTa0rqoOHWTxdqiSsxZE40oXRWm/Q3+RhmGLXjDfcGbcnHxhNPdCUWV03PnyZOF73+iPL3YcLIZ2Y5bfvGLL3m1f82HD855+OABJ2dP2bePuaqfk6Xw07/9c9r0C56OyrmN7EhsPJFTYiwD2+2Wi4szdtuTcM9qJAe8fP6Cly+/ivs7K6kkzj79mN2Hn/D89Za9JNgO7A/PqaKMZUubr8PRahow0Bql6iBSyDLEfD1Jx1QnWRKmwiSGtYnmNUb5SOoC/h43bD0+zwhHugpIRimIv3cw/f+w+Vt/bHvj8GfKeK7oDnyIwWrsY0aISTgMdCvUHJZI6/id2N1cFMxJtlrDBdVEM2eptecYh1LEZmJWUkvUqzksfhILBq8Vn0OBuMbD9Wf5ce224ocrhlhb318FWieeej/ADCzeGXvBl1DltWb4codlrvvzHvHXx0qF2qbdPRRUI2psdVIdnxWJftHaW4sr1vVB/7U+Tt5OXorCKdx9Pjx+7nees/fbO7UZcZ+ormultilingual_clipcMisqkg6EC7oKlokbpZQ9Pqa8x2DbnqhjStJulMu2P3+Ol/dINaJpL5TCbWcdyAGutPPoS/XMRXGzY7vf/IR11cLv37xhnYwhhxZuXHvK83CYVVXNat18F9DQazkGCYpLd65p5grJEb2+CjJvcdZ9ou94zQiFkaotYl3gixW6zd6DuW90BVgDZeKeIn5bAK3S6gIgwhzLEFiJmuDHqmTCHWjyUJDaZb7IF6njIl6iFzO6hpg70qYuEd9cmjEz4nwiVDcVYwmEhO2PGJ6GtA0FhBxf2snYCKfXJyIjJIAoBaRcETJAj1rmxqE2SIt3J0mRKI8uDqjNk7GDXVqHNxoaB+bZaEM0ASsDZVArjG4dUgR9ZCctMmM2y0LRhoHylB6hj2cbDLjJvHRx0/5wQ8/R1IsLGQ9cb2OrSBSv9jj+pc7kDtUsnfARr8SWVVSIo0gKPM9YmmtnGtkBf269/417Yq+vviT+86k/pN8Vb/7vWttfY3EtXVUYsf+76ZKvdvbW4O7pS/AiSNze9hze9gfj8u6xfG5/28rWNrVvOuu+slcc7NFtcd4xn/3p0gIby+q7u/5uACv7agKDjI83ujK91mPB1FVUkodS+gUvK4N5Fof74HJEvvTGKSBmCHmjCfh8Dtc3/Y6mo6fJeXcB+1GlEnnMBExfKh4ndF2itUDy2GPysyI4XWhTTObZcbdmaYDt9Nrrl/sud6/opx9wlgeESGXsbDDWrQwPd435LEKrpGpvX52k7uEKu3HyAGx4zFbX+/rSe5n29e+xANAaR0IcGuhvPZG80r1pRNMM77ssXnPsr/FlwPuM2Nxnj4+4fc//4BnP/8FP/vlxLAp6NDhqnlmurpiFAfNaBmOLtJSBsowstuckVPG2g0vXz3D/YBLQVQp44bt9pSiORYquZCHISI8OyiGG7WGiyWv15vdLdLXGhOxRjGTYlmWriwOIsFt4fryFfPh+vhsvLv+1wr1du91v6/7LiB2veZ+G7D3fi1irY/4b/W978r2vvbwT1J7aq89y7xn3t/ybP+cm/mER7sTHmxPGWVBtZK7C1qsRmQt4S5WifVfW7PxrPV2dS0+x7P11vH0FRH+1iV8JLnX+tOJjJVYMpxm9EHhkW4xe2O2yqHNzN6oDl4K24sHPPzsKV989TVvvnrJnM9Y9ASxTJ0qbjcUHJXSa49T3Mnva8/bP+N3tPY83mwpGuRSykFUpJ4AEZF3PTqvgxfW7znvayTTALY2w4i3BTFjSKV3mh6EoYbjB4GUhJ1HLNT1NPc+NA5p6qurrD1SX5RpEbyLyVoNPCKnThpIzAaSpJGwkqLPbYCocnW5Z3+74CoUzbS6cJgqm6HQrMZ867YQs28i+SL15tghZqXUBdfMfjZe3xx48nDDmOPCCjGghbNT1prpDMkQE0pOnJ+CzcbUjFQi6twJd1585iBMmlmsEZdGqx4gi8ZMHrWeyNHf2zTH/aESx8V7kEscKWHIEf23VKNaoy2xtmx9jSWdUVpqfHbpjk8jAFhzYZCIGFxaC/FOMzR1IXMnFmPtEOfW3GK+FdEvRXRfzDOK8x+CynB/xf2vKdxoh8PCUFLMJxLHltZj8SDnTEoBUrtFNKBZjxvrtT53QYNoEEmtWZ8DRgBTOdZ+ORcYEj4doFVcUzifzJiq9dlTdLInyDWVTEkS83MFnnz0IU8+/j122w08+3V352lfr3oXjQJpwFDEl+64jevLe5IH7jGbhyAwJQ+BickS5yc72BhuqDrF9SbgdZ3j7KTh3YZy3eHV81eoChePH/Z/8+/sPf7TOyKOvzVevvwVry5/Au0F19evw/2nShmVsSS8wdWbhFtmN+zYpi0+NfbLgebteF8Kd2sJtyC3VY1SEtacwzSTc0JFyZoxa0zTRCkDOWVqq8y1HWtoa0t380Y6T10Jxd5FhYA/EnnmeSFLjH+oS6TXSBY0pT6+pDc4hNvRpJJSImtiqTMpBfHtEhGcP312Fc5Ha+wutgwnG0RapPNIxnq8sapT+36DwHK+efOGuVa+9/FDNpuMlobpjNUxXC46ILqgLerzAuzyFpHGzTzjXkIA3WMEUw6RyfXtFc9evebTh48D027QrevQEu6ZZkZbwGphWZTDvOF2Gmgt870z58mtsr01vv9I+YncMttMqxWkD+0janIfQ9fPpXfxg3G4usQ2juYBLEWkar3msLzm4+8ru+0tn3wAnzzccXZ6ytnulK+/ecZhuuV7Hzzm/OIRKX/IN9enfHMzo/Y3TC+/Ztl/xafbgVMSW0mMmsm5MI4Du92W09Mt42YT/bAUXBOvX37D82e/otoBE7Cs7J485oNP/xukPOLZqz26PWFpBwxjGE6o03V3N8b8Kpa7NYRY1NkkIDoiWESHOl2oDqcszMRoC2x9LZgnFncWkxBrSuBn7h3H8hzikb9ne7er0j/l5mBfOvO/dWQb0Xk8dZjj4a8Z7BCAbh7DEt5R5ICle4yCtWgyzOm55KH4EYtmzjp7Tu8zWu2zmAAr4Vawfe0zCvpb6yTO2vNI6+RWAzWl1YinayVRbxtpDrtx0mD0bYZkIFkYh5Fpmo5xfNJVdd66e6n/uzvdTt+dJD0Wb7V5+zqB9luzCNdsx/jldyRXP8ayLgpWkeO3ESC/97p2/+vc/8P77R3bvMfBHBlErBe3O1faHeQSC24lquLqXXobDOfeItBx78Os1/05iLQO0HSYRRJCOWaSinvE4iE4S28M+wBP3fLg4pzPPrtgP0/Y4RCK03klA0JVValkEabqHOeBqGFusa8O+jsB7MMdwLOqVo+brkQYRIPhVFGaCuKGeCOvCyQP/0s0ExkRD5IochyORJhILCAioUE5NKN4Qsmo1qhdKh1sNUwr1RR3pU6NUR3vTTap4Rbq1dKBrwrdubSei97ESI9BpM+J6Iq69dgFSCBkF6DhyVksoLBK5KW3fm5KVuY6UUnx3tQRqbgnKkpLh5hBwIZGDvWcdBBEYmGwSGa92rQIDaFqJuWE5kQq4Y6QTcIHmH1CxxHNGRFlOxTOdoVxLFw8fsQPfvQ5eTPgnuOj6725AW+d1GiQwfB7RNF6XcCKQ61q8IinkX4NyL374y4Gr//LelO8dZ/d/d25c4SuAIp3MtT7vmUld1fQC4LUdXpz/Bsf553e7gNPK/jqwH5/S61tRWD7aewoFqzwaT8vfgRA13kbsejtQ1mJ82BmAcB2RXSo8sNdoKkPUtdvkXdtfVhKDKFtsSBVCyA3r3NS1uerWZ/btcZr0Re2ca7Xn6H3QGfzUHzSo15YYijycHIWtaMaOXUwSgPcWZ0IKaU70Dg57g3xBm3Glg3oiLUbcoZkjg0Ltc601hhPGtvDns3tDZfTM/a3lxxOnjKefMBmOAlxindnqQYwZE4Q9x4RN82I16wCAjmm4sd13QnXZkbrRKr5nXMQhNW9JAiNRq0VmiHR2GC+sDr86nKD1Vv8cIPt97R5z8lJ4oc/+Jgf/fADPnq85Sd/8zf87d/9NVYS42YMEG2Z4MZJJVEFdLMNB4BFrOh61kUSKWUONzfcXL1EPb5eysAwjKScyXkgpwKdpE8OqikApZTwpv19R8xHqAlTV6V18OMIHCnrbEPpLluscfn6Ofh8rFH3N+/X2XeaGb8DEP6ue+7+178TZOgnyI/nan3t7wa5De9rzz9p7fEz6vaW/fUttzcz+8tbXt+e8mC35WQ7MOhC9plkglrMtRIPkaEQj176jNu1I5W1V+v56dKj1dbZSviquOduLXf/flkV0f1aMEJR7R6k98EaBzMmr0w+M1tFN1sef/wRjz//hPHxI/72Z1/w1z/9illGSFvcMz4tYDdICnHQMG4RTej72vMvqvY8Pt2haijrHCY5mlrWz6hwvD/NeiJDd5i5xEwQbzWIqO70S+5dqxVux9XBJoDmzJPTjLmznyOMvCe2hU6kOTkp+6Wy38+ID6ROWGqKdUhtUQOKxFxqUiYJaHLmZqQu9KoNDvPC89s9bTYe7AYUJ3k4heze/QotjoETDmmRfk/HTKTWU18qRlqjabrCO6mE+0YEqU5rTioBCmsSsgVZ1AI06ZFQgfOUdJfU0eSOsDEPh5OKY967/A56V09kCEEm6zB25VArjofGMCmblJmWyqFWzJ2cEqWT80kDiHWzEBJLY6o1CA9v7DyhHsfIPJJpSCkcnALerM+vglgcrOSrHNey8ZwKojjm6vb7p0NAKqtz0xjHgnljqvSZNkprDetKemultilingual_clipG6qdiPCI4/MuyltqI3WngopTe/yYp5g94suMTdafjQlrxlKdrI3rmzmAWw2nwWR99lNyTnc7Li7OKWqcnj/iwx/+CYNdsbz4W7zuIW+wJrjm/hyKGmnWY4TiodfX4X2NH4pG2upm6s8FsfWJbwSxmtG0BZzUY+Sp4drXtPvHLxD/iJsIDJsNQ8n97/9li8jjCIT+bW9eP+cv//r/YL//OfurN0xWQ1yblXGbUZSbN7C/KmzSwG7ckVXZzwu1xtzquS50zpBwRQehk1V6rxQ9yzBk6lJjTa4arjSEusSsspQztni/BoIMdQsiubWoH61FxGRw9I01LjGnRO1EkiCYCbqE4KJslGnfYsQBQs79feKoNsoY6TOIk0rcX/sD/O1X1zSMj6ls5j2b8y1FowpNBLmQJVMVmjpVFWlCtsTN/pqf/arxyZPHPDgVcs4sKrjNuDiFmFWtzWltoQHbYUtOif3UIj1CiPs3OYNmRoGbwyXX+wecjBfrMAX2S+bL5zM/+YVxOwnuQ9wbfY6Q2YAoXN02/ofrRP1F5n/8n76BD7aM26iFtUZaV3LDphBOrP1SStrJ6sDj9/WacXPKkAYoB66v/pomVzw6b3z6pPDkfMvZ9pTt7pTrN1cs+wOfPv2Qs9PHLPqQL75euLz6muX2G0q95YE6m1HYiDJooaREKTHna7sdGcdCLiUEGrnQMF5+8w0vnj9najMulZZh8/Ccp5//EbuzD/nZryYOTUm5suyvyboBq5Rxiy8TstzG7FLx4zMbib4pRj9E6k01A1esgqXEaR6orTJ5iIoS/euiTAq3OHuXIJM8YgyTB+kdwv/v3t4TTP/ATQglhf2/wvg4M/9BZUyCPAGXGK6FOtpThaSrSzwHyEpbNfwdOLbudgw5bp8JEq/3Br5A6k1NNFXxu5rQJhD1ENs7aI2fpSph06zxOlscWRxZgsAa08ByOOCHVXXXsAkQwnlQnblOeAsCLQiwe6C9SSeN4t+rtc6exfsQk3A3LYbU+Pe1/xCRaCzEN3d8AAAgAElEQVRW5bvHMT2Cls7K53/HwZdvrbw4xux918vfb+/g5ikAldrjEKQzJdL6qb9zX4RVuEaYl3SApX//2qw7NUglL93VU3E0cm47oC8eLidBcQ3wMrpYi/1JV5Z0Isgk1POR+2+YJi4ePuLDDyqHg9HaLdDYHxoukZmbe2yKdQLA3GkdBDIPoiQaZkM1SAaTFThywmkVDXbXJAdAioFW4oik9dU0dwq9oXUCaBU6qCNYPw6rGFrFsWMkYRArc/9JxRMqU9936u6kGNSM58j2Vw/1IoaYIh5uTRNYBEwinkG62i9ZHO8qkN0xaRgxQHhdtDiRDCwecYWKQLuLFVxcejReVJDqisgmzrFZX+d0N5BULDJ1UBaaC5NnBo3BloOUIO40PlfLGgsQsRhinQqWjJaElBRJA66KjZlxu+kqJmWzKZRxZPfglD/6k99nuzvBPIbpyb2ZS0dX5r1+WiQKf79KgmISA9I9AicI1+SdELUgf7xH5N3Vx15BV5XTPQbpbrZAf53dc/0diak7wtM6Z0UfhLm+1rpaOwjbdpfW945u3wUyHUkGiWt+Xhb8+HTyt753jTS4f07XY60d7A2wVo6AmPY5Ht4fsNJB3XAXxI7ug7wrKBzKVY4ALh4xlqEu7qRgf2bfj9QKNd1KshNOgtWpdu9nrV63Ix0siojSqqB5w66M1Nt9KPVFYs6B+lvvNaXI5Q8Gu8++8A0sE1ULtSoqFgDRUNG6xMBoMYaTU4bdKcPtDW9urrm9+iUvXz/DyxnnZw/Ybs5ClSUJa0K0tGtN7+egX8fu4WBsHrUvwJk+mHZVDXdXQADyoZC9HynWMyAi2qk3ZrVOtLoAFZuvSH5glIXTc+WDJ0/54x99ykdPL8gq/PxnP+dP/68/Z24Lw5hBYLEF5oXUlMEG8ngaEUW5kEohpdyHekd9Fq88++rnLIcbRhFKyQx5IPe8dr8P6sr6jIih6CJCLrmvOYwmMVA3lRzxRbIS2hAzDVOQBPTnljdubi65fPMSsQU/Hu+3txV8vbsv1j/pb7zuv2Rbo5i4f01yj+x+xxvA97Xnn1nt2e653d1yc3XJm5s3vHh2xZAHLs52nO8GNiSKV1JbyGJ9TRfzWKKXjLWV9P7FzY4GfAkjZCRU3BPHHd1k6zHpJFL3cgfgLE4l5qfUFp7wvTVmhTYkZHvKw0fnfPi973H6+AmWNvzyi2f8+b/5a65mR/MW84TVSms3yHJgGKL2pPe15zu33/Xas9kIQiHJKtYLF0oSjWddn5mjGucoaY9r7kSMiJMHiZge7w4Xd/CYgROYSBAt0gnVVDK5LTzZZS61cjk5tYYwt7VwCS41QN2lEbNYraI0JEdceJQoifWKh7PJarilRCJOjhaO55MxFPs3+YCrcKiNzaBkg1phsVVIKGjuhPsac5ViqutmFL63O0Wlxb1bOwAsQaK0tqYERAhdShEDjkjE+koQWUMOt0PMuYh1F0mPs96qV5a2kJJSupNrqpVtKcx91kGSDlaLRzR4i/WFtZDxqTjbsSA5UZcAVqNkRw1f+p+LBvERc0oiZjCnHonkleaJpcVawKyFQ8haRNVZHIekHjPS+mm3FhFfZtYdrD39wiN8nn6cVpznqDUWmA8z1RpzjZ8lmmI/zWNOuDqUEBVIb/XWeMPsQSx1zWJEOUp32PbYKDuKhhSlMaRE06itkyk5JeYGc5052W1RVYomHjy84OTkFDEjDyc8vDgnX/8HbveXMVNcFJMAfW26gTRQ0xBxYjKAC1a7q4oUc5RTgILuDRHDpeDeR1/YEm4yyTFbXQITcMugA86AiVLruz+D6eR8F/3Af6aMfpezyYk6A4a1W37207/g2eufME+XXB/2LO6YJMZtoYyZaQ+Hm0T2kbPxAlmcWQ5MywEnojbdg1h0D2JKtM/otoiZE42ZgIgwlIFaK9ZaJ/wU1SBJl6V2QqrHc9u6VhagUWuL6MkmWGthTmBdczfykFiWTth2zAgLEmnYZJYpjAdVnVSiZ7JOkJdRcWqQUDmI97kZf/fla6bphE8endOmPeMmUU42jGWkudC00VKiJmHJC7WO1JaxHMfg8tUNY9txcjowZMGyYKliOqIYGaN5x3hnYVO2bE8S1ZzFasyNIiMUFs9cXQu/+hqeXCyMeceLy8pPvrji189vu47JMTLqSrrnhHczXt0K/9tPRvItnD6+4lYNY0MpRrMl8PgC2YU6x6yqiBoOkUs4MzNgLDfXnJwLjz4ztmeXPDxPfPzojEcPNmy3O3abHW0/cdjvefr4CbvNA55/s/D1818yTzODzlxIYxwyQxZGzQy5RDxnyQw5kUoia0QISxI0ZW6mA9+8/Iqby0sOzZhSgwy78xM+/PxHPHz8A15fN3794gBpxzTf0OpCkkQZtPeYDatTkEjuUFc8puIt4bYgFIoOK9FAlqCvc4LTpAytMIoRQaWR4DM7bMR42ZyDB8EkGr+7DeGs/Hu29wTTP3jr6ou9cvNvKmcPC4vWYKAfQnONgfSLkRvUBXTsgx/7jWEtFiFr7EE0xl051G3O1ge3NgvCJ7XegDfHJ2OphgRuGZZrJZKzOpPjC5GQhdBmx2aHBtaE+vpAWeJztE5iaaPPMujfZx4NjwiS+nBEC+LKjVCiuN8RS90pJWt0Xo14vbc6ctbmk67co89e8juSyLiL6vi2e+newsBX0PM9ufQ7tq2rcEIp0hWvYHcLxrUb7cCGrEBF/7Icu5VYWMr9f+sqUu/Ks5hr0++/fm0GMdzjkFwDsnTrr+1qebqe1B0kMucfPn7I9WHC2oHrN4maNsw1ogyaOzGsPhryJII2aKRYJMjaaK+K+zgO0iPf4qNHdEFaL3rNGOUO6KdFJICFukmkcUriusEkjlgjkUCcJo11cRYLnSB+tKvjQpnXwRGJpldcg3LS2o9ZApnjlFjsS6V0R1Tr4Ei4bZqHMk9wRotPs0iL0qFRT5wczTpwtPOqss3KMleqC028j6MkCJ6+pFOVUO7So3lWlxf0OAbtwFfUZ+9zn7pHDSMiCdEBXBEdwnaeQ3FDcnxIUMLJZMnI3Qo/DIWSE5uSGcbM7nTDH/7xD3nw+HEs/lY2qQMvsJaylWXqX+Z+XMzdv2KxaKI/JValW7D3AZqv1+7x/uhAQQCVHXn0+6DICrT4cR/x+3r8A+zSHrO0XoGsHNZ3gDQrCPOub/cdBKtbzDFaq+wPh2M0yN3m0J/fd0Bx3xdvP57WmRyrWyBA0dQdAzFcPRSQHaQzp9UY/iyqMeBeFMkZzSncLmtMQ05k1U5M3p1/vafCQ1YQmWNshxADY9fitwLAtn4CEZISKst+HWmGZMZ0extfz4WkLZSj63vqqj7HIs5K+72oCXUlm0bNor+XVlFrvTlupGGHlg25jGzyJXp1y6vra168/BLJW9J4ynBygQ5bjA0pF0Qy5jH82Tx6kZjNJH0MStwLS+9BzENZZ/2c1daOxFOcrw4Od7dCSL8qYjNtvkXaRJGJ02HPqAfGpFw8eMwPfvgJTz+4oKSB66sr/vwv/h9eXV6SSwnivVWaL+iQkBzRm+NmyzBse10pJM0kzZQcGdo3Vy949fxL1BsqY0RzQfSEGr1kM6ckIWs6xoZZoNdIUooUpFnEK+cCueAaKmFpASZq0iMYtYIyZo03r76hzreU47P2N2vA/bLwVk3C79UnP77QueNE7u/z2/fNtwmYXrXu8ym/E9v72vPPp/bIsCENhdtN4aZc8frqhhffvGLUxEkpXIwjJ1nZSmPoYLJ0cIUjudR/9bgnnJix2wGnUB/GeYlZJdF3Sif+DOsCJ6HiRyf4oTaqGC1D2yXaqDAUtmcXPPj4ewwPH9PyCZfXE3/2lz/hq1c3kAqpxb1exaAkShJ0SAzvaw//UmtP0RCv2Rqz6RoxkBL9e8wde7svtL5YzxqYv5lgakdSKsif7utbScROZKfe19dloajxYFQ2RTh45sXVIcgE5EhqOHA7LZyPPWKtrbdRf58Kc3WyQEmx1qgt1gGqQcZYmygKuyGRelSjBhARqu6eDKAiWFsCn5CITLLqQENSJqWlH4V4D80rQih8XSBZJ/qTdAcSnSDwnlojiDnZnKnFGkzNaFOlubFMgYVEXTJS77wrsG8Nt5j7QhcDrsSze4iTcY9IIxMul4Xm0zG2bq3/1RpFYv6SspLcnbxxelpNX4Nbo1oAlgHwxq+6BLnk3olBIgmjEWu5WmtfbgtuES0WiTxCKYmlxRrS3LvQABavLPdyVoOjrLjEZ5YUz4LUxQ+xPg+SKqUU1/EavdefN1k16nEzzKYj4ScS68eK4nXGgMvbhaUGcSBAWyrDyZbT3cjHn31CUXjy5CP+5L/712yT066/RtI2SAIdwpXb9jTb0+aXsZYUR2REyw7XDJqDANORtH2MHd5gy9JrTrgzm3cyDz+umultilingual_clip60UaBVGimtCZM9d12Tx5nj61r1n/A9z9/9gu++tVP+eb1l/zHX/8F8/SCyzeXzC0cYGWT2Wwz3oTbS6HNI+ebHZsyUufK7TTTzJhawz1wIdRpnRApJVFyJkvq64IVnwpxfVyXyrLUtWVBNNzdrVVUhZwSSxdYRAqJ4m4s84xIQrPSWu3ztaU/Tytp0IhEbB4YgNPnbi3kISEm1OagEMbOwGizOrmEg868kXNGgVYzv3g+82a65A8en3FhM3maSGXLMBpjBi8DlgfclyDRLdyMSWI+X0bhpuFZSMNAzpmmAzIsIJnctdliildBc2HUkaFkhMT+IPz868YXzyrXt84wOg+fOVfXb7g8HJhdcBO0i6Ok08G69rmxe6rBJIVJhHwiXGyVmUybE4M5S1uCpB77/CeP2tsWoicx8Op4NT58KPzB7zU2F7dstsr5SeHx+cDpbmQctrAsvHr9kvPzC07SKa++vObm1Z5zII+JMQ1sciKXRClKyRmRdOyl0RAvmVZMFg5z5fZwy83tDbfTwl6Mw2CYKqfnO5588gMePv4R83zKT7/YM7uQfWGa9rhltBQ0VQarLHYbwi7tZpCw38a6tQl1Dgf6MAxhXiEE20kam36tbnJgkiUX0IxrZuOwtVBCPWuJ5gXIuCVaSjE78O/Z3hNM/8DNAbWEpYa/VG7/tLH514kbXzhxsDOnZkFTzDeRBks1WMAza20KJc+6Tw/IG+uKIFNovZHuDiTvgEk0AFFMTPtNPFkQTAUkhTKOBjZDyQmvhs2grVucXSKzNxPN0b6iHix7vzbj59oKv4aVui0GlchGbx4xec5xJpN0ksmPRFd/btzhmAEIt3gPsqrl7//qr1dNYZE27u3o3u9dBfgd64z32zu8Of0BLQCNVW8Uj5X41dfv9LumN+FxAa3X66pU16529L7gWb0aaZWReu6RBeGu6Th+2KoBqD12Lop3rBjiPtWu2KWTKJvNwMXDcw6HK+oiXQVjtBp5uhXFxCJiTbyDERELF5nKEqCIgPnS5z2tUThxsee2IVJu4zEBPafeo8lPHk6f5oJpJmelWGPxlWxY27hQRTdiARBkWxxPlTVssAOskjAiN9oF3ONRf3drJsxhHBSvrccWGsYQ59ONRuj6XD3qpDiz02MovK8xutpaHPVQ5+Kgtet6EtROmBzJoa7syp5IVBrKwtLdX74y56iHo0q1sSvOPA9UgUUniheaJ5DSR7kYkiZUEptxiMdxSVCAnJExU7IyjJnNuGEsiXEcOd0NPDjf8Id/9AM+/uRjJKWeDOrH5iicSH5XINdj3AE2P5KiGosON2J4rPRzlDpQFbVxzWSPb7+7R47Nut8V1lBH+9tfh34HxdePBfUYs9dBr7uvRIPnEbu4fj+k45D434XtOBsEcNEYuuxKs1hMpFbD7Qa8HZETxGyY/enFjC7caIiUWPTqXQMqmkiloCnmaHm1476aghQFvRsEKilDLkgppJxJcqfuCtkd4caTII+jlvV7WiLicc3R1x6FFG9zXRn0GC1/+1igkFIJ1ZwbMhbUhz4IWSnjNuKp+vcESLIGfQR4k9chZZLRmlD1Y0SXLBVpNZTErVKSkfIZqVyjaYvoG7BL3izXHG6v2b95xp6CDhuWYYOOpwzbM3LZ4ZKiGWpxT8V8BYnoPPM+ANY7UBUCgNYt5dZdA4pDrYhVrM6YV0pqJD+Ql0s20yXLdBWqspRIJxecPXzE0w8e8tEHDymaOOz3/Nmf/Rlf/PKXZM0klNrCDUXJKAPjcMY4npKHU1LZklImIQzinOTEJm3ZZOdnv/oJ9XBF6dnqovF+AzzvhIAZ4zigZYgznnKAaZrR5HgWajUoDpoZyg5NQ9TfZliteGqsGaumERk6L9dcXX5BkhksIek3nTTx1+5gOYo17urMsf7cQ4KVe3VnJT+Oe70jTczsSL74kfzrYi+Rt37Ou769rz3/nGrPKZK3oBsab7iSSy7niZe313x5C9uU2Bmc5IGTcWSbI7YqrbCIB+Aq3hdm1hf/LXqfNXL8/pxZIZrPhkWP4kYDasrM6sx55lAO7NvMPBu0ka2fcVrOOTv7lO3FZ7Q0cDMZ/+f//WP+wy++oraCkFlai74pF8r72vO+9kCQjCQ8Z7xNgT1E80kRDTdKBy7M/Ajwx/oKVDRm7Kz5+N0tn3o0Xkoh7Ioh9qGeTqpUG2gVMhVV52xQHu9OeHE78/Jypi6Gopg5c3VkjDMmko4tdLMgYbII5jDV1dkUb9BJx3lMarDJTm3W3S/h/tlPjf3c2JZEq0bKSk7CfJxfF3XUaVRPIQ5uDjQkx7WrLciS6h5z4/pK06yDmxpV2d368z/eYhDykLXvZ3VjHZNjIk7L+lImAXNdEw5qd2v1srIKYzrR7dKvT7e1AmNRICPOaxXXdJAm9rPWxDiPWTPJ4z4xjCIZt5iLBDUi/2o4AvCI2TreZzl1UXXcUet1Y17JqR9D71iYxIwsJ8iV1n++E/xk6e43Q2BZY5/iyaIiSDVa6WRiv49jLR9xZkJgTZL7sU0jsh3xppjdMB8O7Kc4VxkDzSRVRlXGNHC6Gfj8oxN+/7/9V5w8/AA9fEHdv2YcS6y1qUE7pkLWc1qN2YGGISlHhLqOuGTQIBskK7lEOTRJmMXcJxdwctQYb2gy3AtTO7DdDHjYD2hmDOndBsD+9//1f+b7n32fp598wsnZA7Q7fuJKuUtqOdb6ABRYCX4VQ2Thze0VP/v1L3j15ktur9+wrzOLGWlQyghZjP2t0qZw3o7DNsT1ff9GOCeNhqYU90hKII06zyRRWgrnrlknjkL5EtGgCcZNCZf5Gh2f4v4P0Voip0gnsebdSBD9l3lDpKIlMc89+oogDKx1IY44tbajGx0SYTSJeM3mFTNFs4UgxxuYMJQxPmdzchEkxz13dbPwk+Wajx+OfHQubFmYDVTDCRniIyhkkiREwumDt8CdxFEv+PyANn+fPPwB1b9C9TlZDpjc9pEH3SHUhNubzK+fV3751YHL2WmeUIfp0nn15hpVpc3G/Hrm4tFDTOY4NkS/EddEQ8gMoizzwsKBx2cXPNsLfrjl/LMt7WTLzZs9to84Uk3GsFHm2Si5rwPnqGXLYpwNwn/1hyPn53vG3QmbnbPZhBAhBBEzr19dMo5bBkYun91ie+PxdmTQgZIyJXWsXXqtt0qdFpZpoVrDU0OyIxlIM9WcQzNu2sKUYE7OnBIPTk/4/OPv8fTxH5PllJ8+q1zNC54Sh/kAlslpJCdhyBNM1yGqSiM0jfrba3pAOEZtM7neYmsqD5WYNejHZ2TSEBAMeUQ0Y5qwLgyvVPZNuCZRrQApUoT8PcH0j7KZRAyUA8uXDf3zTP7vR/Y2USzA6M2FUIfeqkrMNnIRJIfVaAXS19/xyDFW6MoNQg6yWCRgreIMW3vkiKGbZictYeU0HO1KOfVgvve3FTuAzvGgX4kkLJQ1PnvP7uNILq3YpxCLW4EY/LX0165upXvvU+65sqS/vw5F9gdGb9KOA2XuPRiPP6//1Ym4Cr/39W//ecU93+3n6/vt21sHwI8toglob5D9nsXYpRNC0sna1T59B6CHw6hfhy4RxxEt6dpSAHcLzTXBzF3wpsd7M3Re3Uklfu8SNETC9p4kk7Sw3e14cPGYaXpBswNOYZ4Jiy6QO7EU76ehGrEMopGzy+pqlNQVrX2M9vrZUn3rUAXZbMiqXHMhmo/G3ivTvOmAQLghhSBz4sEiNAnwNXmQUy49A5wAf3KOh1QDSKG6WQfJGfFaIxo9iOOX6SpUFoQc8YTSeixf5pV4KGgFhn6eW1fNJSS+XwxkQhxmKySJ6MNGXxRJ66o4ozHQPJojo9Ikhr5mF9zHIGik0iSxaGNuYVEuCFkU14UmhaRAckwdlYSpMbuQhowUyGXoCqNQB41jZhjDfr/bDOxORp5+8pRPfvA9NJdYFMod8XN0/qyX6HHr9Ojxf/edTmuD3f8u7Xj902tqvC5ec/xZSBck3kExd9hKBzBldWrosYk/Dt32+PcAMO9ijO7xVdBjDFkVj+94Mf7uuQtxTNbopVIKqc/6+Ps/rb/152PUGr2eiPTZE/IWQOVmVO8gTsqhAi85IotKjtinnPpiVY/v7/7PixkrHBfV63YXT8U9A0S/fnojEjW2g0n3ALr70RSqguQcYKAaZQin31xjwXUyFnIuR6Le+7wOjoIaRzVTitAkwjZTKeSUaGNjWRaWZYlFmzuSMkWVMQmmMVttro25NVQWWtszH66YXk8si+Bpi+cNeTyJfOqyI5eRnCOuZIW7zSLCpbl1sMqQ1p2g1tC24MuMzwdsmVjmPa3ukXYLdQ/twNImXBu7ky0PHjxks93w5OljPvvs41hsuPPjH/+Yv/qrv6K1dpwR4x5zA3LKDGUg5wHVcF+pFrIOlDwy5IFSCptRePPqa148+7KDeAEadU/m8frMuYRSsceDhVskiATtUQ2bTaEtDYgY01h9F/Iwst2doDmiQqNfE9zDFXt99Zp5mkiawrHwbSL73j3024Cud72eH39/O7qz94v33GT3ZwqZ2fH33wWQ933t+edeezLVlKkaUwtpz8Ea+zrz/HCDzAuFRJHMdhjZlMLWEyWFuzmL9vZRkCY9Hi+u6wCcupjKjUZjoTJ5ZfbKflk4tHYcxryIs1gMfN/utpycneDygAfnn3D+4e/RygmLwb/99/+Ov/yrv2GaQzGtrrEGTFF7Sq896X3t+Rdde9QMTwFkahkQbYgraySyCrE2AHIJlWyk5B/lTjGPTPtawEP8mrOQUyczekxakhRRSklI2y03N3OQrBYEwnYQPjstPB4zrw8Lt4tzfajsJ8NPCmJO9RYRcXhPUhEQ68IR7Y5lx3M87TP362u4mqq1CBR3EE8oSq0B/LalkbTzwRLzwgLEWa9NJWa7eswWw2hiHA7OskTslaSElgIeoHBosfr97t5nCllPYOguT2ButQPSPba310g3ukiv4zF91dp6fGHrDb6uoJ8YWbWTOgIWRIxakG2J9doNkHpq4UTKEGsqCRwrp4TLgnv4tFprcZ30H6NKrKt7zY6VdazRvAZI4w5NnBxDtMKdkNb5uvH+U4I8BD4kJuH2qEZtQTSZKaI9rcF1XVjF80Hja8lhjXOUflwjTj0cVyiQMnp2juSTeA/7S5pP3C5xdAOgVYYsnJ9vOd8Vfu/zD/j8g8SHjy548PT3Q8h49StsuY6aLTlIcu81PCsiJzGHDosoPLmbMeQChT1+/bMe5W4kyZScCTGUhfQzbwLYd8U1UzZnARB7XAfaWoDE7/D245//Hf/u7/6Gk83Ahx884bNPPuPjjz/jwcVjhs0G1XRHuKwx78S98/r1l1xfPufV1XOu5pdcH76A+ZKb6zfM1vCkpE1iOwp1Mg6XmcLI2faUsYwsszMtlebO0upqAYq0JqJmpVTIZQgHkRhLjehKVcVa1DMk0axFXcoZM6fWGmtoDUeJWeP/Y+9dny25jiu/X+beu+qc++oH0XiSAAkSQ1KkNNLIjrDD9l/gb/5vHeFwKKSxPBBHkjWCxBEpESBBAMSrn/dxqmrvzPmQu+peNBuaiRAVNuAuRhN9b997XrUra+daK9c6TI3VtbdyY3qvn3MsJo2WZelvM3AAcwdRchZaazQPC8rArBzNIchfMYCkQZC7GW3xsKfFY1/T60mQs4nPzw1X4YWzmds7IQ2NZAVpgntMgBsV1UYWoaTbHLwwN2e6usfF8hqnt37M6fgyjx/fYzr8BvGPOb/4kIuLylJ31HlimhYOh0sO1qIX6gTZSm5rFIYgvSfn4YePEK0MRSi7kXQcVpAqjs9XPPzgAQ/OH6GjcH73mNsv3OLi8x33dt9k92Lm1x/+gvrJR/iyBN6XnFKEpUJOgcMvC9y7k3jjtUwqV0H+LlBkZEyJwoDaSDsIx8NtmgnLg5mhJc52RxTpJJQJ1irLobG0mepXLNYwjyENE0NKgOsugaXN7hyoTDkFXpWV2ye3eO3eK7xw53Vy3vP5Y3h4riAF9bBFzmVAKeS04G3uNbogbY6prI4V+or9hJcrtc1ou0RS6TW3i7DUyQqFgSEXhrxDUkwwNZSGcmYLF0tlbh1x1RRC+OcE07/S4VE0xEFmYfnHGUqi/rjQpDJeOPMCciak0jc/c8fK8xr8yKbwk23seGFDf43YDHjUveZ07+6+eCyUQ1YbpY/HBcHsPXOF8GKcglyy2cmd2EkGsgBL3MSVGHHHwtYu2M/+Gjwes7W2TSoFgR32BVI9bGiMrZGL3+0TShbkUuTLrMQA1zRrJ4r6LeR6k7+SRzd72BXDXqdJnh9fw+MaKN/sVTx18se3/4Yth29gu/bEUJH+fbmea4KGbKypR8vhdPs9D5VcaH47GNNYp3lW0mq10aMTIr4RAcrmBSkRIHh8dIs7dxfMFtxDzYk0vBqp9ukcC4Wqu5I8I95oUjtJS1wn2hkkv57gMpFOP8hmLymeCA9nsARoo0hGrDDJ1CewYsLEvTco4uCK9a14wwU/kmEAACAASURBVBiKMKhyWMLTOnVyIcR+Hhe/gKuQNEf4qhguC4axmKKe+95/JfdaB8rW5KaFqVvVFZxUlHmJz9IlfsKkhQLYBzKRRdW0dpvRdZJqtUrpOVJd0ripvyRu7O4DLjVUPShow9se1YppBh8ZUigBPRtVfFN2l1HJZURHRQZD8zHoxJATQwdSxt3IfsycHe147dUX+O5bb6KlsDplbB7g0ItnX9+rrcZWxtabdRRY377umWArKWjxOW0goa8AXetr2zbQzjYian3+1Xw0XoP3ptB9/YmVKIKYUlsxxJiQY10HrNcE17/j8s9uOL7SRz9J1hqlBIgmUmNdb3LZp37lxq/Kjce4OYu5Nk4AXhtN4yc0xVRBHgqeAtTVnJGkkPokwUZAbg/x1Eu+BpVvgnFbmDzClgnWFbrr5CceIEG+Aard/Cwcet4GiCZImXmamFslLTNlGEg5tphmvbI26wrNdUoyIcMuADwN5WcpguaG5jkatNqorpFNOThlL+xnY3+YmWtDl8Q8T3htqDviMzYdsINweKJcumAkUh4QLaTUs0V0zZHjGtRtNZq32lin9nzd81ij2YTZhNsMrW0UsA4DOe/Z7Y546aUX+M533uD4ZIc345e/eI+//IufMF1dBehK7HlUhJwTY9mxG48ZhyPGYc9+d8TR7oT9uKOkzDiMjEOhLU/4xT++Q6sHSm8qV+Vz1+yjErYMKeWwOkthYZZLiekTVTRnSCMlC0f7Y1YbqtWKtFoAifQp2GhAoC4XnD/6nITgWiBLtxW6Pq55g2eDvE/nntz8+mmg9+Y1tIK58dDxuK21bW2tIO/X9nhee77wWfy/XXsuDwtTbcgysSwTC85sIwuCWwMPUrqj3CTJHehNGzAlHXT1vstsPc+kWb+HS+TFxfqG6gHKVJPwE17PY1EYjxn1jJO7r/DKG99lPDmjNueX7/6Sn/zFX3F5eYjMHFW8BbCQcmK4UXuG57Xn/9e156o2pFa0Rs5qgE+xv9smAPvZrjbHtFJS7ty9iy2NqS6oO/PhKlT/QKY7STSnysLQCZFVTAcxW5RTZloapmultilingual_clipjFEyinFShP1Y4jX4jql1Y5/UcQePvCYzIXXSSIkpqVq7b4ApzSGVTjL0emjWIidau1uDO3VplDHjKswtyOwh9x2Cxh55WYxBc1hlN4scVGTbS6QMuBGYePhDkAWfu42cCjl3iKcTmG4WSn4RUoLSgnA2+qRgJ5+k1wQsSPx1n772gdpFYKtlvKA0C7JonSB1a4w5xxRpr8NbXrF39w4RmtuGIbnFlJfI6i4Rr2dZunC4f4Yq3Zbdg8CKvJmYhpIO3FuD5vHZi3j0lz0vaxxTWP+5M1/NiK1Ei1NQxATSevsQVPp57D28+LqXI2z0CCJHlSAK8oBrQk7vko72eF2w5ZJ0OCfVhltkvu13A0Xh9umee7dP+NZrL/DCi9/g7HTPyUvfIZ1+A5k+pj75ANXcRYRBGCLxGMqI6YJ5xVuDjusZFdGGN0G8YfWAS6doBZopWRKqQ38fJbAKSXF/6FZ+3veqtlq6fYWPu/dejGugTnz4+We89+v34/rf7bl7+w7f+MY9XnzpZV649zInp7fJZWC1aTq/+Ixf/eZXfPjxb/jgk58yzR/x5Ml9Jm+YRubNOMSanC4LLEfsyhGZmEJ0KrNPLG2itoUmdmPPEZ1y0RC7DmOJc9AqZoHfppRIKK3beDq99gikIbMsU59CjGs1p/7YnbRvNyyYpNeRZo1cCq02arVOnkat0BQThde2xdHvBx4aU4Wy7Y0CVPXmLNNMKWFj3FoQ3kPJjDmRUwkHhwI+NvTWxPHRZ4wDpFS5tTvlVrrDvrzEkH9Ea/8L//t/+Gt+/enfM+QTyniXUiuff/gPPH7yELdL9vkRTx5f8vn9hWm5CNGSBZLkSuAJErlxK2YT+wrwkjj95kmvX5HrpiZM84TNseYvP7vg8cMH3HkTHn9qfPJg4u7dxiuvfofvv/l7nC9P+OYff5v/+JM/4ZPPf0Vd4jNOGuiKpC6+bcL+xEi7hUmNUQOQn6+cIRUGy8gSeWlaIc2VwQpj2lNawqrR2kKtHR+3StOFlhyT7q6TwMWp2jA1YkYuUxOYDpQknJTM7dM73L39Ksf7FzFpPL6CDz/L1PW+Ox0oskPTAFKxegVWGXRAvHbSSLvYoO+3zfs0lVBbReY5LBd9RXvWieAgUkvZkcsubIst8uzQxJgruwTFghh1b33NfXn+23OC6V906NoyBX5Xlflnzm6E9GZiPmtYAp0dOVN0FFpXdsjQw6U1ClJKYRu1tLCpUyEmESq0mJiFzoRu1nN9g2KtUXKcTFeLn586VNksbmSLUieHRix8Ag/vPWrflEBrjvZ6pyv3Yx42eA10AV/i9XjPaMKCXNpw0xt/fM1YopNGdt1gbvfEFZfvX67E2dOPdd0xf/Gxnx9fw0PCA9k9glx99VwkI542a7xrv8ggfDaA3FfoLzKTbirXtrUk4Ye6biRszZ+5Ab6vCImbxCa2F1b3aIxcF8zq1niaeGwWVZBSKPsjjm7NNFsQOXA4zAEMidFa37ATvvWrVWQ2jQagOZP13KbeBFi/MFW8Tw8m8kbIxKzQ2nilNZNKNCZ0rFvW9PcorFNGAXHQx12rJ1pdaMTEU+1K1YqQ14209MBpi0mhsGFYw1MzgySQSsoZX/qcmFrfVPVmSCII0kUxGk1DGRvUVwBYSSB3kmN/VJjmUNE1Qn1sGmskezSXmyUeQTa6eLfGmFFyD9ltwLhNgakupCG8fY+GgYsWn+VQEmU8IiVHspF2mTwekYeRMgxIaxztRsb9yDAk9rsdL718j7d+8Cbjyb7z5kH0bDfyG+AaKLh2UnT1s+9AB8L1aGiQNqHa2+44cc6MGGVGiBDzFBs355qr2oqk3CiscgN5JNbG+jMQIN4KtmwB7LJdK/GzrXNMK8l0Tc5+HQ/RLrUSIecA0ULRLFvDi6yayX70e+s6wbaq/r1/ZmtOiVnDazyHikZIbE4B6G7TCtdwwmr1s9qfqMo2GbOqkra1ZAHCqHaVr4didRVnrKXx+vf66lSNx73x79tnIUKidJ/nBOpIMsaUWJYD0zIz1IWUUwTGA8kcSU6tKwhrvanWsE7qm2KRALMLSpLKQkU8AqdrNTRVynjEbn/KYYosBK/GbIdotLRLCqzh3rBmWFNaOxBa5iCOEd3qoXnPXbL1Eo3NVbzjUH81q7hPiNfuC96tT8QZ8xH73RH3XrjH9773XW7fOQWE9375Hn/2p3/KkydPAkQlFIXS7cSGPDCU8PfeDXt2wxHjMJBTouSB/W7HOA6IGB/86uecP/qUTCi3o5ZGTVnh+6zKbtx1kHW9BwqqmWHcBTHR33seBkwT47hjt99ztD9G3JlrjeDhbpuWUqK2mcPVIy4vHiAd0PEUyr2nQVn6J7dOylyv9y8Cus/6+re+h3eBwhfX382JlnXNf13rDjyvPf9fqj15PGLcnzJMsRexahzqRHXHRGNvgtEkJq2bxSSxVwi1Xrxv1z5l4ZGfYK64Z7ZrNn4LqFhb4lwSGXABxETDVThCyzG3777Id978Hme3b+Mo7/3yXf7sT/89jx8/2WqB9dqTe+0Zn9ee57WnH81DZCErAasatoc4rXOwQTL15KUa59wfPSHlTKuVVmfmwxTXcCcAVJWsCcS4EhhSxglrsyUrgypFMlWc2hoN5+LQ2I8JpSEOgwie4HQXosBGhLMvS+vPFVvb2smFLB7q/b4XUPfIN0oEjuKQgoGIskpM6aSUUYRDrZhnlppxnSgl+qqkPZYgFLOkUqhXDbcFLRL1JAehYq1npjiRRS0xSamA10rMTrVOnoVlXIhPoPZohKjT2iGS9b2wiQq8Z5GlPo1Arz0CJE3kFNd6aw0zZ2lRf2Zr0b/1yU7t5JmtNZVeo3CyKNVsm5Jp1lhq20jE6I8dXx0QJF6riXTwOx5H44YBaoh5J9pDtS8iLEulmUY2sQJDwi+XKJmi5JIpqxW9h/JaJPZTiHVrsLJq6ba8sNRfWU4S2SteGfyS9vg8iJ/5CreGlAGKcft0x+2zkbNBORkLu6P9Brwe33qZs29+n0RFHr+HHcLSC+mAPnFPiNzoTJKK2YSK4iljy0zOO1qb0TQEEZDHsHLufaFoxqRgFml7Ni8kid/BIw/XzaltAgpJMpa+HOT9KhxWJ85OTzje3WapxjQfuLy44MnjC9775BP+6aMPKD9NnI5HnJ6c8Z3vvcnrr7+OSOVqeshhecyji484HD5guXzE+WFhEUGyMAxQMkwHYbka2JUd+/0JYkJbWojTWsO8BnlpQVpqiv16yYHTIJGPlFJCBeZ5BhJ0AlpzIrUNEqVapVHJJVGXuKZFlUaLSAULYjmnuH9EjtqKlxKYUQoSrHU7TdXuJtWvm1XEk7Rfs8AqJHKH1lZLym6vZxUlM45jf2+ZkgtjyezGBdEFLwtZF1Qfc3bSeOnOHW6Vb7KT76Pyh9Tlf+Cdf7ri/uWBxXa0ybmsj/j8/AkXc+Ps6Bav3nmB+w8/4f6DK66uDO9RK94JX/cuXtDA51ZBLbDtE6s7Yb8fv5dyJidF94rPjUcfX+CaOL2tzNPCxROnlsrwgnJpF5zcOuJw3ri9e5VHwye4XbJU7zmiYVFYBiXlmAp6fNXQ7NTi2FjwWbj67JzFHN/FtBsoBaWIwLQwTxWrQSyGfazh2iB5h0NCBG9SqalRM7Qs2JDxFATfrmSOxmNO9nfY726Ry565nnOYnM8ffYvLJeMeU6XVU9QNDGlXYI2SBtQOKBaEYoynhiGZ33Ce8RA4IAsmEWdQCcIvhklC5JNLQbPEvrXjcyEtKZRkDBUObj3jz0j/DLn9nGD6Fx1G2ANdMx8yCfPfGr4o/JtgL3NTFox0FGOMKYMttnkC2xLFIK2qFgMRp2UiWNEcaT2wGtlwx1CHSDexigD2lmPi4OrxgjclV0cXoZmhywooCskIZYt5hM12IisCz64JrHVKyE2w2dG5/wyEGqPeILy8Tzp1G8AolDEZEiodutK+A5LG2oP0Ty/+b8OIjet/WD/iZ000PT++dkfcIw33ABADDImTv4L21zrcbaRt25D71pzLU4+7wiQxEdVQRAxVJyactAMzrDvs7fnNuLE4/cZzxBSKiIVHrCgwQLqErKTxhN3pgaQV5xCPkTKtOlaXsD0QpbW+gfBoTFrsaSL1yI1CYraYslJ3RC0UUKwATSgyhAg1LZqotTeOQFg6dBJtUwnTLQe6C7FLH9+9vsCaeJBAzagazYx0CwITuhItYRKhgRniRhSdIJ6Utr3OIEocpclMU4ubnDeaCkWiftVmW+41uk5PSSiEJWMSn5mJUXDGQWitUl1AA/z1dbJMS6wXty2ryMVQNbIGGFIBVLiwSlOllMJ+X0hDRnOEn+ehUMaBMqSw8BsHyjgwDANjybz44i3e+uHrjMfHQEGlywms2yrStgywleBDardAjHXG2oTR6+UGYFwDIXqDLA37x1Vf2ptOse13ELbrpGuO4zNZiS8nyKv+eOs1cg2Y2Be+9n493LiitufZiKivuF3D02He6xHAErFRa9GA3PydL/z0jbpxnYn1xefQFCoiW0Oee3hq6uHokjIu0pX8EVYfPtgRrKkSAELqSvEVrTWL/CCxbh1Kzzbro9Len3sDnleScA2glw4ayg2O8unPx31T+UUt6eSMhj95WyqHw4EhhwpeVVELoEdEqPPcq3PU9W0HtdZnkZhQ0C7CUUdTIQ+78DOfF1IZKWWkzXO4nkgilwFJjWQrQBPnaqlRT5tZz7Jp/frK/RqANQ8y0LX4XbNQ/rov4DN46681yOuwZnHKWHj1tVf5/T/4EXe/cQcR5d13f8mf/smf8dnHn8RnJY71AHuVCFKNP0NYq0ohSYG1ckkHvbo91G8+eA+1yqqPDbBqBSZ6begZCDnnvh4ETZlcCmUY0BQTBmUYGMYx7L+GkVxKTESmwn7YAWygVGuGW+XRw09py2UXMsVmVTtR8Fsq/hXAf+o6ehYg/IV19Yzfedb3bj7OzQmXrzrQ+7z2fPVqz+yKSELLEIiOxhRA8iCtUccsRESLxbSF3SApov5cO1KgK6gfhBK0ABs9wPSeOtnVyzAOA6+8+ho//v2oPWy1599/ofa0Xntyrz1hZ/e89mzr6hm/86zvfV1rz0nRIEldNuCoEbm1SgtSpvdHK91h7lxengO29ffVamS8EdbK0TIZuVub1Rokh/Z104CxZPYizJeHcEKpxizO0CPdkkQkV20NNWEYlH0p2BjCuRCIGOfmpA5kImHB6J0S06xRJ4ipT5G4Tps7jYyIMtfKoNoNI4zqTnLdLMxyhC1BXZA5cqHEQ9yGO9biGm2E+tsxWGp8ZFl7tqvgxDSK9L9rWx8nslckZ3xZuuPCOpEjWIMxJapb2OGphsjPDe2VQdY+T1abr+glmq0bnXC80NTPTyekVKI2uIQ9XVhySeSx9Kw1vEs21ykMJIinPo0mRH8Iq4159DOtVaTG+81JaR5MXU4xBbIsSzx2bcjQ+5F+E5DmqHhMX5RrYaRICKKRuA/lkhl3I6V/Pt4qWVOILfvlbf1+VB+fM5NIx8fILtNouCfG+YLXzmLC8nRXcB1wEuN+z+ntW9z51o8Zju+Rrz5i/uwfsPkxlo6u0QaLqRncIzscxX1APKbsVQeMgpQ9iLNMj9E0glkXCYLUCbMrnMi8sXZg8QPWKm51gzzMLT6PEtbxX+Xjn37zMfvP73M27jg7PuHeN8549d63OLt1hkqcg1x2ZFXaUhmGxDIvvP+rd3nvNz/nfPmEx+fvIvaYh48eMLnjCnkwxn3st+vVjuTH5FwiS8nCyrLOjXmpWBZyLviy0DzWY+rXa+QwQa2Vpfb7cO5ZSr3eNG8k6fZkfb9mVplbWO2XkqltvVesKn7fJnG/YMW6ZqpZDTJKhbq0TdQDMRmZcpx3Wy04g2GitT60gHSBcgjvSirQdxEll5heUiGnShkWhmK4zog+IQ3Od+5+h316mexvkfL/yuHqVf6f//wp79//lLkaJZ3y4NElU/uU5iMvvfxd/rvv/YDHj37OP717yeGQ8CrXeWqqG4mmicAMYs5ws+mXXsOs1z3p/1PVEJfjXJ1f8uizS/7ov/995vwut1+64PJKmF04HB94LOchS8+Z4e49Tg6vMS/vQg2wPeUQR4dYCxCPPO9mzFM42FDje4UQxqiFcIGepyV1wWsICcwNkuO5YdliSl4dSsJLJ4BzpQyJcUjkopShMA5H7PKOoexJeU+TxoOLX9NItPZH3L8Yoi+VwLJSGvveakashoWxTKh7APfEBMialdi6KE29Z9ZbDKAkqSGQdKHSsUZPDDLidG6AqJfisnESq60e3hFQt26Z/OzjOcH0Lzx8Bbd9+z/aYrSfOTtR+L5g2u2oFqijogOkMZQtzQ2vdGW9RMZRz35OIf0L+zuDaqArUWNEDpI4VkKBZ4vFZNHSSAuIGQtQs6OHIDbXDVZa9xqtP04FW+JrMdZYGjxWEkkSc22hxAFWFyRvKzgTf9bcpQ10XEHPddroJrl0/ZFd/33bA0n/4st/7vnx9T3cLMbmVxs6WeeKVmBPgnHfbrix63IikA7oiqKViIpFrR0MaF01EVuDDD5EM+9hV9dfRDA8stqI9RmilSSQeD0qjurSwXwFqb2BisDSpAsuzjDuOckVf3TALqPtaQhWBW/d9k4ESUuM3HshPL6jqWtu3WYgNifFJTKa6CAFglApJQIV57qAZFw9PiuiWYh+L2485rHhzqLRHDpUD5JntUNwl97M9IEx6bY8lgJFoXZShx7AGsTTLkkEUPccKe+2mGFjoCC5Txl1i0C6essdKW1rACOmSbufcoy0W1dHJjxu+itp05VcTeN74rq9F0mh/lLVCKnuTShJSDmsMlqK7+VhgG7rkHMCcVJyVMMIo6REGQe0JMax8K1XX+SHP/oOu+MTnB4YLuFVC4Tirq+1IPPa5g4afulhJRErthNA/Ywqivq1SnbLE5Mgi7w3f+4xvRQY3Orqnn4LQAO6AGCdaIsJQfH+OW41OAptqBKvydb4i22vRbbJP7vx+r66x5dZ6cQtOuqBNdsU1KwKZvni+14B1Jvq/PVxkAB3oz8upBz5JqJBZmrqU5rd9lYlxXSBaFf3979vIGVsFtdXLu6kHNeD9qZatV9/ItuEwPr6VFabo/763Dcu/VkWXNu0gneld5ftaVf4igu1LlycXzDkwm63i9pGND5SPCwFaiRWX9fwa7AybHBSXP9uiBWSOAXHloVxt2cYRqarS3LO7Mc9uYxhc2frfcJorTGZ0cxYagAWVKM2j9wHZ7te17UdobKhvg/1l2w1tqeo0LfflFx48cWX+f0f/x4v3rtHbQt//3d/z//952/z2SefkQjrhKQdrBMldxup1M8ldHjG473mFGDJMBSQhQ8+eI86XW0guXi3COu/4x08cnNaXYIkIBrjMoR/vHaFdsqZdcIg58wwDGEplgopDeScArStlVYbQuXy8pLHj+6Dta74joZHuofO+h5WACuEBNfk9Jf9uTkJcPN6uzkV8N9iZfV1sKiC57Xnq1R7DsPI4eqSlDO74Yhsu157ekD7M2oPzVlqD/h+uvb0xqj12rOR3yZETFOXEvpqr2cMvfb86Me/x71ee/7z3/2UP//zt/n8Ru2JCbOoPas96PPa87z23DxOR4lJX+ikh1GtTypmWPemXczfnfDjejZkizirLQeJTFh9Rc2J6fosCU2OZmEQoaREykFs74ZMNePxeQ3LftVQUYuyaM+bccGa4NIYgVQSOsaEzq46RzpQm/C4Vd799JKsyklJHA2JMYfqOqfcXyeMGsDZskRu69WSGHNm8Up2WDSu12SOSWPKIbZt0khtCpsl0bClsnBEcJTUggyL7CBlGMeOt1jYHXlDUWxxXBrWfG1YAxhcGtKCCArSz1iTmtxCnNzbYpIo7gF6Kho1rvdDdBHxoJE5svT2MZ5m7Ruc1SMDj8wQ6X1LSiFsXoUCSrhHqMa+PzoQ4n7h6zRrf36zLX9Wcw4A2TsphJC8Y1Zz7LpEo5YcDktY7bVwCmnuDKWw2w2MgzDmIHB8aRymhXHIaBKGIZMSTIcD1iKbL437OC/izLVRpwlNAyUnFlce3H9M9sZ+l0lAsejd97uBqQoyjNw9u8XZ7dvceuk7nL38FmpX2G9+gj36BWaKyyOMBZUS+S35BDRjbYJ0hGrBWUjtHPOBVHaoNOryhFz2SD4OyyFrIPHe1NvWz7Yan1sue6rNuEtY1nrUdW8LuXy1CaYri8kSkcZhfsTVZwfuPznnGw8veO3eC7z6zW9zevsOKe2ipxVBaDx+8JDHPzvwweMPKZxz/vCcqbW4zktiGBJJoE4D2I6j8ZjcI0XMYenXaLWwm7Pa+v4iCCXzBq5BBhMkb5tj+i+lIFpFhdqWiCqQGu8jg3eb7ci1dDx72PaabK40gqGy2sBFT+/dVpf1PtbbkmGXWeoaNSCQhEZjKFBEomcRBU/bPSqEQWBiqMKQCyWN5G7VrR71WbXbixZjGBqezhl3I0nvkOX3UfmfWKY3+ct3fsH7Dx9wcXWfo3LM/YuJuQ0gJ7z28nf4d9//EYNf8NOPfsH5wwlaxr1SrWfV0TaCwkSQFF41rPhG3wSuLjcAq1jWvA8rYCwH49tvvc7+ZKTOt9mfHnjlzWOmOvLZw4cYieFyj00FacrRrRd5/OQjpimwjqSwG4WskclURMjJKa7kmilzZtTEXhO7NDAsoEuIXnCQFuSNt7ABtZUsnCuLVposHHLDdpl8FkJkHUbSkBiGIabFS6aUBJqZ7YrzJw+5rBccHZ1Qpxe4/yjqiUicc5eCiZHVsMXIeSTJTGLBWkNt6TZ5rZNJsW4C45GNMKoW70U0SO1q0PqeMvlCrgtFwxlgza7DoUlbZ1Sv+Y7I6/nS6/o5wfQ7PXxTf3CVOPy0MSww/jBzOGsUgdwJnXl28jHoIJheA4fh1dk3AbUXBmIschv9ZetFANAxYVlYLipjC25INS4CzSC7QlsqTL5lKwVjKVCJiaXqW/BjncOz3DohhRO/X9cnpzcXircYYXfrG40YNYhNZV97bS2Y3X6Gm3946r8Oq2/5bxFJ63t++vvPj6/d4esa4iZ20i3q+k8AiF8TQLHuYiMQX6+WMEAnGeLrFv7VMWp3bUUiqxKk25FJrHE8/HdZMfYbYAoiQV5ID8ElimqSHoIqOR4PeLIYu+GYk5OET5c0z9SizL6QxBFrLFVAhlCNheFDjGx7QiyFPZ0vYdlHhNWr1K4uiBpRW91izVZLlrhBxQh2gs3PVwSKBbB0aB5jr6rQ348Qitsg0gxIGNbBhtQ9p8MP3JpHADNOdXiwBAHm/dyF522MfE9ioYKWxKqgWwk7AdJKzIjHZ9H7r1WFsSmFxCgCgyYWMyzFdJTbarETY8MbwIIwDinsrpJiIRHsllW6+YurhMUBzWmEL3vOiSEHaDJkpQzC8fHAt169x49+7y12p/uu+u5+yKwK8hUkDBBpVS9ZB6yF2NzFvsvx1WvUoylflSOxdqP4RYbDCvDcJJzaBogjqxKw9rq7AioahXlVAbggHqHNAcxcZw6sjxukYBCsbK+7t6lifWp1ndT6ahfnLwN5W68xuSsvJcW0YZB6K+i0zvCF1nuDd6U36f3zbFbDYmYI/+tUBnIe8ZzxlHFJW1C6aMKSR++pK5G3AgICfbI59UWkCJoC+EmqHQS4nveUTi7ScxAC2+yhzPSqGRf+NalyA4zcPpdui6Xelar0HtlXAiVjtXJxeUkuiZTHCId2R1ImuyC2UK1126jeZLgixMabHHVQSSRPOJmWBNk10tGEXl4gV5doM0qqSF26yjkUc2ahLBs74KNiaAqrK60NW8I2qrX+sx1kXv8nTHHN9rUv3onYXquSKmcnx/zxH00JQwAAIABJREFUH/0hr7x4j2Waeedv/5a3336bBw8fgq+153qiJEmEo4pGQkWzhcwCUmMiIQ2U4Yi0OyYdJZ58/jGPP/8gam6/XukEQhaNu4D3tQWbMjkpDDkxDiWmzZE+dVKQnBGN0OmwjQibHGuN+Qu2PY61hcsHn7AcrmILprF3XInldW1vVgxcg7A380ueBnifvtZWoFZVt6mEm971zwJ7v+wxvqrH89rDV7r26FO1x3vtWVoIZiQZkkLNv9Ye67XH/7na41F7rnd1sQc6PT7m3/3hv+WVF1/otecd3n77bR722iPPa88Xvve89nz5IR6ZZ4m+2VZlAFRS9A5Idyu4vi4BAhDvZIRLz0gNPGO1J3cxck4kU+gZJ1m05zjluEbdeOFsz9U0czUtaIOIUXNmi8m6EeI6shSWap4pJMyV2hqpVYaUuJ2Uv5+Mjx5dkFNil4WXjwo5x7TLya5QsjCpsVNllJgkmBtIUqRq2MmVcIrIg2ItJpZyzhjGVYNaoahzKtLBQGWaJtQqK4nqi0X2RcqoCBeXB+a5crYfKJkgzMyRPtlZkjIkpbqxGAwIVUIoZ90eLRH6PrWof0kK7t7tKwOqsRbXpSeo6igJ8wC7cY2pmd4Dr7Y0on3K1IwkQm2QNKZbS7cXVCMEb7peeWCtO+i0hph2sVpco7a2QJ3Icqyvodx7vt4b0WJKp8LsoBiaM+NQKFkjMy4nUgK3xmIWeSpLpc1OnZcgtCWRhxEZRqoLdVqYlrDerLXih4Xjkjm0xpBjams5TKQS0wzpaKRZkDtnZ8ecnN3lGy+9ztmL3yaNI3z2n6ifvxPKfQlgS1hYLfy9XkE+QtOIyBU67BHdY9KQchvyAMsFpexxGXBfMJ+JRFADTTgBLmsClT108nLQXZDsOuA922k6XNH6v39Vj6nN6ARHwwkv3LrNC7fucvvklOP9jqOjHZUr5mlgf6RAgiZ89vH7/PLXP+P+5SdUu8LnhYvLSqtx7y5FGUtimYXpYWGXTtjvdng1lupMy8LUJmZbSCUcWJYa9nW5lLjHpRw3ox7VsE5dujukEPvgMQ2IrZhp2KSJOmLas4UAj2ymlGKftBJCQfBEbXGXwGCXLljWLgLWsL5MQ8bWPYt6ZHkBiJJTiSkhj4GAwBFiQr1kZciZoYxkEXK3b2u+xJ4gZfJwxVBmhvyE3eicHO/JvIjyx5j/IX/zd+/wi0/eZ2pXBLqRmObM/uhVvv+93+d73/oWbX7ML9/9Bz788ENqDRvdpAlribZuR4nnxkNYvY0XEmLmwBT6dHDPALopRqqTMJaB3TDyq5++x8tvvYiVhXz3IixL68DF1ROu9MA+7xkH5bgo03SHy8sr1ISiQkmBvYwFdiqMKpxJ5pTMsSknOjBKQQ289bPfrid6zLzbWMY0WW0Liy9MWpkTHHDa0himxn4nFCnQYJonrqxSWkGWhdqcak7KA7fOXqbYi/zsg3/k5dffYHrYcXa6I4cY5gspgWqjpIovE/gBkQkhctDXuXwn0cRZWDEaIsaj964BtSeWUMSjbqS6MKZE9tInbrussrNWCSV3C0PkGpF91vGcYPodHwJkMgsNmaH9XJkWSG+N1OXA0c7RY8FGoWmfSIq5/7hxlM7celgamEqQNpVQFHagUVNmuqgkE7wZVYV6CcUFcoCO3hwxx5cFlYx7eK3TgePtYvEbeON6z1yJJKcTUPFv3qKp3MDgFbj0AMI3Eqk3Aqxgp/v2mL9FKN1cn/0xvvBvz/rz/PhaHzc93IXwNO4tzvoDdJlH3JRkJZY6MYH1hQtI6YyKXrNVXgPkCIf+vkxXq43V5s5Blv6YGhYvXE/nrWC/rRRJYPpBOHk0RCJCTpmiiVZnnkzOfiyMR5npIoiiYTcwL31jnntOgLf+ngqzJMQaKgtqSqKwSKU7/JN0nTJZDUx6w6+hFnOi6Wu92Vs1q/Sb9iwBblgPVxU6GEJc/wnpIFbY88W/WDQAnRxfx3ibZZI2kAVL3T7BhyAfqCRtqCSqNLYYZ5E+CwBJg/TyJnSaO5qarjI2aVhaLWgCTLvCmMzwnDZ1TEqtDycFqBK8x4Dk3nzljCqUNRdAAQlQTMXJGdxnkEwe9oz7wjAoQ1FyCnXc6cmON954hR98/7uM+x2+EZp9gZghYjfWc9garOsmvh/TUV+0eVnVoLqtb/HrPAo6EYRr2BP1Ervd6n0FF6OgR95FH7P2nsPQ1VHg27/j/bVv9XnrDPvrjnOxTfgJONceyb42kfLlI9NfpeO3gCT3LchVCBsfUeXm7Wi1qrwGeK/PKaIxhWih/Eh9TUvSbskUHsj61J8VJLxJVPQnC+Vs33h/4Zk7aGor6LC+hi+5ea6TDtLXUfw3fv5p1fezgDTvj7G+RtwQD+uDZZm5OhwoR6WDTXTlCuFB73bjumADBldSOGmKfAPoDUcA40PZsdsdMe8Psa6XJYBxC0XivCxh1eUeG3JrSGuRS1njfLjQw8BXIPH6XLt364P+x7uSd9X7rpMcP/jBD3jjjddZloW//uu/5u233+bq6irOfH+/0vMRkAjPltYCjG5GMoumsX++rgOpjL25XfjwV+9t1g6yTpGI3Jgo6RMmKn0qKiGiPUslplNIen1uiOYtlUzOMc0gEg1uBKF3NanFtGadJx7c/wxrlY0v92uhx1prvHvKr9fLf82e6mlw9llgcKyLZy7ZZ67hr8vxvPZ8NWtP67WHZYn7vzueiOygL6k9dbtvf3Ht+43aw43a4/J07XmDZalfqD3rOXpee57Xnv/WY26RB9rPUoCmHnmrWSKjNGmgpY2wLRPYgMPInVFKCvIoIprDBUG7laZmBU2hppccE5J9TfW5Pb5x94wPPnlAbc6sQqYFCOnC3JxdSizeAryyRj3Eb5rHtMsKyJ6OiY8QFneWyUjNGXNGtPHgYqbk6GuiP4upvEMtHI0LgwiWFO+2dNb6drgvwkGEapF2lFr/zFqDDl6iQ9Rsb1R3lqkykKj9dY+7MabAAiiJetmiXuxK4oI5hMIo1RuohAimk7srZmMIaIpclm71Xfv0toqwWBDkrcbEByJdmBzAs/SqIu6gQlnt9VKQhuZCdsVz7hZtndTtzhni0ffmnKmthoWiwCqW3nr0XtdjzfRcj24/VmvFDVJykihzjYlPRPHaUIy8G0kYqiks35fKvERN8L4O57nhzSm7PfNFZXp44DBP3D3eQ5sZNdHMOTkayQJtWnCNHC3rn+WuZFIulFE5Or2F7E+588obvPDt3+PspdfxJ79m/uD/oF191u9HpVflHK9D6T1fxeUIbxfoIpjVuB/YgXYx9Xp3F08zSkXzgOYjbLkAZtJwChLzYikdYTZDX37abSdbbZBhf3IC7P71C8S/4tFq5eDOw3PjpGRe2J0wnji3diOnpyfcuX2HlG+BJYzG40cf85P/+H/xdx/8Aw8uP6HIwpPHF9QWAtdcGrtdxppyOE8kOSLLwDLNIYJ1WGrlapmorU9sEHUDAkWJ3MjGkAe856lVb4QjsG5iBDzs67Tb7c9LTLAgrdc97fd8EG9BNkvUIreIGYkeOvAcd8hFqbVtNpVx2wmultilingual_clipkoCYmiKKSosiGB1SDn16JSKJOnCFYm81zKQNNxtmhuaopAYM5pHxqKUwRgH5/ZtuDsOZP2fMX7Mz3/6Dj9/96+4oLHUzJBHrCkln/CDN3/Id199iccXn/Powfv8+oNfcHXo1WtVDNl6r6Y/ZwsISlJkp3VnnbimutsOsX8JB5puEacFpDLeGXj868+ZJsfTSPY7JKkgDxl2GSQFeZwfhYDFF05uN/KHgkwaouQsjAq7DMcqHKfMLc0cp5heKl7QFhUyali/HzaCcDKjeWXxhdaMqVXO28whG8sISNzz0sFZSgPJyBBZdtaMhcii05Q4Or7F3ZNX0HaXP/lP7/D6H3zGjsSTp1wLoOIdC9qNlWSVagsiM+KXYIfA+QUqwiJC1YRL3b6/0Y5NoKOFpjGSfHAjtYpQEUmMEhaKgpJa3KezRnqgmmLp2ozsWcdzgul3esQmaNEFLKYgrDr2C6c9mRm+rVzdc8rdBGOjXUI6EdIeLAXRpN3qIcDWvgFYDKlrw9j9vFuFQ5xkn6MZSTU2GFotxqtNIkvFo7GwxZFKhPdKeHJGOON169dqkEa2WuStq7H/8daZZzrbbrJtdm7ktH0RrLQbu/QvI5fWvz89ofSl5NKXN6zPj6/+sWHwwjX4EL4t9B1sAPMSE3QrmbOqWdkA8SjK0gkmX0F7+uMTm0HRRHjB3mQ410mltY1d1Uprn2t9+xzPH811+FeKFESdpEJKyjBkSq48Piw0KxyPI6ODTLHpQHI0EG1CrMY16OFNvxuigV5qBGZXE5IHMUH3eRZfMwms39Sj2UK1Zw1WhIZ5oq15Cm5kcZqGxQ2E0tC6H3WQEvTncVhtcVrPUNBQcQiOSIz0Iy1+zvN6puLxxUlinJ0eUR3aNF8HfaP9/EbxiM1+n6Ja/72TN4qAd3BNBJEYuXYIdTKxyVdWsEsjq4qe26CCRQAEkhVJmbEMuB9iOiHn3jBF+HfZFcZxJA3RcFYS+2HH2fGO7775Ld586w2G3S4aJtb1RidvFCjcLGbXQEZ8R+X69rx+z/FrK0JiLHyz0HEH6cCHhLJlW5vdai8eI9ZEWDk2VqX4Rir5Sl7BOvW0ig3WSaubAN/NY1XMb6+3rz3pRGFMVH11j2eBUasNVYSsNlprlDKgov2WdxOwulGLej1yWWtOXGclF3IZwzJoBXJXoPcGkOrbmr4GfXMH7lJKW57PNazcAd/OpV9v6tcX919/z+vrv/7Ra0U48NsTBRu4C6iGBZ3HNSASFh/TNDGVgXEYA3SUIFG9Z8DEWlzXVOSjIddEZjzN+jw9+0CUXEZ2uyOsQZUZqnagp9dUi/tAs4Y3jWs/xetEa9TIThaFpVXYWtE8phzNOmBNgGHR9qASdluvvPwyP/zhD5mmiZ/8xV/wN3/zNxwOB0SiqVvJ3C2PQuKaa63RaniAxzmO928tci/QyAa8/8mHXDy6T/E+dS5hH5F+C+zNqOYtE0dErteVCKLhAb+um/AeD1uVlK/BXu8TCnjkcIg1njz+nIuLR6ze8tyoD9eob4CJN0He9Zx92Tq7edycNli/NrNtf/qFJfw1AHO/7Hhee74+tUd/h7VntYvWp2rPD57XHuB57fmdHLkDlYSi2myTeJH7/lM7sZRTCpJJBST17DXpMGnssWObHf4Q1veErU+79zaClJ20WUIGybPPwt3bx3zy2RPa0jge+v5fErTKlTdEHDMh5bD58ZV07Ap+VDk7Gkh6weyN5MrijtTKWApUaBoi3IO1sHBC+fThgQ8+u2JXhLu3T7n7jT3MjfuPD4wFNAtHY6zTpImEo7mwtC4CQ7DuOGAtwMiUE0kEp4VFliSkLoh7J4YiTykATOHqUDksPbMEmK0h1o2zvU+QdgJfiTrm7gyaqVaxTkJgITRsVqNySEweFdWwc7Kej0cHqddcBLRbmnvYE7oz9ImmRcKWrdaGCWTt7y1CwWkWk2o5F8yNpYYYUEl9StXD9s0byYS59b6RyOZScbJGntZcIfeBFXOnWdi+mwmXFzPnV41q8T6W5iwtAHnjHHVACqrG2ZDYZ2exwAGGIng1hhI9quZEFmdXMmXI7I93GDuObr/I0e0XOXv5de68/AZaHzD/6v+knj9gMenCy4rIgGcHLYjk6MvMcS7DzvDqPt4qkkuvbY6Od3E7x9qCy0C1hpbEcvUQkYwcprAqTJky3LgXOWFhS6x/rOEa1oBf6aMZFefqsvJ+/YTLywsePPqce2en3D4948UXXua1b75J2R0xXzzhFz99h/cffMyn548RKpfzgckSLQ+ICrvjhGrm6hzsMHJ6dEzRxHyYaRLrsi3Thpe0FngoAikpsU2I629pMyllHKiLRKZX6hNNWfFmMWFkIWqVBN5SiGStkVKs+bCmjPunU1nqzFhGfJqjT+l2vVHLLKaqPPKwg7eVbS+US9zjIVxrZM1Ec6GUsPQzj+nD3MUo7vT8TGG120wCWY2cDgyDUcYD+6OZ18/e5DT9Acn/LT9752f8h798m5YPHJ+dciiFXAptEr79ygt842zgNw8/pM5hZfvJ/QeBJwmsot3IZAGzbv2I4LLep4NoShu5J4hpnyyHVdytqoypwHFhmRfuffflwEKGhNkxSQzVT/A2xWPqEmSJJRIjx+WEO0cLl8sThpTYJeE0KydJuJWVk5TZSaKkyOhKpH4+ejTGJjrxyOJsjblOzN44X5xzW7j0RvXAdTLKoM4yO341Y+pky5jlENioMOZjzo7vcOvkVZbLE/7sr/6aevorXr77Op/8/CzwHfd+vbe+3RFE4t48TxOJK5JcIh7rOWxVYZHElGLqG1JwAHifru8cgMRjrakLFWPyRqGx65hd1ri/FJWY9JJEknDpsdaFy19yPCeYfqdHnyQwWJkWd6AK7TfK4YkxfDvTrkBuC+wdPzh2LKSThKW2eWylEiPO0hsfSQKzs7QeEOvdjdI9cpGMrhOJsW21+L43sLpOMgXpFCPwwftIlegeDNZZzubBhovFOPQKGFpvdjZgeLO8E2Qln/ohJvjSP4BnkUb21Ndf9mfFX3+LJn1OLn2tD6ev5kZvIdbbUjR5YuDdB14WzEtXU4VKa4U9tpHb5gHme58U6csnCJRVwS7dT1UQSf1FrID9ajKzjkkbIt7D82Rr4DX68z7CSrf/iBv9mAtJL5kmobXE8W7PThvLckDdaaKYxObbPYL2Ko5bbNFVergx2h3TDCQa88jy6ZNGeHiX90ZELSZ5isK0gQ49X6l/riqwWamthFovDR06ClWa11C+eChpSRLTkhBWCIQFgnejdu+ureahdH1yOYcf8fqZERNTuMdobyc+cgpLvhDTrTdZo60WLRZqSu9kGiiZEps/jQbYegh2YBld7a2AeDRBJcf6SEpKQwfMQnGkCGVQxv3AkHMP+s6c7EdevnfKv3nrW7zyzW+hw9hJxq6K7oUrJoq6pRx9ryUSG5RefyPIMnVFddReoG9ggsjZQMKOrbBdB+sGeM0Mi99fp6ekj0EHILOqClcbBelE03oo16OjekO1u9Knv11t4zXeVJvbM37qq3/cBKvWd7eqsSOba/2EdDtfK0i7ZWV18KxZKNNyLhF4njOa1/yJEutuA0ANMTal+grMrQDrBtSteJezkXxPvYFtDa3v4ws/04EZYQWU1zckHXy4/vWnVd6bIj3Q3Rs/F3JfcY1NqDaqG4dpYhjGyFIQSCW2n14DjIHegHgnjrX7oJtFyHZ/3u7GdQ2854KkAhoWVOs0pUramoJkFdMWoc9roBxKtdobzHWwIYQzqYM9cd7jftPPZtDdHcSdpom//dt3aDWs8a6uriilbGuklLJ97qoBvEhXwoUKNZSt69dxHgSzhely5qP3341Ace+CI1kzoK5rCoRCPKdMLmUDed2JHAQzSgfHb64d6eKHZ65597DQqRNPHn0KvkS9sfXusF7zbM/zLAD3WRZTN9fhTSurL0wPrGAxaz37GgO7X3I8rz3Pa8/TtUf6tZBS4vC89jyvPb/D42RMrOLRNf8reqKeN+G9LffIMsKUVqG6bTtIlUSRhHUVequtA7eCtMgeyduWdyEnIUm3xNYgUcLCPHN0fMST8yum6pTseBbKsMfnGfWY/pvNGDSRe71ISfo15JwkjemDZWFI2qevhKU2PCd2KVE7niGkAA0xrg4wz8LV8gQbRqZl4eLhgWWaEYXdbkSzhj2Wwsm+cJQTuTin48BOYUiJpIY6aIo+bRgSlhLZoR4aVpeoJRYA63Y1iPTsl8BcUq8lrjFVBEFspbx2G+Ct2xtJuEYofbpBhKU7FDSEZrZlHdHJezxAbzThpp3ECvIwS4gjkSCDzGQTFaLSezvp6yNq8TRbOEh014uYQfKoqe7oEjWn9ntWDEU5zYUFR8xwi35tsiAkp/OZJ7MxLwttCTLc+udDvz+u8tBVnpCSsR8yirFLKXJ5XahNyKlQbKJowppQdoW8Gzg5PQIy4/4Ot154jVuvfY+X3niL3M65+tWfsdx/F9VMySPWLnBTmoDYiCLUNuM6dnFpDRei5ojuwIf4zMUx03C9s4JrwZaKzhc4e1Ia8BY5P2KZWq9oBpHFAjkdUXa3UG0cDp8jJaYgvspHwBlOE+d8mZkfVx5dXfDp42Pu3T7h8yePePLoMYMKn93/mPfvf8xHjz9naQuqytUCVQcQZdhlylCx2alXmZ2ckD1Bt7eca+NiOnBY5jB9Ida8WUz15Bz38JSE1hbcnWmecATNsX68xc9arZSUAtjHwg2hT0W6BFFr1hCtpFTCkAXBPOM0Lpcp8u0Wp9a2iWfMLPZ3KSZtmrWOwRCDAS60GkSX6nqPC+ylupGKkFxQc3JWShoQUVqryJBJkuK9ZSePShkr4+7Abqjcuz1wO/2PZPnf+PV7V/zJX/4Vv3l0gWrlrieGwaBmxvGE2Z/wm89nNBdSnXn/o/e5mA4MaM/v6T2TKm4hYmp9v4FUVh2UoGRd7zmEgLjnTzXvxFgqHZ8Rao7JUNEclpgq1Om/sPd2PZJkyZneY3bO8Yj8qKqu7ulh98xwhuQSWK0gQRerC0E/YC/2T+gnCpCwWhHCXhCQsCvogruitEuAALnLITlf3dPd9ZEZ4X6OmS7MjkdUdw8FCOoZ9jB9UNNVmZGRHu7H7Zi99tr7whjK7e2JWja0rByaUOUZD29ueHxr3CzK0AduBF5o4bkUnmvhtmrIwokmiTByGHHBLcUrbQQJqA+2deNxbLwdxts+eGNGF4tJIDx8tdeY6FUMbwU5DUQatTaOZeF2uefZ7fvcHj/k0587//b//hM+7Z/wT/+bhU//+g94eFRYwl9Pck2IFKxv1AXO5xX1QZUNsQdIcbzuxuaw4WwahAfDsSSejWxyi0YurC4IlphR4EhanKKDpkrFcTEWbdxUuO0bb7VwEmEdmljp1x9PDaZv+sjEXd2wt875Lza210L5PshLp90LvhJTStXDM6kIfgh2jmgYz58nKL556HJ222XtrAf0XaVyPk2jSbAOthGJ+fzjYJuzLIqNMKzTATGB66Ef1eNnpceG7MNjjLPPBy4LX4/zCFMn9iZQ4KD+Vbm767//Xc2l+S4zo306/sEd5pLFfE7Y+SywZ5LNNeoePkQEmDKh9di2LqO5+7oEkJqFJsxGksyCKt78qpj1DPKz0So44VkTvkexS6oqtShVnVIs5FU0mBm1NNpyYCkHNla2deO1CXfHxqEdET1zWgd4pVRBCbNVNaGPczSxtDE2jwJCO9uUSBCSDSLgwuhhBl0kpBVUHTykBQ5T1s7DCBBVhgcTRglgZlgwMPZLJXlVJPS0SzZ5JveMkmw5v3rUJRogmil/ycZfnxILhISNTGQjJwNiGi1YN9HiG5iGEaG7h0Y2SqmgmsJ6ky2DoBRK2XDtaFuQPCnxaDgVLbQ0hdUSTSrVYBbWJdl45tzcHJGiwfIuwuFww+3tDT/8/gf8k3/8I15+5yVoSP95SqlojnK7eEpJTKDv0hTy/L9oE4LQk00k+xQahATF7icGuzhkvCZBLhvJNs61eukHcRFCnECMXMXSGYzlnT/RQEyJQif/fXlkLs0n3z8XzCmoKZH3Fd76t/b4etAqAK1lOdDawn53Z3KWRyzpC9NUmMy4gpTL5EDR8DvxTP7MwjfjGtidLO9SCpNJP8/PEmyd/irxn6u4JtcnFF/y/b7FOc8phPh2Ng6RWFu/4rpcS0khQrkC7fapC09j6KKM4eGZMAaHZcG2geNoLRQaDjub18zZUoO8pDn0BURMIJ35nBAyX7VSLKnRmmzD6Ydig25KkUEw0Qat1mhg++P+mS6Avr/zuUVIQ+u4bqqS9yYaTH/2Z/8BskCd92jep5ISGVMKqmjd142YQUmTWDMsp1PcVvr6hk9++Qmvv/gFSzZ+Yz9JGc8SclRFJHXOK6XUfO4lpwr06rPZXKn759IEnuc5A+GnBuSIBw9vP+P1608w35heeSC7Aa/lQ7ED/1fPzbX01Pz7NVj7ZWD369bZrzqu3/u38XiKPU+xJ/799bGnPMWep9jz//Nx0xTNvHxYsJxVwFUYHhKbkW/DnLYpkngFihvZMHLQOV25JGAXz3ew5+P52UasipLyd92NQcfF6N04LBW5O/Lm7QPdoI0VW2BZwj+snwYyjNUsJqaI+kJVaMvCzQ3cVli3kMgVD8Z+KSGV9vBwYua+c2rSLGTtUKHUyrZGs33dVrYxYBS2fto9jlD44vNTNNYOwsvbldsWDe8ZHxE4lMrdXdQd4hrn4ZGHF51Nuoh7VQlJ9SRwuaWPkQhNK2sS0kIkQTGMzQU8JOpSaJLuQdoTcUqCL7VUNM9trmDx2CfoIJpgJiG1ZwrVBC8L2e5GCTsHtxD1sjShnzG71lBW2HoQ7YqmV5KFvNPUAYmwELJ728gprr3uCHJerQEgn9bBOG2sPVZPU8mZqCn5LVALNzWVPAxEnftDeCwNU45HBWrEa42WVFGlHg5orbSbI65H7l9+yIvv/oD3Pv5D3v/49znKI49//a+xt/8JbcKxxhSfEV52A6VbTIIIjksP8qYYB2kgC6IHxvYYUneiuJ0xznHvtrY3DJHKou/RfWC2UQ8fYAwKG309Y94Z4y0qj7i9RXVF+ob5t9uDyQN0YEiQNFbzmGLbOm9Pj5ze36Abb96+5ief/ZKfvf6Mh+0UzZ+Ts9kNzqC0QTt0hI3TqVNl4bjcgcez7Qjr2lnHFpOGIyVZS+6wEtOzKkqU140+TpiHZzTitCY5nRiTS+uIRlU0biNfEPHwG/R4jt3iGS+S04UY3QQz6DaQEtOAU647BHdmPqQsrUZOwSQWBbnZh1O1YRKk3hhwEMZm1BaTMsJF/tjc2bbB0koQPLSzNOP+3liWle+9v/Dmmultilingual_clipJAAAgAElEQVT92/+SIv+MX/zsnn/1v/0RP3144O0Imc/P337By5u3fPyhU5bBuRvGkaMf+eTTT/nk00/i+ZUSk1oTlirEkMOMc+IYGrlb5o8lpyxjiwlysmr6c+aeu47OQRsqleE9MBcyv8F5PAufPy606nQxqipVDmxnQbWzHO+4LwvPVHhPD9wX4ViERaAyfYY0JrA87k/kV4NhnXU7s26DV9vKF2PwRYd1n8QqKEZJ3GQ4bOfAaQQBb6jCcqjc0Fh4gW0v+ctPNv7k3/9fDF357u9tfPjsB/zZf/iQw0Fz8lUTTu/07hxUYAvMqaD7pDuMnPQMIkeHaC7pnO7NzzMJa5azo5Ke5uJU95QNFI61cSjHkFV0pcjC8MFNf+Rm63zhDlbw+jTB9Bs8dk57TP88KPy40L/o1B8q9iHIC4tC6yBpqCtsXdhyCsJqBKdsS9IOGvq4loUUYKvzcNrA8mcEMIkm0YiASLIS+4jA4AZlSuxtMc4tnUggt1izYuAjJqEkQV7fG0We34/fla71yTRLYDJBx+vvXRpJWXLk9y6vv3ztqcH0D/PIkB3Nm6AScGkx5foSIXSKycUTiyvL/yxrBFJ72pE5zBGsgiuPmenRpGp7wwBKMGRjP9z1cONcDHbgYTKHSamQYwABulGVaBhVpTShNkXO8SyuWwARz24Wjjf3CI+c/JwTPgWRQstNrxsMkxxNBYZSysgGGruBX5jKp4dP9l3EI+mIhCZjjVZy8Db8mTxiTGj2SyRT+H4tAsiK9yv5cM9bY+67WasKuycDCTJUj+YR+d4xjTXvk+Z1BfcSzLsc3Z2hIlphwZIt7hQps5dGTF95MIhFEWoyJnuwi9WDtWOClEFpkLbkAZhUKOIsNUbqwWiHQmnhE3A4HDm0hef3R370w+/yh3/4Q+6f3eO6kHNd2N7OjOaUTx37vakjeb0uDGCQWD/pYZTcTbC4K649W0TzPSzZPvHB3SSvpexFf8zRX08SJchotv/WC9CSP+vkPY41feGU7yF+/zn2Z2aWoBMqyHPapVN/e4L2O9I5Hmtp28I1Y1mCFbYTIa6QwUjo4mpWKRcPAg0DepEpTRXXLYqVII9MgHB6oKhe+Ysw92BnMIjHLIBWyechYtHVpNvcR+UyhTyf3VgjVyBfnPi+/WZb9CvX5B12eIKZc7HM9eUTAlcFG5hbsOxTmmt2L6dUk3vHTHGPa7xuWxRJqruZrk3ZqMlekZAMqS3iGSJ4D8Zs1ZDUsaEpSzEoCeiMPoBOqSvmg2EErXoWaaQ8WH726X82701NYNTSK0RFOB6PKWHW8/7llKaWBDXivqMaTQIhn/Vo0NswRt9wO3F6e+aXn/4UD04vpR0jtqruzYKa/ie11vBMyYYCkOdYd1mva+D54qej7/wbyYn4EUUyY+WLLz7h9PgqGUfAuxHsHYB3AvszxsTyerfh/GWQN7sS+7TD33Vc4tb+hP1WH0+x5yn2wFPseYo9v56jicR9dTAdTK9NswD4zJVhTvcSsksqSK6FyCVtxxjiOY6JGksmrOWzrWgypCUBtLgXIdAmuJecXHGWYwE/8Ms3Z4YpZTuxbcrSFrQt+HZGLXQlsJFyUIO+rhwOB37w8o5tHem1BubBKBeJaSvzeIYs5Szn2nTg8bzy808/w8egbxaUMI3mjiapbVj4XwuDKksAy+r04TRRWq08jM7bdWXrG5RCqZXzuacfkWMjJrbmk//esXCsNwwLKa/VEmj2AKOX6DYFeI3TCCBPiKnSOV0ZmFOhZwPmqHmNxSkeLP3ug8OhsY1oCKkESFm1oMS0wZxUbaWEtA3xe+sV+bOpUutUn1C8b3ATZMUhEYs/e3PizSlUebqPaIaNsVcSQbLLCVJy4mpzTnaKStUnLS482tAAYGNCY8YiePu4UjS+dn8I1n1bQvXDMYoP6DllViqGcXNYuL15xovvfMx73/tH3H/3R9zdP6f0X7L+/N9R1p+jfsZ8cD4LRR5BHKmC1ELVkOMTOUCJa2vM/Wog/Q3hM2MZnzpUwU05VAUOUEK5wlL1RLfO4XBH0YV++oTCYPQz7uHxJ2qoG6Of6f3tryVGfFPHSKLkJChGNDZGN9a3g7fnM3/zi0/ZeuehD9bVMVEwpXvDJZoRunSknlnPhdHhKAttOTCGMzZjXc+c+5YEFcmmU9A3w5ONyHsAHNathxR/+hXtk8wl9taRHkd9xPSIqAbeas7wlVpjLxzDskkw0h8t9jLLqdyYno6G6hg9t6bIYqwb3dNfaUJQSVBFnDHGLqdnOWkqouHvvTSW0gjgKwi9wztrH9wcj5SmHI6dZ7cnfvD+Gz569rvc13/O68+/y7/64z/ir1+/4pQSnO7O5s4X68rNwxc8O3S0LMgwfvaTX/C3v/gkpqqkMBV/3EeSW0pMavUe0X5vLE08Iog65o5lk3H/vkc+aRJTOQWh6pISwzENPojPrF7ofmAMZfPByYzbWiniyBCaFJZy4E6UhqBeUANNfNxFIw9M6xexgdug95WTbzxsnVfnzue989qcHlteEAaUOG+VaFaVoPf2FbZh1DGoOGt1HvWGt+sNr1f44vHE6srNsfKH/+TAJ3/zB2z9yOEQ3uGWn9M88tOqig2nyUAlckjNPStaq3GduhieXhaK75KreFxDlZj0LcpO6G5i3Crc1crNcuCoB6o03CvOEXxwKsZt8ZSjrvxdqdNTg+kbPyIZvb4Haop/XthOHX+l1O8r2xnaPciR0HNdHG/JyqsxoaQ9tHPtbJSmqPvlQXCnlmRWWbC8xup4j4RunGO81mVc0uQRne70oyMVl0JWb8TI8ZStuEwaRIDDQE2i8ZSyfdj8ZiQeSjLHPEfivzLBNCvPd/oDX7508DWF5tPx233I9FAydiB9LpfYuGaxGczRKE6yI79PbwhGQf0ivyK7TngU5rskRCYZO+NighgJnPhESvZl6OzeRMnclGQBZB1P1UhiBEWL0GrIDVQtIfXmwtY3Xr3p9KVyWyt3N8rWw8B0ZNNIpVFz/LB7MBK0bhSv9PRmKxWMDR9KKzUS9KltPp+toQyPjRqNrxdCik9KFhR7sV0RGXkd5oYbIEDPIkrdkfSBiP5GXJwiOZ2k86rmHZEwqY0bTBhxi1M12WzSaAXGtkbSV6K5Vl0odc6TBQsQ7XFPrQAdsuDFB0XrDqrNoKVFKVLDrNM7rSltEdpSqFfeAVoXWivc3Bw4HhZuDje8fHHL7//B9/je9z5kOd7gsmShE9c3YZWQeiCWhCgX8G9fMclyjrKS2ak3ubxoeohJSgwGskOstWys7WCHTCBtfsxk0O1NoOslm0+Lk4xouZzsFTgzz3cH6HLd+3XwnlNZAjsbZj6fbnE/fguOL0vj1HlVrNO3HubELtHATRDNiMm+eBSm/nR6nJSKlzS8LpWYuHTcNrQdQjpjAnG1orWhtYa0CDEiX0TDO0Q8igbN+4Bn0THwYciwnZUbH0bT7P363kZi75bSIiJ7TCQTZ9UJ9ELEuAvIO2dFo+mZrBKLdRrymwX3KJxIo/tug3XbWJYFvASYKKBtCWAqpUHQkHDqo9NaS9ZxNDS7O8MV0YVajd6h1pAi8RK5EpZSvzQqFix47TRx+uhA5CzFGn2bHhCztB3gPYEoD1BZYmKiiVI0n32Di6xlPNpRULad/OOM8GeTuO9SClDY3NF2BL1Miqg6Yo/4efDm9Ynt4TXFgklNEZouCeym/0NOAJScki35PJoIQ8Cqoq2EfEVpLMuBUoLBO2XS9nuXgULcMAtucO9v+eKLn8I4x3qQkHqNmi5kPqT3PSxoFnuzizCjWvYS9j9zPQVmbLGevSMyyR2XRDDi1KUJcXkkYzJ3AsO/bVMFT7HnKfY8xZ6n2PPrPM6bsYrHZBrT2yieOcvnrahSJaZCQgEgwDVJktjQ8DlVlCrh3dRTQn8w6APA91q/pHxcd4eUPetmbGtnENOHiHJ7OHA6bbG2zjDGSlsqRRpeBK9CTT2l1aDa4GyP3FbhWHWX+R94TAxINNbD2yRqlaIB4G49fWxdeHizoiWera2PWIta9kmFoikpCljvlHKIa6bC5kbfOm4jm3QRP2NKAS6TkMIY+XnNeX6Al0vhNMA9Zo9UIgZjLRrSAKXQvVOcbJ4RZDeP53A5Nm7UQ12GmEYyh1Y1fFxyKtFGnKcU5VCCgAyy+7qE1xoUXZjEBRtOKRcAWWddshMSY+JpDMJzF3j1IMHmd6M4TA8QPJ61YUG3m8S64bGjLUVZSjTK5qRiLVPGKp67WgSGMcw51IJLNG4OLUkAIhyqsDocavoPHxq13lCOR56//z7vf/RDbl98jxff+wNun72AN/8J3vwZtf8Mp4XMnTlUMA7gG8UH6gN0zRo2JEY9FVLA4/4nyGV9+uEGxoaUkNUjyLRCYfRXtKKs68qwvwVOEZe8BAnA38R9kEb3mC74UrrwrTsCDpRsAl6+aDirG7133sqWjZgkw1rgAZGjOFIGtZzxDrYKx1o4iLJtPSe1nYfTiXOPRiElsaWsf4Pskj7dIoy+RXNciUllVayHTKbJCByhNsYm6RsdlXJJ0objjG1gGo2jue+bp/yhQE3fuxC9jFhba5zryDgl4rlWBq0GmSa225zclmhilpT1M4s1f6gLJUnS8axaeE4zWDcDGxyPwvN75/n94D/76CXH5Z9yevtf8T//0f/In/3ic9apauISvkhmPJ42/urnr3j55sTtcuDxPPjlmweGEZPM6ckXipn5NGuJPaKkcotEU254NI5LSeRuyqlqwYZlMyqp4jJl94RSKmXu1ZLEXr/C4IgG/5wUXVQQc8rpTN2EmiQob9EI25skmjHFe/pFDUbfeOwrr6zz6jx42423Ruxl6a4xAgKMhvMakrJSQKsgqpxHNHhcOufuvHqrcIS1bmzbyrEu/M5HJ54fv8+//9kHUBaGCdU0ckAKTRZqq8CGa00ls5HqPJVhhc5GJ0ggwwWPDQ4n5Jg9kdIiQeauGbtrcQ44TZWbWjnWhWOt3JSCSAU/IESj8qE0XukprqE6f1fq89Rg+jUc77ZHjC5nAPSk9L9yxitHv6fYe1CeQ7l1ZIFyE4tjxB4SwcsjLRnDMrlOCbsY0ohGljlsYBsRbMdgt9yI5zd8U1bPppLsPkw+E/a9mCMrmMA33fe6Jthmg8ggHKZwemwWQE4++Ww+za9z+fv+Pb/6887rvuU759Px/+lwBuGxVMDKJVnLBSpz7DNxbdlB+oscRizdAPWjLp2srpgQ2teqxhyKYLi1eI0GQ9csgY2rYoAE6aMZNb8eDVUVDyaNGKKzAA097tYah0NjWZRt28IbzQfDnLenzloXbpZKq5WDE0WWWWwSWsMMV1LzOZMgLWA2Qju4LIxOsghTBzY1/c0MacKYY8jOznYpOWkTEnRC1QCuQgeXnI5yokSM8WHJ1op5xJAw+pNk8AVzGglTX+XCRd7cGExpHEUUliXMT6WvFJyusOWmXyRk7MQjKEnxTDgOkbuUnsl8aG0fWhS3ptFo6+eVRQa1GKYtgp9Ubm6OHG8PQGiVi8LSlHZo3N7cc3s4cn+78NFHL/nhDz7k/sVLtN0w4t33Qivi2gX8inAlu4zoXM3A3qyDi2OTJtC3x7lkGc2x9umYPifk5nMwAZMpjThBKvcvnQ+ZSF3F09mGjY/h+8+kcVQAVO+cM5BsJFKi7/J+s6E1X2/f+pB9zdbfgd78eymF1hpjdM7n8/wBLhtWFoqqe1Ei+W8tKVeUkwJ7kZDSQyVBwDk9kKEmYkDv+fUA2ubPz/05UoF5Lz1Y2XIpQsCY5vTXEwNxryOXUCUbs/G7w4Ply6wPLmtxbuoJ+lo2KEP+yq+ujUCy+MnPM4Yle5ndTF1VKa3R3Ok9i7gx2LZtX4eWAIZIyFfqaLQ6MDNGmjwrI5+VAJZUR7Q8R3gbaO4BSM4i5Pn79CPBo3gRoGSckgCPi2bsutoT8iIwF77Pjz2fNAuQwa3nJElIS3WL9aRlodRodFcNje2HN6/BLCYGtO4yV6qzIR7rpWUzIKQ8894VzUZCMHRLCwmrWLtLNA7k4osy5awuTWYHH7x+9RkPb98EEOeklNoFaPVAbOfOeAFzr0Hcr3/ALn/PohAN7fOLRKflyy5g8WUtX57Naz+V34bjKfY8xZ6n2PMUe34Th+VU/9mjdohJQmeXoPbC6JHje1GsS+bO2ayZzUxTwjPLQ/0kG1B7P1EnBZCYzmEDD1DOXOgjmeEespW4sTSl1CNvHx4598GCMmxlUY3m+Yi8WR2qg5VQC7g7NG5a4dVpo6rQNGohh33SBAvD8m6eNVDKdZf4d0wfRE7eu3H74sDSCufzynnr9DWIeFphaOHttuHDOLTK5h7yQyVb4hlfavqPGaSvbCgpqEdMOrvv3kuKR7Mnn3OVnlYFg0WjoduIa1YF+ohXLuJ8eFdSeabk8yOIG2j67ZkhKHoTpDm3PB+TvWG+i8Nn/bKN8MTq6UMzmwLixnBjDGX4oEBOajjuymoBuPoI37k+ckKDLMs0/HbVo4bc1S0c1j4YQCNY95KSoKRsWR9GQekZCg8KHzw/cn8MKc6bmyUap90AZbm95fb5PW254+bFd/jg49/jxcc/Yrm5oTZh+/mfsrz+t9A/YZSAx1xvkbHGvERtCDVA25QCG8E6ZJihOvAEqXGlW8GsgYXCiBbBrDP9VVx6KGi4YWNj8xrSlP0thqNaGNuJPjZwx0xwqXRZYKy08u2OQeIzRoT6SsTYyzxv+M7PSZrwkYEkz4ogxQKftMbWC2qhGqOlMtYzvnXW08ra11A00cBNtUjmRbHWRaLRee6d6B5I4ingY1BrkGcDbB2s60otLRpE3RMzCu+1ohFDxzBW69SWJFYUs8gbSuZbo/ddBnN0py6K1KynmeKzMenUSmBXcyvTxLfICSivUNvCIWkXMeESk4XPbwe/+6zzyZvCLx83bmrhxd3g4/fOHOt/y3j8Z/wv/8P/xL/78U949CCoqBSKafivjUEfg23t/PThRFHFiYbu7CcVTZmgxDIiJ0vWtcd0V4yyajxYmuQQz/zG4zNRU17QLznQ3DlMktw8gW3JRlbxIKdn/lNRqkEDdBucP32DPgjeIldBJZ4z8bzbSaYd4ROz+spprHxhnc9652TO2YTVYmhCHTAPa4lMN9Ujr5MRa4wpn+jOWzuj59e02yPNj/TDDWYrh+p8/wcLn/z4B4zTgi6VzZyj1pDBc6PUAmWEehGGe8O4I2w63mI0bFeVIVV9ogEpxDSrSpDKNTLLIIML1GI0lEqhFmVpcKjCQSvCgvsBl8qhOsdSaVQqA/Vrz+6vHk8Npl/D8ZXrP4E8POqrXwr24IwPFPvQ2F44eidwgtJCy1VbkvULWdQFWxE3JLuoiCId+uOgmGCzgeSx0ZtDT2M4NyBl8Cw1QqNZPzu4E0TP5hWwe3J0J+fwYnhgXIP/hCJZ6ivnnPDls8+MwshzuwI/8/f+v1y9p+MfwGGzs6EF8cFUNZnHTAYmNi+Uq2bPLCJno8n3cfXZgILQ2d/xmZTIQ3JRewVvOFNTl92sdq7TEEjzAPkFvGQBVYmkhWlsHMW61kZpR9qyoQ9rbMDZsHCD8+r0HsaExyosR2XbBmuPpMVs4NLjM42cHlSZJBGUQl1KAAp03BUktfFHp4pTSNNJ99hYqfnv0BqfVbvszbSC5wSNe6GObFAoIINaoiDqWyS9oV2uNBUYnWYOaeo8xoimWqRKSDLYNuuo1LhLHqwRd0FKC83/HDtGBVFDdAuwRAqqwT4WD9m9yYhsNdiCos7SlpRBUWoLFqy2FhJ6dLQIS6vc3hy5vb3n9mbhO+/f8f2PPuSDD17Sjvd4aQwJRmZgDz1v+EW2xXcAKoHCZNZcMI2osHc5HbmabPXJzJ7ARWoL5/9I8O6dZ8RSAihW4Q4xebKCSGZTOJlewMr5Pk58fxaus1E0gcL91+4/dwGx9tPxCcJEUJ9M4N+mY/dyIOV/amVZDpf97nJpmMCeagK9WnaAjtnYuwYDkQTj4g9XclSXWHUBtS4SQ5Kg85WE1d4svD6fy2cInw55B2Pbj/xamCaHrFOi0O8E3uvfHYCu5fsnMLdDR/P18eYX2aKIZcNGAtmSYKzt0lhIXhOrKQ0W4LAmODRs5OvSL6Y1qhmjRbO+uGBhHpEqlSkp7KTHGxSzC4lmPjM2AgDImiemKqbQagCdl5XtV3/YY+Z+KRNwFwIwxYQxZAdWJWUymOdFXgfg8e0bRt8CCJKkiOdm5cLufafZdKitUWqLCYGcUNFSgjWY6y+Aj5g6LXLtz6I7SGo+meqdMc58/tkv6Ou6A0gXKarLermOSF+euvlVh39pPakqLiWKxq+8WrMIknd+9lqy6svf+206nmLPU+x5ij1PsefXcZy2AZvvz2uLsZVo+Doht5OYQO9JkRrghH/OeQxQ55DMcRHCh8cv6hDuKSidcpCa999Ncg1HPrtZTsJk0wkAHxzagUfpvN5WjrXscopIsLEFYsItZeDOdububuHzh5XzyGaNBrBYVfcGs+1jQQ5EPBCbwFw+K2k0/fDmDdthYV23mLByp5vAeePhZByc9O5wpMYasTGi3hqRqa9bTCnGdGfUFJbg+gSTHUIGSsG2nHyR9LHK5VauYm+8iwKWsuhxbqKhBLGlVKFm8u5kkyZxqMlCLuKMortAx0UEPK6FmbHuU0iTqBhydfMSijvDYKMzcNahjHN4vaVZDU1CInFKi42c+mhaMQkPYxkjzzV8l8i4yWxSIyC2yzSWXFPHJrx3U7g91JyyVIo2WitIFW5u7ri9f8H9y4949vHv8ey973B3e8N4fIP94i+46/+RYp/nRENDbQM/YWPDVegjin2LchMpN7gccurhmLXgFjVcKYgFYG0ePirFa9SG5SaaU8NjEqqfA5wuDWm3IUPoIVfZzRgmuBxwNlQHxc+UOp+bb++xn/0eY2HmK1c7XeAxALlfxdq3aBhZjckgt/BexFlNUG1s58HpvMY61mhMlFLDb6kqWjLPgSQgB2Y6wRXrI6ZqGDn1FFurm3Pqj0hKRFpnl/w3GbRjQ7aREn2OqEWTSoNUMhJc1TbzEENKTLuoxGTPGJd9JwgmKdEnkthUnI8WZdhgOSwcl0odmvzUzthW9FBYR+PB4O4eHr3w4m7j++8/8KMP/2sK/x3/5n/9N/wff/WXvF6NtUeDKUjHFyHOkK+rDI9GevZ2MAKeRuJcnJnCJclbY3JwZjITe8uMYre8iDgje66SIqZMUrO7MXICc4sbiqRsnIhQRcJby43qUCyIPfp4xt50fMT+4KFHGb6bsxk2elwvNs6cefDOGzde+2DF6EC33LOIKctoMhmiJby2mHmeoxbPdilKDEsPSn9E/DUqy96levmB0+QFP/3JXcQ0D4LOoguDHvuCxHoXCc9Pt2PsydYZfsNgC0JYWl2EYk5InIaC0CApzVQP5FEQVCwmkjWkX1WCYFIIaUMkrr+7oKVRa6PoQqsrtWeT7VccTw2m38jxNXfkBP2nA3kDvBR4Dod7w2/BjsBCgqMBdl8AxQx0uXhtTi65Z5KTEKU5brHYxATrl+KMzNtVYgwyxu7iParWsKHvFt3m9Gny2eC36CZnXkau6VQ+uCqArovQSUy0mZjL5SSejqeDuXRCF181GKiBf+c245lMp9+Ne8m2xQhPnmS+xdoquE2zY4gtbRYOkbTK/ktjHBVXXCcMUxDWeP9JnBVFXCgm4D2XdIz2qjhLGWxVKUPRXoKdJoVSG/VQ0CW0a4W+F81igzHgNJRRnZslPQIIVstAwBuGMsIFAYgkZYyCjsHxGHJ8Ii0KM0kJkyEpfwelthw1jwZXkRb6qxhzoiUaHB23GEkedNzCfLa7M7I5NjfpqgSwUjxNY7MA1wQgqmOrUckNKwOPSExgRWOqMYaCFpYiwSwVRSejNJspRRdEGsthieQ640xNll8pgnp4VnkN34DROzWlLlygj05pd6gW2lI5Hirv3d/z7PaW7373Od/7+Dvc3j0P5mAyLjVBG0/Ax/Pv2YsJJp5JVN1T1jGX1XWTaSaxUWhfQLRghkexIEShJ0K0MfePmc22fM0kK8w03PF96k4zGZw8sCjGZgAGTLNY8/11F5m8bGxxYYfvQ1keRc98Due9JJuxX0EYv6XHNTt5AlyWflV1SvxcHR6XMQ3MU5oq1I7jWvpkQcv+fiHNkkysMb4C4k4QrNYackYpU3SNvwZzPs95nrfZ/vPzs7zriZFTAsoFJJ4yoLkRO/l5fsX9jOszTZbZ18v1/bc0diXB1D5GsF/7QFqhTm8Q992EV0oFPIDevN4T6J2fYySIo7VSgDKMlvENCTPcxFcQtWDAI6mPnp5jnlJbYSIZ4G6gp6hUSpE0oc1rkqbW80mbch2758wl3clzBVJ2yYLJE7tJshYpIy95jwvtwnba8L4FmOIX4NcGSJUsLDXfMwvhBGwDdJnTBjn5qEGfK7WFNJpoTp3avgYvky4pr8HgfHrF21e/BOv7utorQrn6fFPH3oNRuH/v6kJ8+Tm6PC9XZJC8P55gt07jh+TaffV9ZjP/sr5/m6YJnmLPU+x5ij1PsefXeWzDcUYARhJyYtonaBfk1C2fbU0gMPxXBXFntUh0H6yjhOcPqohNP1Hfr7FLkFrDOyOqLhV2qX3LhsdIfCHwiViqSxOKHth6p5tRM9+P0/aQsBrQMnc+VhAV1s0S/8hk1qC1grsyti2xZNmlAUue07BsQMlsiMZUQtFoMrgNjkuh22DbBowNw9l0sLji6e3qI6akhjji0IqAhdqFWTwvwz3lOKPuAehbAKoU2VUpUM8JL03ZPwMrFI1Y1pGU2468XgssFq+Nums26pPxPrGZjKvMeJg40xgC+3Qm4UHlRt8SWNasEyyaxLMOCUkrY92Mcw//XxeNiRGP93RiSiwa3YSEJ+G9G1NXStUp2whVaxU/jt0AACAASURBVMo4ek5MlAD3LbCAWgvv3VZe3i3R8DahlUY53FCXheP9c+5ffofDzT3Pv/MRx+fPWfzM+snP0fWnPOdnNH9AagGMIQXxhvpDFoESE3Jyi8gK0gJvkFPU2NxmU+AA2hEPL65WLZUtYkJV9Q6X9DAZW8jUakiljbGy1CBGqvWURxxRp9kKLhxajcaFO+t2+jVEiG/uaKXRx4ZZeiOx62xcMEIPsuk1FpSbA9P/d1hOumhMGo1UiOnDWccsbTMGue+ymFFXR86g2Qxxsub1aGYEuUQxDx+lmKJNgqcNhljEk1EY2eyYzSj1eA7coG8d1ALXcosGIjENiO+z2YwespatlfRqSuJyqlmFzyL5oTQblolRmdJaZWnw8Qvh1cOZTx7h1IW/fSV88IHy0e8MPrh7xY/ev+W+/XP+z3/95/zxn/wpn5831m70nNwcqlgN8q5K2XNL1YL5BszcjziZ2TTPHGcSfMKbcaH7BlPZRlNOWMO6oaJ7I0VRXHIaKQkxyMSm4h5Cp3uneVhPuKUknK2oDZoNZAzUnKrO3e2CPjxSauzzrsYQ33ER95XBiZMNzm6ssvFQjM1TBjn3fTXZcyCb2adZPqJOyfMIrCf2C1WwEo0w/ITKa8BgWbi/KXz28xesb4VyiIbQoTVqKRQkZFVzz1TxVDArOMoYio9GH5WtF7ZR6D4YTIryxDoXxINkHgSQWFTiFXXNebeQfA13cKUT+yAefnodQBulLBzKoIw5M/X1x1OD6e/J4QIyCvqFYG8GHJ31uVDeL/hzw24MWwxtUYzJTIZykfsQ2ByGoMP3es09kqM6k2aPB0EATLDNAxQdkZiwDaZUnjisFsDynErCiFW2T03lB/gamb193TlcqGjsDab9dX/HAn06/mEeYiELEJuIZjJNEtzknaU3AW73ZGYyXxPFwyzSL2DEBEUkARgFCZ6W51RIbJaTrRpTQuoXwD7GtSMFCnwkgrDglCr0JtReWLqxlc5WDd0KtRYOS+P2UOnnc+ppZ9tCYnKq+4Z1Yx1Ka4NFlmQZC2MY27DQ03dh8xUEakryWZfQuC8F1dD8N6lIaSyVlLIAp0YhMhyXwTSFNgtpmBxnxEtBXCnumRh4jpPn5KRU9IoEN29SFN8F9xKyfCOAjFIrY68gBZEoFqJDE0llAFmkTr/TaosNz6HIIUZ4l4XSArTQa5nCbEqtpzPGiMJVlXIMtki3SIDUlH7utGPleHvkxf2B33n5jI+/+yEvPnhGO97g2iIx4gK47c2UnaE8doCGPSVOeZFkKu+TdgT7aAdEmD83AY+cJboGPzySSURx00xYE5ATcnruIrunzp7YTTBq/t4IzgLUBJ+yfJzoZGqeuzhzOktT59jy/GdxJNQA7jw1GZl7TjwHvy3HNUPZPBiYvXe2bcvGd4KtGY10MrTnyH6uSZl/iIJm6mIHG9XfAcR2CaIW0kMlTd13eagEeeO8Ria1SSTJ853P0Dusf9iLki8DyZLs0AlphjG3pqXF5Rp87fXJvXya0V+OdwFjkdD37zayuArgd89T4h1D0strsn/jnXq/+HqplpgccMdGAujklAEFY0M14ltM8g2GSLLrjNFX5n5hCcJG3BE0wYsiOXFB7jPJDEs1/fj7yDCWa3+u+injcbkGV8WXdaxn4i4BaIvFfuSj433dn7n540Ur7XCgLVFwsDd853sH+09EUw4tPHfIYlBLQWultkZr6YVyNT0wAfR4fOMZf/vql2yntxmLyhWH+cv3P1iG706/zILz3QXxZYD33TUkeyy3K4T46g7sr/1y4+X679MX5bfheIo9T7HnKfY8xZ5f17H1qH96xgjdQdS4EirK5W5dpHhEJZuGIJn7bkAfgvm656UtBodiKiOBYSGxDAlwuKpEY4EJ5jlVJmM8Yp2SKW9d6NZZezS0VEbk0DbjXrzeBd67XfjFq9MuT6kOYwyGDW5uDlRq+BAB3aPuUylIiyaSWDaiMx93GdQlvAvGCNN0Ax4eV17cVNI0JSa46qCKsGXN6CPO4TQsGiee5EHrCSQLIh1DONusa4nUW2DVQMobZcd/OumRBxlPoNa4Tg1BWo1aCGeMjg8LzyoRNpt7iO+qNdEAnE0nQuFCk6SY3PeR8XqMaOTrLOOIuDwkahF3OHfjYQx8gNaYsKrZQFcp1AJi4aGkOaU1sg6KexseWRWhiKIVJkgVIG74R7WmLK3y8tmRVhdkWSjtgNYjx7sX3Dy/58X7H3H3/CX3L17QVFjf/IRx/jl37TGakb7Qx0D6GS0LWg5gA5MD1iuaTTnzLzBZkOU52COlHBE/UeQtpYCXG4osEMLvcZe8oCygt7GWRXE54dsa9VQNJRX3hpWBFkNq47w+clyioT6scbYanlS2UeqBVts3HyC+waPoAUNB+hWeY+yexPv/RdvT3onnEac7g5JEmp7J0VRv2czwUvHtOi9KL8SSD5fFWsTlSjEnGujDBlIV8y0xlWzc6kX6LeR3t8BqlpA2G6eQswx8wq+q8sCbIgfTfS+5YEk5qWjRnGgtmp0g2BC0ODaMtsSe7PkMqyiHUhFWTIxlOXJ7gKKNt2uhmwRhSOH3PnR++KzxwYv/nL/405/xL/74f+cnjytnG/l749ktotFpqwapKhPXsNBHDxKPGIqHLUqJacHAyZJEnB8uiEUjfetygtjCE8gzruiUvvOIj5HmlJgKkmhCBU5i1BJ+T2JO0/BbD3+8jnSjjoGYod4pDNqzhtQzTUHagNpD2g7DObPJylmMDU8vowiAypTdE2DQPX7XmJhkLBVEHcvGzcS0pkxoSNaEt3ins8lD2FEwWN/cc/6i4mNFbFCIz3Y8HFm3M0Ms7oeNJPgIPkoMk2yKbZV1K2xd2LrSfWBTilYD6xFrgWW54wXC3yb24jHCe6yIsKI8DmhDqCXnRkZMbq0mrCIpgX39XH798dRg+vtwTCxRIpXWIfBWGGfHXw14BuU9we+UfgBpCf4mOG2E/IDkxi4W0kwx2eR4h00jkZvh2j1+hhV8aNJ04rWJIUaAtVnkxO8TB+/EgMg8+XzdbDLN0erMWfYibq8Qrv/+TV3Sq2Lg6fj2HSYl1DmykymuiabEZjYnSJhJABsqlbSm3RtH4gLSkStvGyignQt7K36Ny5jpS2xhBpPtEvqUl8J7ysS5xwSPk+bXaBQxaAIqwTQpRVgqjN7oy8L5EHJt2zmST5dpBBrd3DC9VbrBKMZSDTXHvVAKFANpjo80KBRBpOAWrB2JDICiNa7VAC8jGbKFwgi5E9HsOwzQinihtM52esSH7IlYbJgL3i0YEKphCi4FkYGNaARWNZTCCLGCGKG2Hs27EqzlglD1wHBJ3WH2a25OyHKkPm5JNqwKHNpCK+Ej0JZDyuZFcBE8DbDhfF5xH4g5h9JoS2XIwNaNVhqqLeUYhPdfvMf7zw788Psv+fDDlxxu7iltASouAZZJKexvPu9/xrYJMHkyOTUnly6D/RcJ0An0xJKdQVN39mawkKP9mdgRk1t78V7QLORlR8DksigZM0gn8LTHcclzJljTMXk08hm4YqVnPPf8TPH3fM3eRGMH6PwqkFu+bgJC39pjAkf5z5CnjKboGIO+9QB61+0ruVWw8WWPTQEWlHgOpeyviQZwsOQUroDdxrIstGUJxvjuS3KZQJhMzTy7LMJDlmA3Xwd22aS5Tt4BdudH9R0YChB6crnnZ7mADF8+rhngifVeXvZ1P+N+ASkSlIvnJnFLn0VSMONjOvDi1bGbqqvuBXVfNy6SjMLSDkAJRqxGYaQDVB0rA7GSspJzDc/3FFprtCK0EnCRSMR3HwNXjeJAEnxxS0PdEq/JImd+eNv/PkH1yfIn1lFfEbEAG4ydnKM71O17gQszDl9kpUISJlIuv1p3MVFw8T0ptVBbyIgOs5DnKuyTKdfXdV6H8+OJLz7/FLwnm1DDEyH3mHfWgGYR7/7OLRe/es3Xgb0ZP/3yopTV8C9/Y4+x+89+6b3mVMj+nH6bj6fY8xR7nmLPU+z5DRxFYkrmonBcorlZLsSt8EkaKV0370HmuB5VVxWjWMq7EddpG87IplWZcSMb0y4ToxX66IhBHyPvlVxgBJ3PaoJigJRQYDBz1h7y4UbUR10tG2XC/VJ4OFRO584w0pci3m9de3qyBVGrSn7fnPN5Q2sm5x4N5VKUUpXb2xvMBqeHM+fTiiOcV+MVG0cVVIOs1b3SRPb6M6StPS0OSpAp1XETek6pmMVEg3s0alQUGxaCcyXmOs+jE5XTZZ33bFD5cNyCdS44ug1ME+cBxIXN4xZv5OQGgpjT5/yIzTmSqDvMA3AVC4BziKBNaRpToSMJbI5TCYkqc8GlcjajW7Ldh1MpDIFjKYRChsVnzBpEJPyySiL9c7pMNUFmjamVkHaC1oRDxpzb45H3nz/j9sUN1BuW5Zbb2zueffgxy+1zbu5uef7sGf3xU+z1f+RF+ZzbA6gecDnHnlQUac9xHJVOWZRt+RG1fwbbF1HrjROuK1JOoINSHfcFqXe4BVZhloJZUhFd0PY8YrqDjxOiB4yFze5QOaP2iPeNUsCyBjWM5XjLtq2helKEWg6IHjETxnpiqcs3Hh++yaPWFtJlKGYbk9w7q+md9pCTLCqzSXMVr10xjX2yk0ROD8LKEBAtlHqM6Q/Jid6qQPhihfIKIZeXa19TNQWzaCwVR1vFhsWEkXVK0V3RZpImnHwjyKYAzAYRnntNNiY0deV6twk5BY4QDBXMjW3bwqs6a/tQnRO2rbO0Si3RqApYwDOeDc7D+JtXlb4ZpVWOFZZl4zv3lZc3hd/5zu/y6m9+n//+X/wxP36zpicee6zDwT2eT4hmWaimhSWF2JbT1JYfZGPgqB8oOmUgU+rXDNWKpx2FE/8m73OVCarEhVHJ6VnIqSm9UkjxfZpxWKciNI/ciKFBCBg9JTMNrFPEqNWpd0KRjsqGq+VeMjA6mzpDYnIKQLpSnZg6lZBOnTKmRTVwQ7/gPF6iEb5Pbhm7vF2PLmAQqvvKimDpi/nw2aDLSls6snW0OS8OL/jR937A3/z0rzmtK8l+ifVrgg1nDMGG0rfC+QzbZvQBw0J5x6rRS5KvR+RLQ5IEIDWuZOZ+FShUVBonKksRygiymJsyxtg9qPr+PAo+fnXe89Rg+k0d8tV/ejJ7hjuYQvewg3mA/hnIM9BnTrlRLE3tELIDfwEEhwkhC+ZYj/eSBDRtBx0loPtOdJ1HFqXXayUZMziX5pITD9X16/Jr4Wh3lZ/P733df7/h46nB9O0+olkyF51l8u+EBAlMxHx6L+0szd3TyxEdF3YBsxqOdPZaCsx9MKVGXOLnbQIf84/EIvd9A/T9z4SE9rFdrWkUaxQZwSZToZczWp1SK+1wpC2d83YOiTgnm2jRqIl6JoQCzuPMNgpNhEU6xSGtQWml5Ibt9Gxm4cHOU/NgkypIGcx2RJGBMMLbymKMFpEcf40RbD3ecT6dUUIKwohEgVKDZaaKeCE0cpUQhpFgXEmjZBI11NDUuTXCVBNpcb0t/YgI9q46mK2oOlXjGdZSY5xZhcPNgUVLMlw8jXPztlsUb6M7NgqihtaQbVhTv/xmuQubLXVevHzG9z76kI8+eMbL9+949uwly+EYsggab+rTh8Ah6ZSxlPRibBiNnhnOHbN+aeQL+1qcSVGQWDQYJRrd/GhH5ZWYQJBYgoUQQh+2v81k1roreJlZOKRkxmR7Tk07l2v4ZYJrE+CTfDRSGnJf0ykLxByvjp8PBvVVk8zj1RFvleEBQHyrD59AW+6pZojZvh8OS6PTqN6ZLF8kJUE82OxFaj4VQkz1aXpUVIT0RtGCl4IXQZcWEwM6E+ypkiwZHy4NvQBkiedGU8qqpNb89O7wy9IQCKa3SoKUpPxIfFJzQyyZonIFrLm847uhmRAI880FN2FYsuJl5hrkmgngeFjqQic4QRpYy3xIkrEnpeS+bSEtk9rWKoZjWB9o+tlViefIzEMHf0gmyoL5lr4KHjFfFdXKoCMa1F6XAIAXUaQWFg3wtEjFCINmhQDdiFgyJyXc43wCXBxRRPa+S1eFD6/vz4ok6BJkbQsph94jDksHaWk8W3EN02C12IMWDYmY0hq1LbQWVteW05iuDZWFogsaBoBQKtqWLOBi/Sy1UmswAW14MMWVq/EPQbrx8PozHh9exXnn/oG2fa1cZ1VxL/cdmRlfbP83O8N0l+fMPerLyWDIa5HNb9vzt7jOBJDsKctkQSSZsPBwC5a1/+pi51txPMWep9jzFHueYs9v4Hjo+axpZqTilHoBGof1PW+EuJQjMQPJRsAkton4zsQ3c3oajg83hoQcj8zc0w3zkfJXzhiz9RrPs0tmoxbPs3r4MhULtrjk/dRSGWacc6KmFqgCNe/t8/tDgGNbTEmUzG3XtYfEN4kbEGsUUToGq9OY5DHo3kN+2x+A8FdaUx6pSKWY4jYuzZASkxglgdbhqTSAsJlhGLN1ahDPvhbWPig5bWklrkkf0cxcaqWPiIsOdBuBA3lMF/YRE2FkHTkG+OjhKUbIz5k43uNnKtFkconJypLS6OG1FOJ04lkLa4CcIWlZd4+QkhKC5iMASKkMEYYqa3daaQzbdr87c6fbYNFCU8WHZyNTogbNtTilQrWQe0AQG9GcWmjCshSWslAOjR/8znd4fnvgeHPk5v4lh/v3eP7iJfVwi9lKXT+nf/Ln3PMpd4c3NAbIEZdBH2cqFeh0UaS9x9jewnaijp9EHCmHuE/e0AXEQ9re/S0qR7Qeod2AhyzXWB9jPbTn1OUFNkJ4ym3F7ETxjvImwdoDJo184FCJGKrtPUTXmLJEEalovYlnclkYtn6jseGbPpYaEy99xylTZteuwvUVyVIsEqKov2Ov3WPzXiP7LFHDb9mJZoMcwNcg20jkH8NGSubO+B9EXywwpkrkLyezzElKxA9830piMrzG+w1nGxu1RmPe+ty7ImCKKqSaiaf8pWjB+0BKvGWp4d/o2ZwefaMudYchANwK53WwtEIr6UlG5EUgbH1wPAr3beFxM777UjhU5eNn8MPv/YCy/iP+5b/8c/7i9RvOXeh57QSLBgo5tWwxBTNsQ0dHa5KD3fC+pWxg7MkyejTe6gFccpgzCMmlHNHpqzdjoqR0cBI0TFJKMyRigrgkQZbeCGL4BLLVBsWdZRhLTqHZADwIUvSV4oH5FV+pslHqQHUgMoLYXRxTZ2Q+ISkTGyp0oQi2SFybrjFtbiVxlT1nyHOtvkNG5k4t0bSPJRrTQzoGMhKrVMFVOZczcnhkyCOqR2565b/4/X/M7/7oI37847/E+kg54MyIvTBM6V3oHbbV2dbC+Rz/HiaRO1allhYNM4+p01LI/F9SZTKkJ7dgbLBRwYMs5FSK1vhZczZztk422qbc81OD6e/PIV/6bx7+5b9kZN2D6xn8PBifgR0EjsSfRfBq5D60F4PYIOXH4ToQTmBxThxlS3ZnfdnlNCbZCyem6aYsnl2d54zg82vXf36Dx7edTfYP/vBohuoun+K4hYeSR0VDWnrGhjA9b3wq1cd4sahmTZlgumXjySsilkV2aLdeq3tN2TxkjYQuJVsCZ88Joag8EYl5nTApHIg6RZ1WhFELdRjbUEpZKGWj1EptC4fjwvncWXs8QyqRWDkJwOA7UNBtYDm62+SWopMNY4m1KM16PKIJtlw30YpaNJMJCT+XGEsuVvARBUIViaa1gkqliqaEniDeKFm8O05rOSXpgkillAlMJTPRCaCrLOiYv2OLkEP87qYtAkwJdnGRBZUDVT3AlmwmuYJWpSwVccVWUBngK97BNCRZnMqwjb523FJmRo2qytIW2k3h5mbhw++8xwfvP+PZ/T239zcsdwtSb3BNnwjiIgglErWU95zYlSZLfE7xRGMxGFCeMnczvseYu2cRnYmvzPsaV1NzrSJBFtC9YZrnM+X04sG4+qslYJeN1mSQzpdNwOXyhUxxZ2MvwUBknt+EZpJZSphhzpUYz9ZgUsbDRHKgZsnYi1eKfbsbTP6lvSO31QQlobUa+v995L2YINb8MxnjurO/mX4EpexeFqohH1RaoyyNtrT42pWEULDwriQTIeUyA5LQbCpPpv3elMzzmkBvnJ589b/AOxXLOxdiDx/sTVB3Ln4pk4I3gV3Zgd8d8suFnZBUpAq2nyBj9AALmNrnF4a/mSZzjl0myvO/aKHUOkMwSExQjNFh3WLKower/KIRfQHM51dUoCyNojXMUJO5p5O4MD9uPteX6Yect/B8VvPejyuflQAn7f9h791+bUmO9L5fRGZWrbXPOd3s7ulmUxyO6IHGgmA/CPNqzD/g/9WAYRgyYBmSLcAPMmAbHlgGJM1QM0POhWSzb+ey96rKjPBDRNZa57CbQ4q36ebOxul9W1WrVlVmZMQXX3xxzBtm4lnJZ1ZD3tMHZkoh5MjastK0UnI9r+uJ0/nMcrqjtrhWLQ2RaASLGzbnXIl5UGrcn+g7eAP1myNVqClVNQFen/N87Hz+yU/Yt8t1btz+u50efnNfZf78Ra+5OoOvuYWvne9Nx1heO/51SaqcA8ezuH7/VR+PtmfeiEfb82h7Hm3Pb3IMs5R6JGTzlUxSjOPvIdU8khalqKa/20ckCdTonawcCNC3iIaEN7MKzQDLpNF8d6dmbw0Xgaw0BE8KePiqluQoI9ZH95mUcYYbTgnQzgaXPZrQL0WjOlDh2aJctjgu/OZAR3aLeC8alg8UYXeHmfT2SNiESItRTdjHRi3BVm+1YjjDBqon9i0k8kRCj6A1qEnMc3GqBXg8iIqh3YxCiUq/JPQB9D4wCbKiq4R0m8A2djSFm4YbWiouclQTHAnoKX09QIqwW/ZOJZeVz6RXVjiZMzzuxd7Dfl1tumW07Ydd7iP7A+mhtRDPxyO+qCWq3u4vl3idR5wUvbdC9rz7iPuRkpcioGgkzDL+kJR0nfPTRFhaozSltcbd6Y719IT33znz4bvPOJ3uaOuJ9ckd0k5s/RX91Y946/Sc98/PeXZ6oDi4BEHP3TB5oJTCGHsm4wX6c7p1ijdsXJD2Nl7XkMHSe7yesbEwxufIuGfYhcv938HpHfT8PnVk5amOkPzbPwESLKbCeIVIo9YVqcLY76NyzUBK9H2R2YemNkp7inrH+0v69ilme5AsuMq4fhVHa0tGqBaJ5JF78WS8y+vW3Q8izCzKG9FDybNCkEnmTCJJStm5K1VbKjNF/7Q4Eew2KCi1hpzu9BmG7yCxXosHgG/S0eyJJh7raiSIKhpVdcOEy94pEp/PMrNqh2OU+55fe0m2qskLjfWrmQw4nQDrvHh4YFnWSI4VRRmMrGbR6rR6Uz8e5ouC80f/WPnoY6euzofPKv/o/Wes23/B//Tf/yX/59/+gIt1dpdU4+GQwxVI4EOyEsujKtKi6tfMsb7h7PHsPJI6Mi5QF4TEoUpU0UuN5LmYBTFajao1bVySRSTINomSxG9HaKMokdgoQHFHe6cOR31kX7aQcd2R7PGWRG8dFOlRKaqK1ywIKhLP60j2xVVYD4JErLyrPF4RonJTAwtTBDwSelKc2uIruT+pE2SdEfe2evaeM5A+cL+E/LVDvQOjYbpyV4VvffMd/vwv/xN9PIDtONFvzYfjo9NHZ1hnu1zYLhvbfeeyDfqeBHqFXpymQY5woGtgbUGClnRCFR2TfKYML2ANwem208q0+vHsuw9GJtXceuJGXzweE0y/qXEEP1yTMrd/+3lPMxRegT84FJAFZFW8GbKEFY7kUSyJjE6TxZ5vlUD74Z1Jgqb542S+Q16mSbx2MMkCh0TU8aLbz/PV97Ufx297+IZkDx9P9mH018yqDTQ95I6TTVJlsg0zASW383/2nAlWbwQSt6BIMmJyZ/Z0oKPMNSo6YpsNsN8tebae5abJ9JgbkWuw/9ootDHYTRidkBOQwlJWlmVjWS7sW89mknBdPJNFqYg18PicA2X4lk0La7JoyOaGNW1LbpZiiHROa0UVjJ0xFPMGWgJAEahLJYt6YyMSgs2LEwIKIxNwRtHKIpHo6wyQQr1lheZNESKxEz9ZMEG0ZeARciq1RCDTSjBUa1NUk/WSNmg2E47eQ47bzt7jZpVq1LZQa/SWCOxp0JpQlxOtRt8qcefu7o5333ubuycn7u5OrKdgu7W1Uetd9A5InboZ5EgCYZLMpvkmnhHXFYiLAGUGbp7zVDyYMTHkmqTK83tqLx9SMwmWiBocDdojcSS3DrYHW11kco0gWjLCUdqeT2FW3uHzGQWANSZb4HZL8jj3YeQniJcslckrJV8X6ymr+TycH+a6+gqPn+rRcPO9ExrWENUEb44j2SjhuFKyKWpKLc7vS6u0daEsC3VZkVquycGb97uVmJpfD0AXQMYsLrsCdbfBy83fcurFfj+lr+a5jxzmBHK/2Cm5gnbxzA+pm7Sdcagch89+J8FSi/ewlPsqmhI8aadf79cSVYs62WzZcNYtGl4LHEC39R7Atypm0Vi+D+Oy93BvjijUc69ISQdx6lKpZTKus/w6zGLIkPpkSMfcHzcgrzlXIF6y+hVy/Viubzs+Y/QjaZQa7LCqK0VCLxwpaDZPbdpotVJSD15KpZaFZTnRlpVSW/YGaAFuC2gtCdpWRAu11ARyAwheloVlWfN3NZPeGXznPHA3Xj7/mE8++YhZDSkTYPqpOfD3/W7ayZ//mDflrG5f90U9T0hZqtu/f9WB3kfb82h7Hm3Po+35bQyzSDQwbqr2j7WWyR3Sd50xmUVrcBQ6EkCaAun/u0tKHGowuT2TQ2nPhkft/BjCplFxFI3d/MAZ3MHG7FcWUJf5THZw9EUKexL9aW0IUhqX+53PXkXGa1GhFuHUlH0Lsl5U9slNUjbJeRPcTHmogTCbzyOaYi3xzItwVJSKwr7vmagJ2Td3Yx8dlZoJWEW1Rwyqiln68BYgC5xDbgAAIABJREFUXkmwecYMQ3e6lbTQ4XdHWtwYmfgShOHJus+Y5LLvDGtIJtKsGyKFHTsqIs02XCrm2dx97JgIeyax1UNyPeQRQXX2gYv3sT1ibpfsy0EP4F4CCB678mLrvNg29hGgkZC9ayQ4yzNESrw395lp74Q2+4dHTROtlqhYWhrnZWE933G33vHWk4Vvv3tiaUv0Qe4b9tmFctp4/zt/wAf2N7xVP4sKBCo9q9QiIdcRGu6h9BH9jV7gFBChe0Wkgu3IdglpNbvH7+8xfYroJB8oKiu2v0R8Z5Rg/5f1LaBGkqqeELZ41svbDOsMV9R33M6MsXO5PARhwaPfzklfJVxRqPWElSdQNxgt583r8qFftVHKEpgGhveIfN06qDGsBy7xBSQCIDEcZco5mu/xa4tqR3dhH0nIKRXxQZHK6Du4o0UhE+VmncsY1NJC/ckH65OF+4d7eoa/KlF1OIaj2nKvEpyo5JER8b/mHmwKl7HTSgm1GNNMr0cl01SHisolO+wRRLQu4jxs0flMSyS2W60sxfhO7exd+ZE3SDxmVoNVhSeLUsT56MXGN9+peHG+9eyO9+sf8i/+uz/jf/2Lv+S5WSSVieqt6Pc28WM/kkSzOtwwhgreA+MQ28D2JPUHKXXfC1JXVFp0wi4Np2B1o5YlfNVScd+RdorqMQVJ2dwpu0s+cSnxXKvH/WruFDe0O2pBFJ8tH4rWTHprrtktZocYUgxaFGRoKoB5Inie8q9TocsdZGTbhqnPSpKqHIqDzb53ClqcWkLSVzTK0MQ9epUTvqAYqVRE+HpjUB4ctZdg4N4RVe7ad/neX/47/upHf5tJvQd2c5CKszP6xhiDfev0y2C779y/2tm6sPVJDHMQY1OjTB+7zMqlkJaNOCFI56IFZUWl0j16Mu0mLNVpxSLhZiF3212oolRxtp8B+D8mmH6jw1+3j/8Z/ugB8s0KpN2RVx7zv/rcg+EGIAUJgxY4YbxxBjNzhNNwc30OpRbGdnX2ZpXSNH0/9dkex699fFkg9HUb7lEmLjItPYhmcAOQEl7T6HdzZMrCiAGdWUrq05oTIEzIigkzATulYHwC8QLiOyC4lZu8z8xiSG668xLi/C49S4XTWBehFKeo5KYTzoyWQqmNpZ1Y13sulwfMxmsb2VFQ7YYzIujJe4JkYDGicWgVyYapuYl5yh0QUh79wViWhpYTeMe7gS25rgdIRWqwMjBY9BTycgUeLjtxh8L53gy0ZicrrfQRzcdn48cJGmgN+bzQr17IgvMoXzahtsZyqrQ1ZHl6N0RTS9g6jB11oSSYMkZPWQZL9s6C1hUpFqzs/CzP3j6hpVFboYhQVXj25MT5tFLqSm2V0pZgt60rbalRMjx71GVgd9sz4gpYTEAn04i3f3NAsvnoTTIopHLCBh+Vo/l3P55xvG+QwAWygmqeZTYH9VlVlY6fygyqs0Q7Z3icM4AsyQAqrvMKosUprqBJzuSYbz7n26y0CpDhkOnLz3N8JoLA4Baf76tePPpFNnYy730ES3WM6EMwx5wCejtvJBw5SgK8JZjddVmoyxLVA61GgJOvL9n3ZPZFmWDsvIYJ8s7vHUuA8QrcXifUZHHlrEjgWQ7/4HqdM+kpN/N8kkiut+MweGkO/The8ud5wHFn8n2KFBjO6IPhxmXfaa0kjpVg4829jn9JJihOaxW3wUiWa7DYyjH/j8oIZj+ZGr1URmfKTk5GvyfYq6rI0lJ2BcQriONjxO9MYPSQM8jrK7nGD2Ykcz+Ie2ueCX+PdavEPqBLDZtYoypTXLIpbfYf0OiLU+tCqwun0xmtham77SohTVYqWhekrLT1TF1WNAG9qCoIAJmsUiklK1MSMJ7AUCQh9DpP3en7xmcf/5D98jKtT8p4XBtuvjaOIPiLfJI3Xn9rd3Dhi8DYW8D8ev7Xgd2oLkk5jTGO3ie3YO9XeTzankfb82h7Hm3Pb2N0uwb4k0UvYVhyacUcK+4J+ArIwIgqFVFF1ILCl0ldM6LyT8iKOSKZIdcYR9ypeY6BRTXSBHP1sG5IksUKmdTyeV15HtWMexytiuK0pyta4P5hZxvw0GcPNiik9LdMuUMJqNHt+H4SwCIZZYdtivujqHeqSgLZUTH0sF1Ya/RW8lTUcArDB90G0kNuq5RJD0uZxdRWCv7czLrEfNwlEh/RmymT24zDDkxJPHNNqUY/bE7yjfOU8fmvSaJ47zGyZsoyAVjARvr0olEd5tEMHlHG6AiSbWKChCliR++aiFodH8bzh84+rms2ko2xZ5S0/fsAU8ueUYa60lo5bLOI0pbGUgulKLUWTsuJ87JwapVvnOG9p+C2s+3Ctl3QpbG+9SHf/Wf/jPfG/0d98Zy9N3ZAZAetIT3VHSsFpqRsaZjE+kZW3EMRw6Tilr3h9nHgZ96E0R3RqG7ycUHtQrGd2qLyY/g9uiws5/ehnNm5Z+z3eA/ps947TR4YPWROe3fcK2iDAdsoFDZUPsZouJyg1qjCQl/zB76KoxZluGJeGRqJoahys7QB6Wukjb61t4IQcvHG7Ks9ZUunO0KJPVVcca8YkrF5RzNxjRBKLH1gvYdcvggP95cknw7GyP0r5Tu3sYX0sCizT3jM/h4+leSzkcBktBDSbRPG9fm5Yr1JzfmvEolngyhK0iMprCIonSdNeMt2LkvjJx1qq6kgQ8ohO+8/G3zwtkM7cVeNd09v86F8wL/4H37Av/qrv+AV9ShImEpWQkjvRnWWYxo2RSwAZPOQYwyrDD5GSvVmZWrKOJreU2SN9a6hMNP1HmvnwG9KQeqCj5QwLAWpLfZ+M2qt2AiZSSESSSs3yccoJcvUYiQ/uoxMGMbzdi1YEVxCUo7m1EWQMlIFKGx2HyP2qomd5fPIUteE/uyAAJMbPb25wLxQmkybVsKPm9i5emqjSj77tGsGMhy/XCK55x3Xwic//jP+7D8C6xlKxfaXuBWQgY8H+rhn217Rtxf07QXb5Z7tsvHqskX1nY8gFijZtiKSmVF5qZms3inakFaRAlqjul2Kcu+VYcpuyp0LJ88iFIOtx35RVWkKtn959eQvnWC6ZX49ji8YE4vj9a8zPPiZx/H3vSiDD5eYvOPmwAQl4/2vgcdtjstfO5O//gsB7x5Bxo3jPE369Sw31/GF1/c4ftXjd2K9ZaVIbOUksJAgNyQ7VpiVFMe0l2g/5/NFHlUkcgD2wRzBpt1KSQbRPKnk8YJYgCjRCDCcEzHlWs2Rwb7M4FkClLAMeiR0uGst1F6ppdPVqVXi31pY9oX1UundojRV4tiZMHA3XGMdyvHJHGSPzd9gF2XTDfFwaKpGcbd76NFu2aegasujd1QdLQsug7ENxhYbS1sqVM/kGIxRuOzB/lGtIXXhimelUFEJGb3cqEGj3NicvjttUdAdpLEsJ2jhkESA1WjrmTE2SgkpCfGQflBdovx93xEZ1JosFVdESkhOLOFcKyGjV2qliHJeF06nE5TG7nCRcECeqET/q7awLpXTWlhKHAMeyRu32PXJqqiZRGI+c+GaALplrko4lZ7OZ8rO+exVkEbf0+HwCQ7JnLtTOzqArZm00SOhOROiV0fbLQIvwQ+JU8tKvPg84D6YFUVXbWk5pCCnzCExm48k0tG7IKdbbAGVSMI67tnm0bNhLREEXPeHr+64ta+vAVn5a7cEmo797eb18w4ICbikNFUmNrUtaGsRvJQryFYz6ayzQXoCvLfXdAC7N2CY1tDkViQlh15Pjs7k+TyHqx+VBSYTv8jA4vBP5CqZ+/qdYYK4whWMO4BWnQnHW2A4QZpJXlHBB/S+c9mEVhpVQmf7FsQ+zluyiq+1rD7oqf3MIYM7m8ZHMt6Drd8qbWlsfcddDsbsXBfBooWQ96yU0pjJ/DF2GFt81pQKEs9KvbwuzZ4TNgk78/+ZaCeTuWUCrWtDW1yDmkE3fOwMi+R8E6VKoSbQW5aVui4s6wmVQi2FVrPypDbKemY9P6Etp5A60+gF4eaUVqm1UUql1vh8IU0EZcpTJShNgoa9d+5fveSzz36MW372ZOe9Ocdv18WX/u4NB/cAbm/PKH//Oefvv+iffMFrvurj0fY82p5H2/Noe34bY6oGIPZawlhFMA91g5J9vsLnm70yYJkM9KkjLkow9MlnIfT0WSPxENhd05AdClnvWBvhTueaTfkdJUDjcDODUDvcE+gNkpmJMMlf0zcXUU5PVpZT4+XLnX6J/rMQia6ORU9ZjGh6LgEWMyt8/IgD3GfSacYBYY+3o+oprk32HqDwBBeF7NsiIGG/lYihJD+dp03wBEqj0iv7HglB4Mp7LXs/4pKIy4Rtj3hD8YNsP3p8NlNQL+CDERgx3UMGcFZr4VFNNuOBsUX80T0ShjEHYLZpNc+YJCeD5/ehpuiHjN4wuJ/VnLy+NOfP1cOmz3kzq1BDkTH7/bYS9jgJmkuLZJMWYVE4F6I3SFkZl46r8t4HH/KP3lWefvy/Y/6CrhmbzhC6hcypl6i2kHKCvkWCzRytDZM1EhV6Bj1Fj10MH1tUcdYzglDlAjxg/R7XE/X0LuIvo2KmABg2Pmd76GgDqSvFW/Sws0G/f8mwii4Dsz0SlLpgFMa24wyKNqzvxE2+Z6lnynqOBOL+8Cu2Br/ZoRhNFC/lkJTHo3pEb0nCE+dBsJxVglNybsMVroy9esbCYb/EYu5SFK8F69POhZ0p4lSpPGwbXiIh0JZG7zutVIZ39qwen27ZGD36kWlBc4GIavRF0xr+kYTv073jEpWNY3DM9duYvS1gYyC0jKq3APJFObfBd9RR32kKsjRe9oKWIHu0AH8otbJUQdeND58Vqj7hjp3f8w/5X/7NJ/zr73+PV6aMbtGNxQxGVKmQ/aciCd1hEH3vDLARlXY+JoU7iaWRXJ5yxZF8Fkz3uPuS1USuWNuoy4lSV9piUAZ1Scm8Eokl13jPIopsgyqGelScCg5jJrTIez/VciT7OzVMR1QU6pldPPpv6UatmeiLA8CSSGHgJuljx+f1ETKVluRzcVLOWBhVcptKrAio6fEeJB8RtOYsLWQONHuC9hvfzgzddsQEk5c8fPYT1mfvUPwtdF3wy0t695By7IM+Otv2Ob69YB8v6WNn2y5sl52tb/gwDuUbTX87+yCKGFI9SGcq6K54daQ4pRi0kF/0qphOGDXI2o5xscHmxkipQp+lfV8wfiUVTFMu4HG8MeTmHzdf/WoEj/HT8WI6Fm/82m8PkYn/5S9mQOfXA48/TohS3jzNG5d8vRAbToSPySZLZsxPXcjj+I2N35W1FkCBgk9uWWxclsHzhBfmnBRJB92vG0ds3BNAn0DHDMgdrASAoGGIfVZF5fFRvZH9ZVTDeZgJrdz6j/NLMkkzSJLYPdASQMZSnF4avUIdnVKNNiqn9cQ47/QtGqe6ho423Aa9ETjNe+CUYOwQLIwROD8DZ7OQf6nZhFKlgzsyOiN1nw/HIQGVqllSLo3eHdEAZVottHpiuzzQR2gMlxpBW7ATlVobpzul943LtoGP2HDNgQtjV6xUSguWh6fzVYsjdHzsaZc8Pr9B0SV7Ou0BkGmW8tbOguJm1CXkVopWWqm0Go18e3cu2+CjF/dQ7nlyt/D23cJalNoKayucW8hkLLVRSks2bcyVEJ/IJuhCzpvUU78pww+983j2Puefz/l67YUwNwA/JrVn0mcad83yeIFkVGqIjdysg5hfZbY8N0npwPmKY3rDrKybe8yNlukEVSaD8+ZoZuLySGQxwZQ3F2YmXZk9Hm4Alplo+xpvDY4frOUrSDWfMwlSRrPXkCUqaKnUGnJUpdaUYwwWq5RgvU8wjqwg+Fkkgp8CoWVKM2b5fgbpOm1Soq6SIOsXnvp1xCzYcszXXv94sPVf80PCIY/Xx3rwPM+8rvlyVWXYoA/j4eGCnvVoZH3LHj9Adb/e11or1kJmcySDfALMAbqGzItWoVpjWVf6GLy6f4iqSGavFckeISmpUAI4VVXMN/Z+oV+CBTYDvwPIvWVO5vteKwGDmT8TuaUopS5oWylrQ1tB3WDbsX7h8vCSsW88e/KEpgtNlUUDoJZaKacTy90Tlrbgw2kKyxpVBPW00s4n2nI6JLCKGT4Gtdbol5LzqpZ2nV9pj2ZAZu6M3rlcLvz4ox/x8sWnRNvD2xoJblH7LwVTb+fll8/eLz/m9ufb9/h5ANyvC8j7s8aj7Xm0PY+259H2/PpG+NBBYvKjUbwRQK8No6CIRqwxI9FY97NLg9KY0s/CGONIlriH0oSTlUQ4d6WlIt+eMz0ajluwp44+vCpRX2LiyZe6xkTm5ZDJc490TfRQj9erCkUrb73V2C87L+43bNsRghE/ROge/UzNxhE/FmbvCj3mY/Q8jeTZFeAe1JStDmEh5WE3FrLiAMX8JgZIqaFpP1xmVDEinnAypnQQOzi+evj26aeLhBQfXJNenlVOEvKElx1qc9R6ApuV3VPuSkA9xLr6CILgMLKSLIBjAzbP/loer+83BIfMQWZ/Wc/rkbxPcBnOfb+16ZFQ1HzNjLpdCrtDMWctMX+GQ5OS6hiCq0aye4n+xWutnNdCK8p9F170e/zzV5zfeso//e53+Ob5Y06XF/Qa72MIpqd4JiZRHZpkPts7zkuKG6ZL9GbqDvY8JNe0073HHO/3YbOXRi01E2uVbh3RBa1nhhWKP8XLHeX0Ntaf45d7dAj+6sdIXWj1KV4Mb0/porifUN3w/YfRZ8XvUV3wMRhmPLhho1OL4L5xf7kgbWdZzizL+ddrGn7NY2wXKFHVV00x12xDoFEhwmuCS4m3RBJKJffKotknLtdQEhiCBBPz1DWqnayHopNoSOWJCaLGJnGcrI3hhu0DU4veXNYpSq6XSHAUqaiHXei2R6+fUuj7fC/LPm0ae3qua2NQa8jBWWrkiXpUNYrRlsK+2zQX9DFYF+f9NnhfnPvdYQcdO2+vd7zwE8s6eO80KLrwfBfW2oKkWivvuPHMP+Tf/j/P+d9+8D1eDWOY5pq1SIwbkWCyEThZlJ+mPXQY0aPOx47YYJIBHI5+lxz+CJFMoaddFtwLKhVkp552lrZTtg6lMZZOaTUqi1oLAs620doZcaPISNnePSuDpjydH9hNKYXhBNGgNkxa9OoqCjYo2mF2aJKsZuNqNzHLhBJYB9stqt7TNopmEjDbKED60vgh0UwSZ2QSoUgyVu4F7hqqSBKVsYigBpolpd535P4V3D+nP/8YV0Gt0fs9+8PANSTqDAfreP6DngnM6O82RnyWuFW5H0j4XKKxS5VqaIk5R1W0FWrriG14UzYqr9QpYhSNPmPYztZ3+uh0N1ScVX+NCSbVaLL3O1FV8YuMbKo1Jz8ca+/GX74Gh1eo77UX/LSzfLz8CjjHoXJF1r90yGt//eInluAiUeYn2hBIx+vneY8vutiv97gNUH/R475sfNH55lq7ZZd+Xcc1JRSSXeHM16MnzxXIntrYMG7kRPRghGSw5HAkSz06DkUwFb1oZuNkyR0zTp3BTJZWoxFsxZKO884gaF61TEdhWLTdlEIpTiuVWoyqRimDmmX+tS3RSPm0s/fOZfO4zkMaMNf5rEicSYm5TiWZCmg6Ogaj04GLRvjTXGjDKBJVQJrL2CySTrskyDSC2er7gKL0VtBKaAg/hHSLMxDvjOH0vYM8sJwWSE1XVWMkiy0Yq0s4GsOCZeWS5dLCpe+YN7SAjR3EqeUcyS+tiDRai+BOBZZWr05lXYi+V4X7bfDJiwde3D/w6v4BcJ49uePdb9zx1qKcl0ZtC0sTllVZ1kZdk82dki4RzDmzSfqcgJYNjqP8PdhJ1yqefNFNEof8m83EJ8qsOpqVbhECx/yylKOTDNfjjH7dAvxqs02yafZMLk3w7OY1oRoSjqBM588t3jMTodFI1W7ej2yoLEcAO6UGZo5sMrTj+meC6UYOz8FND8bn12kcwNONFMvlEhrIRqy/kMVsiFRUVkRPoGsEnGVFSov+J7OHiZasGAgArtaQqwppzWh4PJtcp0UI0HYeL8JcyJFo1WhGfezREcCbA3qVo1GfiXA5wAEg7N4YCZalJrU7rkKrNdyLA3iNlL8YAVTPxCWAp6LOlA9JGx14rSSoWum+0y1YUK6OScypmdj147NnbVwmO7VUSk25lgSD/FiCAlKDiVed5XyHa+XSjb7vAbAkKD6fgVGgVigVJALBQoUxUqYkAkmdlbNzpcn8VCCSetsQAU0uUS2F0hqynKjrE0ptiBkmL7nsAfT6wwOcF/A7lLgOlaiKWJYTp/NT2nIXvV/6hmmltDUqDbLqQEr2iBPHpKK10Za78Mu1HDat1BaJ+/wIDhlMOfvDZzz/5AfgI4H6/JD573jG024cBkpufr5NBiQ5w19PVOtx2LXiJH885uUtiD4JIzntuH2XSXIX59pD9GtmfB5tz6PtebQ9j7bnNzEExbJXyYyDIEHaFIAYgeDFPdNrDzSXANlqgsGzKkBUkukcC8UkwLGG0jQlJxGY8kTBFQ+f1SeuGVU4mcWIZ5HvHXHhnFee58gKmwLdOtWDMGZmSFVOpwWtyrZ1gn9nrOlTdylZ+aCYREJs5PqrROJLUKpE8/jwkQu7BJgsQkjjGTAlhCRIgEVrxIw3CUlNEDwS8iT5bzrdetggDIb3NHDRFwmRsD9jzt+Qa3JC/ms4POwWACYC3hk+AtdxY7cgAJgEQCwaAL35NanoHufpNmNREJcAXTNOMY/jQp7dUQ3gdTjcbxvb1rMqDBDJ5xP9rVw0tUDi3FoUqVF9Gb2WFtasuq1VOC8LRUs2ud/49FVn9I6Wwrc/eJtvfet9fv8bC08vf4XuG1tdKTWqsYYr0qISbLOOaM3EWYDc3TTmk42o3Mo9z6TgvXPZPmeztL22UOTE6i9hXGK+oEhryG7Y5XNENuqyhf1IIqVh7Ps9auDtKbWc6Q+vqLJH5ZkI67MPsfFAf3jJw/3zAIfrHSInxI3hL0Mk0oIYeX9xdr7aCab94RXeCiaKEtUS1BoYQykZl5KKILFWlIKKM1wY0hPLIcVrNZLG07AQUatbyOEJ5ZBflRJrV8XpZlys01qwlUtKxffRo5oYCalaUfqISpKqNfFYsOyVTZFMqmSMT0jT+oRwhEi+p5pb746kzQGl01EtmPWQJRVlEeOfvHvi7nKhdmV7vjE2ZTTjdOrcnZR//nahdOd7q/CpKU/bwu+1O9599S7/85/+Hf/qBz/gRXfcatgNH7gNGBIqWA5TalDGyH0gWi2Q1fNYKpWknRI47O+UOZ6YxDCyGiiqI+NcA+8DXQZ9GbR2YvSdsgYhZdlXllYBo/QLUlsgKWVi6kpatBgaiiwiDXell4K2BanEXFFFxwAe8vqmbxAIDaK4jLTlsU+M7se/KXGIO7PfFu6UxOUUi2uQ9CUSz1EkcEIN+VBNOVDcoQq2p8+2RyfrqMwVvO/Yy+dsn31EU9CxcHn1nOEhJxj9nQJHU61oIVSWdICGT+ua/quHHzmsx+Myjj1CtoLooJRBaVCXkMBTF8SjD1N3Zxdnk5DZw7ZoV5GSiG6vPYmfGr90gmmMwdtvv82f/MmfsG3b10aP+JceQoJ51wDr9T++MX6J23Ww3X/pe36gmvltwf3KpZdknPyqn+0XMcd+2+NW6uM22XOtTHj9tbfjZ83//5xE1GRQ1lp55513+Iu/+Itf+BxfteE2C3BnMq1kHBGMj1DaiGqTWymWmKdTKmQG5REAiwxS2ReY8UpsAvO9NDcPj5jnem73lJAIVD1lydNhyKSXZ8NmCcf5oM0owcwpTiuwq7KUwiidXpW2NpZzZdm3kDUYc/6ktmzsqhnvSS7PEWwIypHg8tzANAOdKOk1BsbmisgSd1KE6sIiuUkOx8bOkAmAhJTJtu9RKhuKurg7++a4Rzm+eGjt98uOSKEzUIky8YjXslxcMhDN8uCxR58qV2G3F1FaXiq1CXCP6hmbTStvbJsg9C00YB+2l1wuO9vDju099bKjWeHTZyfeerLy5O7M6XRiaVHhVOtKbQttWWglWDLhmGgGfuHtpRR6MN0UIjmTtcKSSSOZsd7VLpIA2ewpQWrzHtd/ACE5x5iAyciXRddJ81QDnwhG+n0iUd8kEk7y0QPD7ZDPiLkZc3lCU1OC6KjIcz8kFCfr+0Bh8qPEYpsSkPMPKa/n8zzgLsGMTu11P8Lur8e43ZvcjVLDOevZJOAKRmo6sxXRaGiqpVHrimjFsyqu1kKtDdpCbUuwvbNnR4C8+ppMU/TH0JSNjPew6eCbUzT6alwr2mBKJEleWcy1bHibCcr5hA5Azf3Q7r/1V9yCuayqKauY+2GeKzBTOSSq8FklnaCsTBBQmd0IhJgz7s6w6CfnGGoBbhWZcgcHvDI99wCJtWDFEgiaqHIuT22ojpBWcKBUzn3HxpV1ZT6O50YC63LIWE6Z0oZwSRsf15exXzLZOD57QHMcsk+eALzWQlkWyvmO9fSMUk+4dawofb9QNFiNmgBTUaXUkKQqJXuXSM6jZWGRAMVB0VqT2AViFnJlWihVU5Yq7pVqVhTUGvdr+AHAi2YsOTqfffxjLvefzVmf95/Xfv7iBXL7w80R05x4BPXzT3bjQ/4cXnHMlQT+zSdjfFZZ3gDtyBUY/ZqMR9vzaHsebc+j7flNjQmkDY+eQpIRkJNz3LMaSG7u17HGOJJOcz2oJfRkSUky2DJ2qgWqcI0bcuXP5MbwWR81Exv5pskmVNGrz0omO9AZHhHyRAFCFynsI9ecQFHnXENq24szdqP3WEcVcg0BWuijM1NJMwZxhy0JhlFtNXJuEQnavDtDjc0iUaFo+Ml5vTNJ1i2AzWGw5VSNO5GKD4kKen5+7/FzJJRmZVXMSRWLVjNuoMplOLs5xUA1ElLmGtKCs3k9AdwOD9u+90jwz55MxqzolHmHAzSf7zsbl3jIbWmJ56IGfUC37Nvnlsk7NMa0AAAgAElEQVRYTzXVWD11Nr4vGj09itKy8paquJa4Rw89JAOXe/YdMGep8OzuxDfffYvvfvMZ3/69xl15oLSRAVylVMG1MJKoKT6yj13FZKGzELppHSmnkGvPGbX7TvEF6jP2/gIte1QPDcNtx/vg8vAi7Pb5KS6FYh7JJFXk9PuM9S1e7IOCwf45Wgr19AF9e8nlxU9oy1ugDfEScSyFy35mHyf6y4FSKXXBxsq63lFbyNIGWdPZLhceLs+x++e/Mjvw2xh9e4WPimtKIRJrqWhBfEpMxvxyL7hMIudMF+lVhpK5juQK3OPhJ8y9WeYail5HZVb/ZnKRHgouw0dI66kk2VR40lY+2+8Roiq3j04ap6j6NEOb5frUmffCpeeeHusmqkTj/LVWxojzO7AoGANZCkuFd9uJu7rz1Az56zNvtWd83u/5QXvJJzssxVnPCy9k8I1z4f1VGJ8L75Y73v78Q/7l//sD/vVHf8lLH0FsyR7NEboP6KAJJKlb2CpPybtMDE3ZQoFjH4cbP07mz/E7OyTnFBscPZoFw/sGu1F2o6ydZVlotnJusKixWKPg2IOj5zO91uxhFb0qp3yxIAxVTCUSwXWhi0Ap0StcHPcePopFn6wg34b9vN4DZQDD99gHTcEi8WMW+Ix4VNhdiULZn108eTThQyPxNet9M6G4h/3Kah9F0EXgApSQqaPnviqKXS6Ml59BdR6e71yG48szKA3XJDp7VDQNcVzB1CJJXWIPs+FB3BgStI0AEhPDDjyJYSkJGL8vPqiJI4lvNFZ6WdllQaUTbSDiOQ6H3YSH8eU+2i+dYPrJT37Cn/7pn1JKOYD1f0iJgt/2mMyM138Hb7q0v3ja4dc5Dj5J/nxlu/8ujSlDcZsUGmO8Nr/fTEBdJSt+9hr4RRNN832+//3v89FHH/1Cx34Vh3uwvUQzWono4wj0xW/m58wmQYLu0Xdmwi8heXatIJlcsWt/nEgQyTwewplPB0Zl5IZ8tJfFSYZXrpMI9e0IP4c2QmQ1GYEldE21aDRerk41aKMwWmNZF87nQd8egqmWbBczTwmFeIfjKiXdJ4dCDyYKQhewI/s171HNwKsjbvSh7Cj3EmyckCwI9ol6OD0RQnQ6BZeCy57u2oJoBw0HKhznkEAwEUw7VSNSUi3YyEovC3lDH9GXymjh7PeB60q3ncvuiCyIXnB/kbIS0UC1d6MPo2+dMUIDOMQCIxic0kDnuzNP33qbp0/P3J1aJpcKS1PWRTgthbU1qhaK1HA4w3tIZGI6SzPUm8mXEf+SfiSZRJIMvNwyYSQz7p0ODJl0kmQEvg5cXZPYysHMSeBoBpcgUc49maOH3IYcc3D2IZPJepQMso08l5EcrpipE5xMFhLcVC8x35e8J5ONlXt8vtZtHDIase/PdfrlJdNfhxH9OG7lNAM4jQcQ7HRU0dqCRV4rpTXqEt9LLZSlUVsNWQDVo/IM9+Pcc++ZIG88cz8SeDPx7RaNm0lQ9ahwnUnq45k6Ngz3fjz3uQ+pQNErOCzI9WcR3tyuHLDesSQ/HHJNCT6QfqCZHeB0MK88nOxSo//GiM/rCaY0OBLStx7HVYoqGLK1Xn1Nu51vEpJNSjDR8EI9n1nGziCYiD62CFxxfPabkWsFxrGnH3u7Z5B6s/a4AtjH9c3qR005l9aobUXbibbeUZdzPN+ijL1jp0+4f/4cRqcKLEVZa6Uuy/WeWqzv1hpLbUiCXSIle1BkaOvxEFWVZVlYluWQpRKRQ1pXNRjCx73zwcPlOZ99+lFKY8yp87r/8kU+Tt7u157TnB1X5mhUIB9+kd2AhbeTatrGN+MH4bWKbfua25a/bzzankfbE/fs0fY82p5f7bAakF0NlxMpCiZXMHHGCVngX0Qz4RmVKyhIJu/GCGGrGUkIioqxlrBVnqS+kLDSI/mn6VuOfFO9mROHzBRRQRigcWYqJZI1t/bn8KkletNGQjOUGLo7MqIiS4GqQdzax0wkGWXAKlnVQgF1hkdSuk+fnDfiAIw9q/97n8kfx+mUAVUmtz3AP5WoItIIikhDmuYzHwSRAFKZkapmBBt/HRnBzspTc+G0RhWRlYKa042j0rJ7NGnHI/7rFrJSPlKlZsT9nDGGEyB8AJp6VHROuz9s5CGSrHanqPJy77y8RE+jmjFp7lTg8dVGJBcZ11jEiB5HfThkJZTjDFGerCfqufDs9z7kj/7pf8UfflB57/I31P15JNAFpBuiFVNB+0DVsNYCzOcS8p1FGLqj/hCxHIb3V3RvId/uFkx/UfbdUD0hrjQV9n4BBjJeoLyK/fFyweREl5Ci3R/uYe+casO9wZMP8btvonaP2gURo7AwvFLaU4rfgw1s33l1/xEqJ5bzW7QibKOj3pFWqOdvMHSlqDIefkytjadP3mJ8xXswXR4+AxZKXaitQi1BWiglWiJbSWQmEzOv7c9ZQZc+SOznSTVxjsT5oeiRxxZVVBrizr5tlDKiqsnCNwBYl8okNSOKW+fhssdZLOL7YYof+IAy+qCilGK07LvTuyAlr6MQyW2f9iquqrbCsMF5Ub5R4KLOq2qcF+X332n80foHyPde4a3yzX/8Pn/90ff5aNkYe4nKy1346/6Ez1c4V+e7H1Q+ePWEf/l/f59//cM/56UYPkrev+gbZcNheJB/R5BlJauXDtlNu/Hj5v44M/mHF+BH77iJJcS9BxuBj9iYBI0kHPSB+wV1YzHnzpx17Cyl0LripeZ9HpTzHVJa2CVNTEULLg3XShdlFEVaSD1HxfqgiDCrqUT1SnqAK8ShIDpQBoofFWpGmEL1uScAblHxRmBz0/V2DWzPy9UHd6nsKKqe/apCwUgJn0SLR//BSXQukQSLYx27vGQ8v+dhOLKc4zPUBSmFgUVSqN+D3ePeMbGs2iKeqUb/KJ9YoFv2ZsrnzUCkpa860dLEW22gPriMTvWdykop07cSxjC2MbjfBpdfZw+mFy9e8OLFi1/2NI/jH+RI4yFXFtjv2iilcDqdUFUeHh7Y9/23fUm/E8NdsogiNy1PJicRNBiSMhW3VRYwgQwRxU3RkkHlBPpvRuAIlkFCuOqzx5N6BEWxLUQyI9UJbgKjOF6mnANpokWOJIK4UiSSRK0ovUIblWGKFbCyY3UwlkJfK8u5sFunb4KYoAxGanPPeqq4DyNbBMyMhiSrp2YAEsmuqMQy8JqfuSTLMBgp5teSWXenKCghVRJb7I7kfyoFYQ8miAquFrrZQmxwCDagT7aYjmSaKEhnyhOCYX7BGJhHc2Bjsnvucd+SJZaB6CzRPlxDp2QPA6Oi0tBaOJ0Xnr11x7OnJ06nxtqU1irLsnJaKut6Yj01ap1MEwmtXxk3SZ5rsicCrAkw+HXOOJA6uswkzQxEs8ptSs6pl0zrZHB4gBhZZafGbIItQt7nesw38ncwv8/kj8ca8RmpMdeIc7hx02ZPjXePee2EbMfBPCLmTKqhx+tnc+P87O7jcLIB3DKBayNmWq4vs0j+fR2HiODD6X3nVnpn/u3o2yVQWjQ6RzQB3ui1IVqjuWYpAUZq9EGZye8xeoC6N/1QQo9+esMJPqpmUrXcAHB+rGPzydi8Am6eLNJZ76k3ElOkDSyqkKHccQ1HEvI63ycQ+lOANxnQ5eTzBK0LZBPusGNaakouDLoNWq2hR67ZY6YUbqsZbkFXLakhXcoB+h1fIasj416YCmVtNLtjOAms9JjrQxIYneQDOe7DlDzIrSelNQCiB4VMUHheGwFiz54kWiulNmo7UZc7yrLQ1lMQsdYlJGNefML+6aeM3ik+aAJNlVoXWluzGkBRKZRSKfVMa43aSjLCB4OoVnWJBHu7mXdRRaCv3Z/JQp+/G/2Bzz79IdvD88N+zNddPxuv9f25JdHMvgo/VYU+QduUxpgVj4Fx3bDNbxbRrfrB1TbJAeCp6rWCPIHM3xUy26PtebQ9j7bn0fb8OsdkapOgrBiITGDVcQ2Z5QIh/cYEquJv6gHsDU+5SSRBPAN1qmtUsqnjQ49IJkhSimZFvrlHgplrIivew5k9c3CN+eeRhFCRTINPxYcruasUyd51ARiO4dlXI31cg908wD8VRoc+JfIQikv0TCPWyOpE/wwK3aJ6YU9/23Itm12T3RmlRnWKpxySEESsidNmVaoISPZnmpWOJe1gTTKAeonkXfrZEQuH7JtqVEvtm1NLVBB1qexjSzsc7zdMUh2+01Ouw0fHM/k2MvHjEqRFBoh4tmuZ8nnOiFAyYk13OjPh7NFHJxODg5hb5hwVryKwiFAlKqPEhBAkHDTRrGyK59uK8NZbZ775nT/kj/74v+E7//Uf83QtlE/+Pfd/6/DRhg/FhlFtoEunbg4lEoOzpV3VBMx1oOyRmHTHKbA+Q5++y/78xyELSEFHZ+wvuXjBXKg1yA91WXETNEU2LtsDrhWrZ6zDtgv0jv3df0AU9k/+DDNoBepSqbIRlL8T4/4JNj5DzVjKiSonKPfU+hRxQ+0es4qMO/rlM8ryjM4JkzOlFXx/Re9f7QTT/upTXM6oLrAs6GnFa8GzbyRa8KEMH2k1Jt6R+yZED2RRTPqxrgRJGZLpOwQ2ApI8yGvcf79tlKYpeRpryi0wlEh6xxzeRmfbdoouIQE39qgQgSS7BrE2LiIk8NF4P1Hw4ZmDKEwui9lMOijbZXBxOBWHp8bDxbjsz2H5A975L/859fOPWW3jPW28+7Tydy/WkKulso0GGHdL4Z+8+y3+3f/xCf/m7/4TLzLxrBG0Z38rj6Ry1+hHZlGXiI8kzF5JJNetLgkiwkE8Eoi1wDXpnEVPh0ReFKhLYCYSUqpKqOmsCiuw2mDtg5pJfy8VtGB9xBxYC2PsmfOqUMBK4yKFXcCqZtXqtEeBG8W+0qOnnnSuVICZfIlrjpojDlyjmOAmmCWx4Uj8C6bTHQ6fzFWwKlAUmw81E0fBAauIzB57TrHohq5FkSVI4TIERgVf8FoYYuxbp6uC7dCVYR2pGviNGcMuOBvoQKtRxcmWcSFnO/3IkavEI4Hkmf1z3xGpYTu5AM7AwdZQdrKs1mSPPudMAojzqnfutwvb/uV4zy+dYHocX+eRwdrXy4/+uUdrjffee49t2wA4nU68fPmS+/v7I9CttfL06VPWdaX3zieffMKTJ094+fLlF8rpzSEirOvKuq48f/4cd2dZFu7u7nj+/Dlmxul04nQ68dlnnx3vX2vl888//9oFN28OkyjZnamaWTURjC/HR5/Ug+OY18EHP5rccQTCliBMskbcIIOizCYE8yHPN6U2JgPCKZnPcVLELK9v1rZmnxvyvVRAQ0tWilFdaL7QBuxjR8sWjOKxUttgWZXT7vQ+sNHDZfFrf564xtRCBcRKXr9h6mAtA2fLqqMEa1xALkTtbOEqzRYntbxmweiWf/BJzZh1Yh6JGAZVFc0GwMM8ZXhSfoBw4tQjaCh1Jo+2ZBY1gv1mmHfES97/ES6HCyJ7bN6Z3An1l5nQy8SQAFJQaZRWOD9ZePutM0+frdydFtZ1YVkK69JYlsZpbdydFpaUBJJSSIiCg8pyuFMcSaMvWmeeR4ZpnMBXVJDNHhDhnlkmASMQPpzV+S5yBVwOEE0cSFY12RxUIGlcMQePOebpX08wz4kmko7m5L1lnN+CJ861om86PX7Y+pnIu/ZaIkEtS7DRM8llTiba5GDCfNWlYn7WMIsG8beA1KymDBarIrVlb42YZ6U2Sm1Ztl9eA2bdk9mfsyIY8vXoa/ka2Jbgo2g2Vk+gd46jM1sm5SPZHetfNFi8qgEaTpM3ATMm+HfYwiswWI7ruNrXuffdsrqnfNWtwzA/gycoESByVAl4iXXRe4C8qLDfyESUaZ9ugD1IluKNnNe81ivA6Ak0530phXZ+hksLKRhxrAh9u4exH8/Bs8+AZVXGvD/ulgnXXBez6nEyI5nPJYHV0qh1obaVpZ3RttBqC2nOtqCcWetCe3jJ/ukn+PYiqzgCuK61BVhbl5CZqjVB3oq2qExZl4ZZ9MFzD8ZuqY22npGSUpukfJZcqwiuVRdO751XLz/js09/iI8N9cC937R5X1SVfYCxE/zVZAbe/D7kJ+Y+m4mG6yyFIEr/VNXJa3PqjXn0xoX91DV9ncej7Xm0PY+259H2/LrGv/3zv5G//1WP43H8Qxr/7W/7Ah7Hr2CMhx/iPMX1jm07Ue0OOS8gDaOhZQkBectkNxm3JpqhWuIrNRJPmYS+7suZPMkYewqWmHXEOxBJkLEbWmGtifWQFZwSyYZInhe0DPZ9A2qQeHtmHDQkQAuCdaXrhCw82g24gcHAQtFGo5IpKjwjrjYVnndlVeXpZedUleevdu4f/ory3d/H/G30vvNs6XxnPOfjZzsP+4laz6CD9+4Kf3B35j/8Xx/zP/77/8hzt2zvMHEeoh9QkgRIuV/BUM8EU+I4kgmJ9DSYBGf3JC6/hpnk14mNWB7rSaBJjKGoUBFOpfCkKk+18qzCKkbxFL4zZ4wOZSDm9PtXeCmYLHhZ2bUwSmW0xk4kYyhyEIz0Biur6lSP6tuighqJqUWFMyMS0D5CztD2eE7Dp/CqMjQSSRSwKUmHBMYmGrzpIlBIOU5wDSdDdAGN6lD1Dh59/rpGkquSCVRTbChVn9HOyri8CLJWSYKF7Uwit1cnZB43YMd1R9tOUWdISOfZgDIcr473wEOtObY7DMW6U9xx61ec0Dz6pTPo0nFrWC+MMViqogVA2W1wb4OtjyBOfcl4TDA9jsfxJeMb3/gGL1++5MmTJ1wuEdgvy3J8/+TJE1prfPDBB/zoRz/i29/+NmMMHh4ego2Q0h23ge7c8O7u7lBV3nnnHSAClHVdeffdd1nXlX3fUVU++OCDbLq78Pnnn/Phhx/y8PDA5XL5bd6aX/sYFsF+Ec3eQkbsAsFQE3WcQZEaP+fmFliJYiak5lsCKCE/Fs3xlOgZMwGJ5KtKVEW5O6aR0IiQdLLhxk3SIegose2WZMUMTELOYG62SCYCFEwKRaGVTitO10IRRwpoWanNWU7O2jt9H8zK1Sm1xmwQO5MagThkMsZuPitERUrJ6xiI15B0kNmNIF8jBjal/ZyS98i5ENuDHvfPCL3a/WiUaSB+OBLRZ2F+DyJ7yrvY1RFM6CF8lhF6v9HBFyRkNeJjzjJnI2vKr4kWieQPGoyy03nhrWdPefbsjvP5xLqsUb20NJalZPXSGjJBUaIVch5aONKJPhM3c43KkbSZvRGS5xZSBq/1arBjjrofHO38/irZMZ24SHaGU1xUDwd0TmDJ8uyokvMr81vh+oQ1HcAbx/kAoTIBlM6fpVyAuTElL4RweMTlxi6FDAZwzOGjv1c6lZJVb54OnMoIpiLh8AR78wq+fZ3GtOO999dBXjSbXZejj4lMJvkS8lQlQbsA7go+jOEdzx4jpUT/itoaS8oU3QJbwznA1VILUmcVwjVomEFTsLvjWQXoa8nenFUB0+rFiNdHYtAOtny+X36Nn+c1cPz+lsnPzfnevGeTPRgAaQRzqiUaYI/OPgZLrYzR89z5PzcsZWmvlazX975Knzq279iw0OyfFYgCIoVWVkSiX50UhVaRS0PunzP6GzeEq0TP7L2gM3GaYLAn4D2PC3A35clKRUtDtQVIq4VWK63F811rw9vCun/I+PQjPv/xnnOnZOPWIAJoCcmpln1MSr320SklpERqyybCAqCYVKLxa6UVWPSNRMH8fMPY952PP/4xr15+ihCNuL+Mi/ZlAKqbBZs79+uZDPBZWfLGcTITEDcmYiYmJsD7GnBL7kA/A8C99a2+DkDvF41H2/Noex5tzxu/f7Q9j+NxPI7H8ZUf28PHiL1CeQbtCe47Ve5AzhEbSyp7ZK+dKRtrAlONRYWoLBkNEUM1cY4ReEFY59hbo+IROk4fA8xotUR/y9ySb6u4PV5yxXUIWdrdesTyS/S8UVeqlJBmo2Du0c9MnaGDmrKjUc0kie8U3Hv4KMWp1agFPto7zzbl2WXng5Py7Js7+4//ivLeH/CiD9555/f45o8e+ONv/YjvnYWLGE/Og/efPOFH/z97b7ckSXJk6X2qZh6RmVVd1d0AuJiR4e4MKSvCZ+B78JKvwjfhG1BILl+CFxSK8Ga4N8SMyBDAAOju6vrLnwh3U+WFqrl7ZGY1enZ2OKiGHUiiszL8x9zcwsLjmJ5z/g7+w//9d7xv501ZbVmYm1yPEIUlri1cf6w/r8VzVvdG7Q4rzvZ5vv+UzKQigmvY6nzcWTksPK63IEyi3GjlVVVeT4UvJuGgvhWPIzSJYtbWgnc4q2LnExyumFGWcmCWipcoqhFrYRVawsKz55CrwFQOVJ8pzZmCfUKReN5oTlsEWwRvytLCs8cEWo38cklFuUlmPfWltZJXranITx7GCGUnXdWbnI4Wi8iCVBYF8QfmwkSFcoUervny5/+WWk989/u7UJlqiSw6bztDHYtiJTEsLT1VjGpgpUF1fMms0eYRiNccWUBL2BPW6ogJNEF9pmgFmbNYp+HLQrPK4pX5dOChKFodU2NOHtBWHvV5jAWmgYFnoKrUWvnqq694//4979+/p5Syfuk6n8/8/Oc/53e/+x3X19eryunly5erCukv/uIv+PjxI4fDgdYa3377LXd3dwDM85xv/sY8z/zN3/wNv/rVr3j16hUvXrzg9evX/O3f/i1ff/01r1+/5uuvv+bbb7/dfOV/4oh1ijDtUt/UK33BrrP0Zr4LmQ4jAmWXndU/wEmrNiwtRzbv2yDGIZj5OJfnB10s4Ghu00JI4hbVH25ELlN8YGw6GEep+QEdqikTQcqBwsyhtagmWISlKtWNpQmHesQOM+1KWc6VZYmPsi20OKsmkJSDl7za5CdWJVIojSxFv/HRl3lDNBQLEsSzCiiLOrdFCk+WJao8JD3FxXPRrn+gJKlkGfxHX7CwlKTLtp8QVSvZubkQkosaeT/T+HDtw+1ZLveTVGYR116qcrg58ur1DV98ccPV9TXHQ+VwUA7TgcN0zfFwxfF4YDoWtIKWCKTuGh3wfDjQtT1R+RSjSTSvP544abloJHQyLCpk4/fMnNI+Bsi+7Eoixz0WLYtqPNxlUG8PBA1rPgsv3v4gmO2TbokXj9bxcNp7ayU3LP+9XV9eya7CqMV98xybO52T5yImrmsf7YmTCMj1VaUVD5SZxeSWD5Sf+fy0q8wHViLP5shGK1pTybUjeHN+kVIxUapO6HSFTFdoDdK2lqgIa0sSYKXEXDRNoR6YahC4RaCkFVUf+y0r+DMQVkoStqpJugq9yl1FMwu7E6N9Dkn7xHwbd1sTt6jmj33jWhSiwq7bRibBKZbvF929j5GLaaH10bSxwdmFceSYrrPvND4Dl8UomWS/BkcD1lqQyLY7ZldtaMwrAtRSacsCyxm3tvpw94VYU0FKTWuTGKuUXMh9OGMtKuUw2H8V7cvj5PuZTvbC+r5VCWJWNUh+8r6E1VXYYE2lcCyVqU4cDlcwgX35c7765V9xvn1LV9niSk3lQJ2OHA9XHMqBg4ZVVb/njlLLRJ0USnrBuyF1otZQoBhGU+FQ8gu5NcxahnnP3H18w4e3f8hsgrJ9fu0WF/4oabojVs02olXYZti+Xd/W8x7KOr/EF1u33ecPGz/s6+/dzmRHsv/UMOaeMfcw5p643DH3DAwMDPzUscx3yDyDn2jLA5OdY5FpnWsrmkpjcU3lTTwbSC6aQDwbiGv80In8nLfjSzwCmM1Z8BKfm8sSi1SHQ2Rki4Ethmk80zQLW7mIAc+CHowiRLEOUGsJK0kzSiqgChPFs/CkQaMxTSUUJGah6C7BS5jFc8DLKvwXvvDNAT4256vpyJdeeH1Q5OMdN/f3/MP5gZlrfv6zv+L+O+e/+ffv+a0bf/H1Sz7+VvgP/9eveGfnLIS1VOwG0dOtY2tyYJLPCevCh+fTmvdHn1hxs/4cAhsP54S1pcvGTxnrIppbfk5mftykhRdaeFmUl7VwVTXdVja+rRd8BL/QWGzhQYWH0z3lxSus1HToKSBKkYIXRdKOUD36MZiieLYrGFVm1FrmjAePsSwwL5nz3SRyxOM2YggtbUnReDJb8u9h4OO5upTqLyELooWmYFqSM2vB1VgoxBQBqWulixdBfEL0yPX1C25+9iV393/ADodwaurKdwzUEJ1xbaA17fcaqmdKW2IBqzjaDK2N1hrShKahYEIFW0DVQ7HU4l6GqquhEkXUIjW+d+TYbbYwn6PYf0ler+U42KyenmIsMA0MfAIiEXC7twzZV0V++PBh9Yp/8eIFf//3f8/r169Xz/CuRGqtcTweL7zEl2Xh1atXvHnzBnfnxYsXzPPMzc0Nt7e3677TNPGb3/wGd+eXv/wlqvpnkQPl5hHSKSBofFAJZF0nmK5f+M3TZldAKNtiEYKYhn1cD2GUfM1bfBHvtnYex7asCg6rNtLWLe+bX1ZySC4zqGyy4aiacIwGKUNWgyogMkeYX62YOYfmzN6yygW8QZmO1OMNxytY5hl/ODHjuIbfeUiYSQIjFsdsfY5q67WkSCe32xYOVvuyXmFM/3BUQjUU8m2kUPq3awF1W7Ol1i/cqdyKXJ++gOe5wGJJ7oRiSPIhhVw4EqK6I/ZsSaNEoKbmh3S3IYwD9MU+EJkoVbm+Vl6/uuHlyxdcXV9xPB45TIXDVDkcKsdjicWmI5Tq8aGZPRNVUUs+1MTikkgPgOxVGSmhpiBSkdBH5wOt5QIjOVZCURcPZp3gCKl1PCj19seC3nr7nHWxdEuMTFJJ+iJTr47pr8WSEZ4+56mkE7qaKcf0rp2bM3G32uv2eEEY9aOS+VtrRtNO2t4Xl+I0Tq8ccy/5QBiLTY9zMT43SC7grwRXkqJalMWiqmqZZ6xbKkkoLUWielymiXI4UqZrtBxRKXhzGjNuCzpVpuOBOk1hSzRN8YUkwz1j/VRWkrBXzBUFBBwAACAASURBVO/zUYCtyp9tm30mRUwP3g02wdYlQ7r/tlkLctRaBHzXVNURodKS+21yyt4lnd6Nd2lH/wq3/tfZ2mNAiXe89kVYnTANVcbSGlXii1ejRbVihkZ3u6V1QbV/E0oHSRWhLoVTm2nLjImwIDSdkCmUmt7f46VSpyvM4XxsMa+fH2BZ8stXKPH6x0i3otwobYu5rxPiomEBhiAaIbOlFEqt1KmGknKqHOrEoU5MdQIpmHzJFz/7Jae3f+Du+z/gvlBRaubbhBKhUiSqJYuWrCZM5azmWNWw/awllAzHwyHn5PTQFkG9xfxkjbYYy+nM+7e/Z374QOgZnT7X9Nv5WA3y+G/bSOie3jnH96l+x8H6+tOJXMnOzddTvZL1B9vxYLVwjXbE3C3SP9N3LfkJkL5j7hlzz5h7xtwzMDAw8OcCd1jags8zcjqznE8cWnw/PyDITQlSvkZxR3y+C93eLf3eVmt4mJhdwJcg+X37fi8ApbIsZyQ/2xYXipTM8Ak+wM2x5piGZb25UbRm0ctCE4e0xrc2AxachiveCmWaQEFlYpqOzMspcs6QsBoTxZuvhb8iii9we7/wVuHf3Rh39UAxQSfnaBMPyz2lnfmrcsW37YH5cMNV+Tnl+3v+y397jby94n/5P/8fvm8z3WmncxQq8UzGnHZoHpySWHwGIpJusl1JFEVJa/mp9M/MZAvcVwcUsvg1XpbMLiKf+4QiMEnhWiuvNBaXbooyqVJK8BvuUR4evMbC4o37ZeYE3KpyahP6cMv11SsUpWilidKKZqZTJCgVD0ZjAiZ18AfETkhruIWtrzWLvPAlYh6aK4vD7MYi0BQWojjIUwmXTFrwIIR6ToTMI4++VlvCacYrZmdcNIpfRNGmFAriBSWepWcULIueFW6KcDge+HCeWKbIGzSLqAUtEotHIrRSNl7OFlSMSfPZZXFEgxtEo5gccTyLs6SE6Fs8FlKnVPNhsRBXaKgvmE00K+BOs4YbLBYxGl1471mk/CmMBaaBgWfg7pzPZx4eHnj16lX63z9Qa10zmN68ecOXX37J73//e7755htEhF/84he8ffuW6+tr/vCHP/Dq1Su++eYb/vIv/3K18xARvvjii9XupOc3lVLWhasvv/ySWivn85kPHz7w7t07jscjL168+OwJ3B8DTzWEiO6UMBrERS5mRMVrkOWhjSaJkSDB3R2TFpWwcVSSWohFmcZaPRGUQc+cyWpX2Wz0ekhhKEyUktWOysJCYbWr8ST7hbDxa/FlNXz/iWpWL1R3DmbMZixLZhBUQ71xmIDrgjehWaOdF1quXnU1UfHwrO9qGvKDuVfteAZeSi4oYLG41Ncd1n5DwFPplAtIEZRplNaS5Ci5dLSA1909WXIBotM6y7roJ5R1sUh6nhOxCKO58OQS+VQZ9UtUuRxY60f6t34hri/9jEsRbl5e8eLVgeuXr7m6ueZwDBuYaQo7yeN05GqauD5WjlPYtnR5eDQlHgRFt4UrzQXNWFDpHENUIUNWUmcWUq819j5uPGKKw05xWRfR1kWmzFtaw8sLiESFTV/gimP3TDBZg8ktyZCo0MmR3H2hJT/k6cRbKMfiPST0IMvYpj8J5IIovWI3H53cg+7xEvfY4yHV1kXJ7X211lYbwIJ5W6uIO3Hzk4JERokguSDsEQ4s2+KfdHKv1CBvS6FKVMW3ecYs5PxTrZmJEfZD02HaFAFJ1KnqRTfuSd7NNmr773M/vcp//c6VZLWT0vb8gSicKFryPLK+B1YSru9rFqv57k/EFuT27kRorWxKUnePgFID1Uq+tZAC1SttyS9EeczWlt1i7tOTOLK+xzwcTyNbTQSbZxrO7CCThYe1TzF/loKU6OdSlDpNUVnvRnOC+O6ddfHkvL8bW7+rbPdEcoxoTQJ/ins81QO1TJFbI0ItYUfl5ZrDlz9H/uKv+d3pnrYsTBKVcFU1t4s21ww7jvGVNmgaVmVeNLL8UoWitYbaA8WtIW177gjVyMzd7fd8ePcG85hrY97IL5Jcji94jtz9z4fnjr3ZTsG+7zsB3EngKHj4KU44O4y5Z8w922BY+33MPf98jLlnYGBg4F8ZHs8q1pz2MLM83GJN1uLZSUsWpIJMB7RUvJH8BizuYXtrUQCgUqjiUZwrjV7gqiKoFBCjiGLLCSnG8foVtpyAmWZLLDRlkcmyROFxLbLmOFYmTGA+N5idZo4tC+YWxRbqcG7x+a+GHgrHww1zO4WtbK9GFscWcFWkGKLKaRHeHo/8+y9m/usm1JvXHA+ND+2e4oV2+4Evrr9G/cCH04mbVxNf/7tf8N3Hyv/8v/9Hvj3fR45j/2rfn51EEHNsiWtnMXxxZPEuRyE+gfOzOPOTwlOF/O7PZfGGk4tDxAvNUr0UfIOooC4ctfBCKy9UeVGVq1qpJTI28f48FQU2Zo2TLdz5zL07t2bctRO0CT3fM80PHI83wMREjJEiQlUFN9QzI9Qa0hz8jLco9DdvaBbxLGl72Nw5e1gMzsVjEUXDgq5Vz8WjGD8NaF7CWUiyaEVjkIokm2UNOJP6KTo35xaLV4JScrGneajHzuqYOLfLibcffs/96TZsAmvBXQkb4yWfIyUK6lkQaaGM0oLmtaALzJGHHtaOef+yjSpOiNyjRPxKCpUtobLnbnmLHKwyG/OsyCJIM2wB0lKxEQtXn8JYYBoY+ATevn3L69evef/+fYScHQ58/PhxVSK9fPmS6+trlmXhcDhwPp/XhSIz4/3796gq5/N5tcYDwoKiVl69epVe5G/48OEDX3/9Nf/wD//Aw8MDX331FV999RW/+c1vuLm5WRebvv/++z+LLzVhjlezMiKIiU6oByxylgDEkBLLRPGZ3ZViuW8LmbB0El9ksyJx1m0Vj3WHXF0QT3uU9JBrklYxrrhqBjNbVmBmFWkujrjlIks8BaXxi4IvuDhFNcie2qjFOKajntmE1xs4TPjVzLycaTT8LLhFlYPbEn8TkuFv60NB/8JuWnJRzuhVm0LBpGE+5+KcoF6yhtTWXKGuSurpS/gUKhX1XARqsUDlsTQk3VZNjM2vNyqsoWLSlTWQHjVZ1Vpyf1L1I1EVpLlwJp3kyQymslDrxM2LiS9eHbh58ZKrq4mrQ+VqqhyqcnVQro+Fw9XEdJiotYKWyAbofdKPm5Z4IqFY871KK55GwWtUShGhj7FYVnLRclkzrfpSpJL2e17iQUIALXl9JYkhzxBxwbVGDld02hrqKPkw0Bm63tclnmJynUxygSp1aJKS7FQWde8g6WM57iy99Nq9Zcv7QmOo2UIVGA82rc10W6BYQNp8d91DHSXWwI2eGSE/wfmpLyCbwdu37zkvcy7I5o9oZFhkIHqpByQr4qUZ9TBRpwhCv3pxQ52mICU1SdnaCby+uLdZgYpsJOJeJfAcybsngVnfm9afjyHv0UrywmqhVbVXxvvuYT/I3NVyIr80iCp7GnqftVGyun69ht5Ga/FFJyvb1/+VEtZSOcerBGtr3m0mtyr1eP9qPtwLaH5hTBurMsUjrS1LXHMpoahM2yhVCTus/NIphAJ0XhqiLfyupb+HoYfTXjDlO/RF42hTyUybStEpSHOtWfW4Eby1KKVOOIJ+8TXl38w8PNxy+9030BaUlll9SUTXQjlUtFuTlUKZShK6E16C7O3ZO6EyWUcmYqm8zvu0zCc+vPsD5/NdlLJtd5E1M+4TeFypL598bZu3PoV9bskPE71+8e+W1mXdMDTTkbefnxjG3DPmnt6ne4y551OvjblnYGBg4HOBNcAlbMpMWOYFa7fJ8cQzzuGVhLuJEkomKZEZTRD+QBDx7hQxVCW+w1JwC8vesPDNz5kyxUKVVdCZUhQ7FYwHFubkMLraxTktxnQ0jjohVrB2pkqJRbHFEAtl9rIsaJ2Y9BgLHDUWBUQqV+XIYksoQmrY04uGOsSaxHJEUc7tzO8/Cl+fX/Bvrv+Kt998x+0vzvzir4XDaeb9tx85Hl/wWmbu27d8eHvN//Z//Ed+83BL87Cux8uaVa4CJVdIIprc8NbwBWzJ4uNcPOrKpLAgJIgIt1x6Sj5s/bjtVsfEziZR7J2q4OLCUSovpPK6KFdFOJbCpKlS72s3ndbwxuxnPvrCh7bw0Jz7JixyptSZoznz6Y7j9at4luvclghTL09xoxhoW9D2gHJCfY5cpr544guzGSdvnN05AzMWmVxiLFhY5VXHtRdBK+aKuSRX1u0ZY4yWng0mwX9FAVVmXVs+R2oBmTBi8VMIZR35THrnxu+++zWkOstU0oLPqWqIRASDlhw70tYIB21wtihMLoRqLHKmBHxXdIWjxalFmUSYBK5qRFgoNZT0zWkGbXamatx3Ds8KFvVXLFHN1aO6nsVYYBoYeAb9y8SbN29W+4/+5aLj48eP3N7ertsD/Pa3v7349z/+4z8C8Otf/3r9W19UevPmzXqsv/u7vwNYj/+rX/3q4t97b/I/B/z3/8P/+Oll8YGBgYF/YTy25jF3zm3hvMwRPoomwSsrwataKHUCUZaloQjT8ch0PFAOE9PVIQLZc01Pe26GSGaaZNVXJ2t31lT7avXH7bwkd/PzYl3UjQVy6VVm+30h21zSaitUoUBeVxxDnfSuzi94naTtX0h6X+2IQluth+KzqyDIEg/daVi9LkiKSHyRkwjbjcVx701flXSafwiCN20KtGeiwHR1Q70/cTqf477Zuhqb5Vslr6NSlwW5uo6/Z0VWGnSFlYI+0Dx8qPtDfKgZy9Z/e/JdY1G556FoZpdMdaL2DJMk0WsByhTt+fIX/IIF3JjbwpU3uvJUVdGaY6uWdYyohhqi1oKUitQa2TlE9aDuHhV61k1bGsvS+PDhLR8/vAFbUIkKwLifO0L9E++Fx2Mn1Jb+ZBvfgv0u+qmrr/fk7XPYv/dWpYB72pJaqB/cs+BEemPWtnzuGHPPmHvG3HP5Xng8dsbcMzAwMPD543/6X381+J5/Jv7b/+5fuwUDA5cYC0wDA59A/xKyLMsnX3/8ReXHLAI9t81j27vH//5zWlwaGBgY+NODME0Hap1YWlSfe1aQd5upHga3LI2qxmGaguCdJsrhALVkUlcSWWH6nZX5sh7nOZJ3T3z13x9nozzb6k6+CWslfod226NsS9hbJSm8BtlLuAC4Y8Km8FsPuu+h+P8LMjo51kIQucHJZeU9Sdnmtq01KJpkY7p/e7Y72+498FQKSAmfawTTQjlec7w68XB3zzyfI0PFYr/um01VmLsaVinTkatrODuYRoWj+gLtATuVNczUPYh+1R2xrrvK/rT5qqVQ68R0OHCYDqFqzNyy4LaDHC8VZLrGDhMvJ8HmB97946+Zzydqm6mr6ja8QUupuZgQBG8/f03LKiQsMemiB9nI0fAON+Z55u33bzg/3K75ht2Wqo+Pfw4uid7nt/mUcuA5Ijm2s/VZq6snYUchS5Lv7tu1/OQw5p4x94y554cw5p6BgYGBgYGBgX99/OACk7uPJ6aBgYGBgYGBP1uICCbO3f0d3715QzMDz9QtyeySDJqd55laGjoV6mFCpxq2h5kvYmnT1I/bFQTaf+/n1JTOP6Mc6PtqkpLCrprbCXKwF88HCxakn7SVHRMJT3FJy4ggQn3bZ22J97r9rDrPXK9e4r/uncclqvHpbZJtG/eo1o/Kf7KyPK6vlIovjaUZJVUQ3YO9k7yrdZUWuvVW/2lAU0WOV+h0xM/nIJWz2twlLVHdsaXhy0ymhSBVqTfXWK3MZeJEw+YH2vGa+fQeW+boV/KS8p5ovwelpD3ZRKlpSTZdUeshiF8N+7G4Z5k5I4LWgteKlC/52V/9V4hUHt78Ds4PsJzDSswdMg+wFM28k8iVE+1pemFPqtnnSlcP5DUbWJu5u33Lx4/fx4KCyHotOSDiLv0TimYE1oy2rhaJ48kTMvcHlQMS9/DpKN+sqvb7R06Q7Hdfx8dPDWPuGXPPmHueeV8w5p6BgYGBgYGBgT81DAXTwMDAwMDAwAAb6eWPyCt3Y15m7h7us/I9yMwg9SL3xBdDTJiqMtWo9u4V+STZVoqsXuCKUCQySDTzT9y6HdPaorUdeyJtT/CKsVkMpV+27HaXrDDPonKAVXkQ1fmy3zgJ1NxYU7mQHuNZw4/VcEDvLkFrDtxKIvc+jD80iYw7JeJPcVaLLvPIe6E4c2thvSS9bXFQ76pej6wVS49wQzCBpsKiBTsc0esr5OGWNp+xxSCzx8J3fMFOJ/x8ClJWU80xTTRXbIF6uKHeGDrfU04fmOcZlqc0pOd90aJI0cgmycy3qPrPfJRSUSnxo/FT5RAkuxYoL/DpwGs5cvSZ+XRLnU9gC97FJkWS4J2o0zH/KLiCiYenOWBtCS9wD5LcG9Aa8/mO79/8hvn8jqqOa8l755uAYDfGfuS75Zn3jgOKKhe2VJ88gshFUGx/D1z8N38uFzvK7pxxAbKzMP4cMeaeMfeMuWfMPQMDAwMDAwMDnyvGAtPAwMDAwMDAwA9ARFhaY14WmnnaOgVJZ2bQjDoV6hQk3DRNF1X6QAaxh52R7oha2KqspdtGrefdqQ12P5fWVJ3ADWJ2T6l1cszMVoZXVSlpl/RPlamv1fM7xcNa0n+5JaoFp9HDWEsJOyGPcv4g8bYjJOHrNG+U3nY2JYSbRS6JOZRHtkiA14L7hF8d4PpIe3DO1jgYlKosvrCczrT5DMtCcItls8zquSNccQCW+XWoCM734Ocoyd/1w6Ym0LSpSkVJ0SzKT4VIiXFR6i4PpQo6TWE7JYJq5OVcyd/w/a//AVsWqjRQA8mMnVLW/Z3LjMZVbWFGa7bdbzO8nXj/7g3vvv8Otwh83S9i/LH7vcd/Lrveff/5XkXw3FDi6UDdjz5V/WGVwmeOMfds/TDmnjH3/HMx5p6BgYGBgYGBgX8ZjAWmgYGBgYGBgYFnsBJHojQzWpJkdIufzOEoWpgOkZOipURmxS6/5DFZ62zErpldZJp0AlfSSqhjn3+yZZawVtqv/1kLqzfiqwfPiziR3SJJcibh2jM0HhHM0Ak1z+wNdjZbbLIEEfaNTbeinZOVrySeRTBI/Ft0c7TKfmlmkQ+T+4UWIQhsMwNpiGkEm2huKMIiyqLCUgscD9SiuFasNYootizY+YzPZ2Q54dJwDqhMeRwNy6p6jUwHDrZQ7t/B3XtY5n6ajSDNeyIqScCWIPYRzDwssLRQSk3yfwpFQSlQNDJfkugtqpTDkTL9NUrl/Tf/CCyI2EporgoSCYsrIxYbVIM8XxUcndy1hvjCfP7Id9/9I6eHj9TqQHmWEP0UUfqcsiCG2fa3y9f/OOG6ZslIqEAkx5/3fXfvu3WsXDC92+/2E1UPjLlnzD1j7hlzz8DAwMDAwMDA54KxwDQwMDAwMDAwsMNFhbo787xw9/DAeV5QLZgrWmqStWQOxiFIvFpRzfr3Z6q0Pau93YOgXG2nenC7yMawsln0uPuFesDxfczIk3av5+rknRm1dAWC7/ng3Q5b9f76qvhaqS75f7KdcLPIuuxB3Gy9vq50UARlV5DfCWkih0WLYq2BOUVlJfx6Xkwc12nLEoSrapDOIjjK4tCkwDRRRGlWOD3cobWynM+0+R4/3yHnO8Qn1B2mAlSMJVQcpSJWqe0V9cWX6Mfv0WXmUDbrJDPLTBh/pPDoqhCL+1oKZarUGvklpZSw5yqKi2MqlFohVQhyPPISxXAeljvULXhO2akqRFd6taBr7oyb0SnRIkLDafMD799+y8d33wFnMIk++wTJ+xweZ5rshsoFAbyRxPajyOJNhUGqRJw+kC1Yf+I9dNkOYbPTepyR8lPAmHtgzD1j7tn/fcw9AwMDAwMDAwN/+hgLTAMDAwMDAwMDn4SwmHF//8DSNtsgUQUXNKvEQz0QJJ+Zo27r/h2raiDtqB7nrqxnTOLy8TYX2+2LrSXJrzxb325v4RM2WYTF1O4463EdDCiikeHRT/KJPtmqux+9sqoC+j/yegzAUgGRRPeOsAyFQbSlecMy36X0a8URA8fC2sgsjxEEb9DHSXiiiDviwtJO2PywWja1+R453YFN1FKjLc1BIm/EKqgfqC5cv/yK87tvYT4z+Zwdfmkt9uQnLhiRUBCoVrRENsq6CJDEfpHMSkkCuJSClMoXavD7/5d2f8dyfKAcjqw2Xm2h1gNaguDdMnCSBO1cqTXm+YE3b37PPN9RJTJh/NG9fzwOnpC5OxJ3T67KM9v8MfwxW6ynO2yLGquqRXKhwOzPgOQdc89zfTLmnjH3PHecH8KYewYGBgYGBgYG/mUxFpgGBgYGBgYGBnierDI35nnm4eGEmePiqIC7IKVQ6oRoxYkAeGuGWQad02nHvf3TlmPSWstA9h0RTBCxK8mLbFyrZ3aIc/H3dX/ZHIucPYG7VWXHJXbzKYJI2xNlOx5uVRo8Ied89/pqpLSqKjYVgm/tk2CR11+bxS+6P2JaVbXI8Yh+yEr53LRbYAmOWcOkYFhcd/PIAVka3lrkpojR5hlag/lMm09wvse9cTy+CPJXo9GRWxIZLqoVm19zf/MF7fQB9ajOD4bZUSm4G9Za9l0S66JhTZW5Jz3vRrTEeNGwtFLpRL8mAV+RWvFSOfI11RbefvN75vMd09UNKteUopQaNlPiYZHFSvA64jE+XYIM/vD+O96/+wZ8YX8bV6L2kVrmOcVA/N1WEr4rW8q63SMpC9uYvDheH7v9td1Q81SvPHldLt83j9H38X6Qzxhj7mHMPWPuGXPPwMDAwMDAwMBnirHANDAwMDAwMDDwCbRl4fb2Ax9vPwSx652ELageEe0kb6FIQVxBCkhFvLCZMwVUNWx59pXfIQNYySozW8nfTm0JvRI/KtVVCp0m22XArwSZk5XWgEiGv5sn8VhWQk0FtBmubaV+o0q82z9JZHYAuCFubNR1bz9BFlsSh0kKrkx3buTaiUKgGS4t+sujul1RRCcWM5o31DVslxAKikUjwr7JwuJoEWgoizeW5cwyn1nmBbM5FAdu1OxTkMhEaU7jxHK+p9Qb0CmbZIgpqo5OE9OLVxxff8nd/e9oTSj1CqVQRamSSoXsB5US6hBV6lSjyl+iz9wdc6OgoBVyzERFvO9UHUIRkMMN+uoXvDR4+PCWNn/A7YjIERHP+BjDLc/vRhh9NVwby9I4n+54++a32PljGF95wV1DlZH4VPX9RtA6gq3XIGnTpU6QyU+I3UuutatYzGy30NBHsOMaygjMN1WAgBTdFjLgCRnd0ibM2FHL/1SFwmeAMfeMuWfMPWPuGRgYGBgYGBj4HDAWmAYGBgYGBgYGdtiTX601EDifzkE8aZBOJW2pJKvBtRRqibwLUXn2eGvOSVY/16wyd7OoCk92dq26dsc1aLnHhFpwZpdWVv1cm2XSxR5rO/b7qBCkHZmzkVyc0KvUM8w81QGRtZGcWioSup5Ae3ZJGAkFx+uXYfH7YHRfyew4n4rg3iiqtNZo1nZ93CntLpPwIPpao4ljLizLwvl8Zjmf8RYkryjQYntR5XB9wzyfOC8nznOjtgXRBXcBM0QLlMhdqYcrrr/4mvntF/j9BygV0Qm0QA3rKbGgoU0EVJCSMomkIN2MZgvaKtUbQrQjlAp6cQ9FFdEgr/V4xYvXX2JtDlLT2sW96/3vZnl/GpLjtS0ztx/f8e7t99HHj2zPftAe7Zm/P8XOkusZ/PHj5OKE+eVY328vXIybH8RPiOAdc8+Ye8bc80MYc8/AwMDAwMDAwJ8ixgLTwMDAwMDAwMAOj0mqw3SkGazV891qqJTItihTkLs1/t2JX2AlNUsp27H3zj7NMEC1pF+P4SZQwAwobT3WSuY6mLXV8qrbXu3b/JQYCxK277MeExB1JCPbuxXUVu8tK1kLgvcm5OGlV34TVd3JwK7E4t5CaG+PtPWxoZokZFaa11JZrLHYEtXlksfObYqA4jgFK2VVWnRLKG8NWxZcDDHihyBRy+GK8upruPvAYsK8LFSdwUINYKoUNVxBS+XqxWseXvyM02kOPYNWpE7o8Yp6uOZYK2rOvDRcNSrgJUnL1mhtQZdCrS1yW3bXv1lVZX/k/rGQcAA78uL1V3y8fU9rbVVCyMawB9FtDfA1H2SZ73n79vcs80Pk3ojiEqT9p+yenoP7ZiX13D7PkbyfJJDhydbuoQYQf6YNfrmw8Vwb/8m5Kp8Bxtwz5p4x94y5Z2BgYGBgYGDgc8NYYBoYGBgYGBgYYLPV6eiE3LI0lnkJ8pYgElUKIiWqzlNFIGtwfJJpkuRUJ/LioCup5+bM8xzZGVMGuJuDZKi5REbHnpTdKwEgSL1OJD/OjXiyTxLC+9fCYkmzapu0XgpVAJIR9rVAE7pdEZIWValUEO/GQ48ghBIh7ZT22RtmhqdKASlp1WSIOFqU0goLC4s1VJTW75E4ZiBmUUHvTlOwvK5SCurCMjfQbumUBlwCrVSm64mb45H7uwfOtuDLeW1Xw3Ep6HTAdKIcrzl+8TOWd+/AZxxSATBRyjX1eM2hFo44bo0yVUotqAYR72aRtWJt+1nvR6gB1rybJGRFhDIB7QptjRtvzHNjWRamYP7X+7rPYekWYA/3H/j47jvE20qwB4f840jRC6XHM+RqJ3j3lf+P1Szrdrt7vntlPYfjuO2ULzsFjD9H/nL5Hujv2T+ufPjTxph7xtwz5p4x9wwMDAwMDAwMfK4YC0wDAwMDAwMDA4/QLZXMjNvbW5YlaUZhJeLWqmwteCRaAEE6tdbQRanHQi1pSUQQni4OFuqBUgpakvh0X7M0tEbOScl9L9rWrZo+0e4O3ZG6iq0V4Wa2I47T8ijVDSLOKhXICw6lgYBFO+xTJ193kVAd9Mp4TwusT9oXBbHdrYlUhFory7KwuGf+SWxnbmhujoBYwbUT8lA62djJ7xKh9IhCLbgWTCtC4aoeWE4nltMJXxriQrOGFaW0K7wUskalYgAAIABJREFUSp04vHhFe/GS88fvo5vWMVAQPSKHI4eq4A0VqFWpqhSUolvbJX/2ZOauB3b9pECh1CNNzxQtyCEOtLSGWHlK2LrTLcXevX3D6eEDktZVl7fmx1fer1k93Urq0S37T0Vc9g8rBJ604xFE5OLvPyVFwZh7OsbcM+aeMfcMDAwMDAwMDHwOGAtMAwMDAwMDAwPAas7kjpkjotQ64RakbRCiulV7E78n8wvoWjkv+V/NnI84roGHegANUk9VI0+j6FoVTRK9okIpCo8q8IHI3FjzJLaq7+cyL1QVJaydelN79boKYJ7X5rg9tiZ6Pu3COznsvvZbnDf3sWhfJ1y7euKSsHMQW/ffn7cUpZRCay1aILJVlft2XtWs0k8SXbRQakVVsbZgS9vaIQ5SaRrka6mVQxG0CA8fbjmdHmAJAtWPD0gN+7Hp+gX+6kvm8y0uLdqcnWgILpVSj6gYQqMWZaqFKnEPpRP8MQg2gtc9LqP/bkGwqypVBD0INp95ePgQKpUYCbmIYEleB+ssWrB55vbDe77//luszZS1r7eeXft/TzL7pkB4UpHvaSO120f6IZ8ZGD9I2HaiOCUdnmPl6bh4euwLQve5U3/2KoIx94y5Z8w9Y+4ZGBgYGBgYGPg8MRaYBgYGBgYGBgaI6u3I++i/O6VUDtMhLI4k7IA6mVlUcBEWiRSRKQlGV0eqUA+FUkDEgBbl564ZcJIV9gBklogKrlFFL0ARfVJxLSvZSRK2YZHVYbJV/UsJkjgL9DfStxO0GO6hCtB9tXiGoRQkcioA61ZPRE4Hvd1mCD2fYzuPxU5JCiruSxB1Ynk9oWoQ116WT6eqBY+8kxJqinmeoZS4DleaG0tb8GWhGqg5lEP2acWPV9jDPW0+U9qcBKFQmqGu2cgJoyKHA/Vww0EmTqdvWR5OoQeZClUF9BVWX8LLv6Dc3iH33zCZoxZ95KR1lypSauTZiCBTXftftd8jjcWDxfDihPeW4TjmDSkE0VuCRF9EKTdfUOYT9vDAVAzxE+JxrBBqFKQUrBltvuXj979j+fBtErypbOmsrGcuDQ6txQ2ybjHW7Z5274fUxcBG9Hb7tbjBj5QQz1T1r8oRNgJZsk3SOeZn341xzt4geXT8laReyfLPm+Qdc8+Ye8bcs3s/jLlnYGBgYGBgYOCzwlhgGhgYGBgYGBhgI0EfE0alk6h+SVb1PIjga6NivP9eSk27oVQX7Mr3gyjbZ5usDXjSpk+RaPvK8Iv8EySD2lNl8APcVxZxs9ZlZ5W+eBJ47JQL7kEcJ5nrHgTvVlLeu8gvCDh3R0W2fnt0ft1650njalGaFeZlwVuQ66qykcJmzMuCAs2g08dh7VWxziknacwyZ15K5KmIAOWAlANXX7xGtfLd73/Lw+mM390jOlH0ANM19fqa4xdf0do9zRpizmGn7GitrbZgMRaC8C9F0aLUUoLE97Dw8rTRklJS6RG2Z+Ch6iiKuuCiXF3f8PHhtCoMRCTI4iRLzRxrC+eHe96/fcOyzOijMfIYTqpPbEuw6SqFp7dC1gWF9S67/ejC/ceE775l/ik5wkVjn7H12r8HfwIk75h7xtwz5p4x9wwMDAwMDAwMfK4YC0wDAwMDAwMDA4nniF6zFoTcykxtZGUQupFVolleL9LzR/b0ZVBokZsiq4XVc8RuRydGt3bY2r5PEXhR5J1KgUdnB7IavFf/5zU4oZ5IxYJbWgeJJ1m8VZALUTkfOTAFs+VRoyOrRHpjSJKwX8tzze7XuBLKoBIqi1oqKmeW1kBLErmelfeW1k4GKFILZMbLdDgwTweW5QG3UElE/xUUoUkLrrgUKAfq4ZrDdORnVXnzzR843T/gJpgrhxcgWtDjS9rxJe18R1FQhap6QWL28RB2ZiXJfEW0okn4moUN2uPMmrA+k+iPXt3vjpbK1c0L5tMJaYbUsDcLVYDjNFo78/HjOz68f8Omx/gBZH9EFb5t91qEC/bW/ygFu91b+m18Suru//3PIWT7vj9FgnfMPWPuGXPPmHsGBgYGBgYGBj5HjAWmgYGBgYGBgYHEnjTqZO/S2vq7eFazpyKg7EjeriBQLWEflCSvSKHWUBW47rJJao3QejcK5YLAanlOktB9TGQ9buOe/F1D6GPD1ZaqE7ybemBTErhlDkdacUUGS1Tqi0dlvuyUASLgz9J/shLDkpX+nuS0quLsbcC2KnYpshHRSQaqKoep8HAqnM8LShDkns23TvK1htkDslRcBXPQOnE4XuPzPe2h0QNefDkhbqhMVG3UGm1uAFqYbl7y819WPr5/x93tHQ+3tzSH6XiDlgP1+EVYZPXKe1FqrUnsbuRmZJ+kRmIlekuQxUXXe1z25KhviopQX8T9MxQtB0QXzkuDslDLhNNAHLOZ+XTH+7ff4u3hiRKgj5XI9rlUCqy5Jv3ecsnxrtezI2z37xHVuJaexbNfIHm8336s/hA28vaSzN2PjU+9Hz5njLlnzD1j7nl0R8fcMzAwMDAwMDDwWWAsMA0MDAwMDAwM/Chslk0/RLoCLMuCiDBN01oh3smwWmvkYkiSqzty17IKHlgzSDontre16vt0e6StDWF5pBIZKxvhKyu5tx7Tu7YhrKS6TZJ3CydYCVszo2RwPC0sisTJ8zyuWr+sRL/sG7nYrhOBgqQ91qaEcABRjscD5/OCuWNdBSHgEn1kZjiGuYEWVIRSKvVwpE0H2vmMLUsQymnvtLSCNEMXQ7TholAUKOjxhpdfH5huHjjd3TOfF07LRw5FKVoptWK+ZDj9jrRPRcFKbga/G90h8buWyETRXBhYlgXVQvUJN8NTZaIIkkQnqlAKpU7MreW9S6socVqbeXi448P771GPfBNHn/R/akG2+7rej1QS7MbgeoekXJC1j0ncbbsfJm735/wxhOye4H18/E9bt/2UMeaeMfeMuWfMPQMDAwMDAwMDf5oYC0wDAwMDAwMDAz8Ay8yKsDlS1uQI76RZVI0XTbVAnUAKRSuqFVywFtZCpQbBJxIkZknCtxO1HaWUSzp0Vz3d80TcfG1fJ9BUSo8JebL/Wt3vu9dWEo3MKwmLKU95ge4rwd1xg6IFMu9EsKyWT8Itd/bdsX0lqy9JXnFZLbXUs2EQf8kLEIepxONqaw3ytW4H1avSey6LOVCS6K2V49U17XymtYXW5ugbg3k5IMXR0nDOiDjiBZGJJo5PSlXleLyinRZOp1uW0xlbGqQ6YmlttfTqJC8rGZrV+l0IQhDnPSOnE739PlozjCX6VAoiTimhUnEELQ5lYjGnmVFKWnW1xrLM3H58x3y+B28pF/GVZ8+7QApg+oBAVWkW9mSa46grO9Jn7HIQQbwOT0jd/fjc3+cfQed++pU9yfuJbeRyPeEnhzH3jLlnzD19CIy5Z2BgYGBgYGDgTxVjgWlgYGBgYGBgAHBvBBkXFdqqSmuNeWm4p42SC5BWVKUg9YDWK8p0jV5VrCq1RrW5KJETUhVRKFMBVSxpYsUjG6NuFlUdZoaohlXR05biCL7ywhIV/u6IBBHq3pJpDEstTdnAnmbtRPBate8GqQgoCIoml2t5KNltS2zbiTh3JDnO5J6jwp/MNFnJOulGWWE75Q7NLyruMcMzaETMKSocrgrn+xkRWe2puoKgqwvMG4hhNFDFqyDTgXq8xpvRGpid0VQTLOczIGhbmDhS2oRPBAmPIFojr6Yema6OtIcH7j58z3J7D77Qlntau2Np1xQOm2LADF8arppKDcUdDKV50NoqFZeCasFVmZtwLITlFo5PBfcggRUDFRYVpBTcYXHDTcGcdj5x9/E7bLlDxUnedl2MuLSLShKahlj8eFtwbL2P2xiX6NO+kPFINfCcpVtXHaAx9vqoVkmLtxzb8X7bFgEej3/BEd8szrggleM92onrfrWfM8bcM+aeMfeMuWdgYGBgYGBg4HPFWGAaGBgYGBgYGOBpZXT8TVeFALS1Gl5kyztRKZmFUqOaXHQlRUspa0bG3upHy2V+Sie+VAoXTOwOeyJMNM4RLkbKpAWxIL/CpqqTebtrQZ4eWnrxvq9/UAn7qWBrnVrqWuEPFtX/EnkrkdXeNoJwZ4PkIkk8b5Xel1yePGpfbpPkZOewVYSaffWEyuud4J6X4LRmG4FYC/XqKgjD1mCJqv02LyxLY54b9XjA3Sm1oQ51OlBKuWiUlkq5vqEWYT5UPnz/LR8fbtH6QDmcqdNELcFyG8LcHLVC8a4ySOI4f9eeiaI17LbMaUtjmipmRmt9224w5qtyoqsWzIXmxnw6cXf7EfOFIjE23Lf7f0Hybp2c98NoreE2x8JB13WUJF4/YQ/V//1HbaJWBcp20gurqh/LzXa1CP7ovDFGf4RL1p80xtwTfxhzz5h7xtwzMDAwMDAwMPD5YSwwDQwMDAwMDAzssM9rKEW5ub5G9TLQXiQqutN7KALghSDX5NJKqcPdEEpUpvfsEnqOR5C1Wi6JTBe6KRa96P4xAdxJZ1FH02bqknANjlbEL0i1yB6JVkhuKITdU3NfidWNR/X1eCoa9lIaFlzNI/C+k88QKgHbk76PSMGuSOi/OxtRvK9519UGSmi7yJXtXjxSRzgs87KS5Xo4oGaUZUHOhfl8pi0tMkeK0JZGqwuI0uYZ8lx7MtLiRqDTgetXX3I4HPj47ntOD2fuPn4MNQiOHI9oneLO9vD53ra00npKUMZCQnOH1qhVWcwzB0VQ7CKbxMxC6VAEmxfub99xf/se8bhvnUx+OkbkCanac0+sWag29vdBtjH0HJn7/3cGyaeyh/412vIvhTH3jLlnzD1j7hkYGBgYGBgY+NwwFpgGBgYGBgYGBoBlWS4qrjupG2qBIP462ahFd9XgFZECEpXhXUGwErm+VT6rZFW4BanmZmjNx7EkFft+5rZWT68INjZtlDL4Ps6yVYz3au0kcKPA3tIyKbZXkmQVcNvaa0vkYOyvNayh2nrsnlMiZNtccXXcdSURo83OJdUYRPYlIRdEp1mQiqpJiZrj4hRRzI26q8IXkSdWRyq6Wi0FuZz9LmAq+DShVzcYJ8QF/IR7kNPixrwsOEqtNWybVINIzSr+8KByFEWp1JcHpuuX2P098+0td7d3cU8dyo1SS8WWhpdG0xxXXkKd0cdW76dVlRL3M7uClr+4W17L7rrccV+w5czHD99DOyPP9Pd2L7be3o+V/fjcSzwkR9me3F+PcUHUy6Pf+/V09YBvx3hEykaej1+8P/bH3y+29OOZ2+UiyKN9P1eMuWfMPWPu2YbZmHsGBgYGBgYGBj4vjAWmgYGBgYGBgQGC5I2q+csq7FILpUTIRSfjVDoJ2HMfeoB6Xam2/TGCMN0pCmAlwICoaCdSSNbsh8c2TntCjbCikp610SvqbYE0G+pHyJZvJPCeEPOo0nd3lnlBMv+llLqS1V01AH5BFO8FDStp6H2bbIUoLlsexqdUBBcknXsqGuJ3cShdRdC2a+3h9m1pcTy/JCzjmI4JmAitVjgEqU2b8dZwnMUMaw3TBssMeMZ4TFStcaXmcc87yS+C1gM6Hbm+vuZ094DNC/PDQpEZuYqK/KUslFrW+yfIBTG5kb2spL2bYUujFMUsLZi6kkOgERk67sbD6Y6PH96itNBsiITigWeUG+L0qBkINYL7bkFCNgXMZgnFBT5Fpl6OzYvhlfvZqqC4+OF5gvcx1tctiPufGsbcM+aeMfeMuWdgYGBgYGBg4HPFWGAaGBgYGBgYGGAjCB9b/Ey1Jukpu+r6LcdENIPnk43bk1aPM1D+eBviMKEkuCRTH5O8a7V2krDquZ8HIdn30bX6f8sWgVQZeCf7LInNvv0esrWi//oY0gUOl1XlQToqQV8/IvEuziNZMZ8EdXdJSsukIN8VTzVDV1q01mi0XQdu12Pu0BqmsFh27FShNWQJEtuRCLZnRwznf601Tq2hIhStiCR7TUk7LgEVtBZeTtfIecHmhWU2VBbKoWbGiOPma7vYkZxmtt5rSTLcAMeZl8bxOK1kbe9Ts7Ctcmt8/Pie+fwQBC8OvqkUtjGVv5tjYrGtd+sr35QMqknyFtauf/Zmf1pJwDZSksTdbb+75o3kZWWFL9r8iXPtj/lTwph7xtwz5p4x9wwMDAwMDAwMfK4YC0wDAwMDAwMDA0RuhzhgHvZE3jMnoJQkcFG8TLQ60XRiqhVVQMFwVIyilVIrsg9GZ1dhLxJV+SXIteaOSKVbYQVplpkU0nlTuSDETIyiAli224AezB7oLW40qmVF/U5VYO4r4SfboVfisxO2KqBSNhJUDBWJfvKw3iIr9SUrw3U9EknOOoZnlXxUwIuEbdOa8WG5vQbD61jkwAiIGweFsxgUDSJUlWKVNhvNWgTUuyUpShKKcT68E+JOORwxAZ83JUHRvAZrtCbU88LMEucuylTBtWIECdvVI6UcghQvUA5OWRasLdAa83nGWqNmvo3UihgcPI4iXrLXNQl7zesNy6+2NJooegwbNPMFw0CEeZ6x5YHbd9/CfId6w1xx6TZgSQp70sbN+0pB9EuSvJEFU5EysWPq17HwOIMlbquviwXeCfJcRugEvbcYP9qVAq3RvO0UBKxqgD3VvxK6u4WSPcn9aPXhJ4Mx9wTG3DPmnjH3DAwMDAwMDAx8fhgLTAMDAwMDAwMDsBKdAnR/HmtBTG2KgahmF1V8pxjo6oKiSqmVaZrWSvfI78iTPKqUXrMj1r8FQRkZIxoE4jMqBBFBNMjjPan7mKRbT3R51rWqO6rIe9MuFRRb04TOMG8v+2Zf5YArniQtKznXlQCpYfDtmBdE5Kq+2HdP2FP52pCw0yoSBG+vuNckUFvep9Za7t0D7FOF8MgOqU5HXJR5PgfpnaRnQxBvzEaSt4qUfs6tn7tVlAq4aDDhgJZCsYpYQ+czbZm5u7tFilBKxUTxquCVfqeCGA2CNYh+x9xxM04PJ7QKpdb1NorAPC/M97fcfnxHtm6n4JA88nY/ukqi3/tejS+iSAGRnYXaXunhF4NnO3z+58mr+yr/3HezDrs8RledPCZ5P6UUeGxh9VPKPhlzz5h7xtwz5p6BgYGBgYGBgc8VY4FpYGBgYGBgYGCHPXm0LAsPDw+rtc5GuApaCqwB6d1WSoOg0m77E2yWdyugR+eJwu4MNGdXyX/JeD6xBVptfyCIZzpZFkdy30i4x4XX7kGgiuz3YbV/Ug3Scr1WIQjctLAyi2NokooCqIPloaJ/tjb8UD93lYQgNCRsnMyiop6kKpMsLqJUVeZobPRdiTwamOnWUpb94iFJ2FWu7+yhCOLereLW9j2PudFa3LOiT6/g4jjuNI12lJUtL4gbZVKqHTjf33J/ewcGNy+cpSqiFZFQqKxnEEGKoMQfmy2c5hPcOdc31xcE/LIsfHz/jvnhDjFPSjfaL8mgrvfWn297v+ePFxr25+mk+WUH9P/0GyzrONvI5Mvzyb4R/X2wLkjIuu2Pgud5foIYc8+Ye8bcExhzz8DAwMDAwMDA54OxwDQwMDAwMDAwwEZu9f9aBt5r0ZUA7f/uuRxFK6VMmZOxpYy4hyWTqoZF1UpsRTV9EF8a4eMrGRyEJu5bzgaX5NfaJo1o9Y3g3c77uPLb+35k1T88y77ug9mDBM7Q9d2xW9pdiXueJn4PpURU7TuW12hYZoC4G/3yYetLIZQAZj2DZtd/2XZvQbzWUpgMWlvC2guBR/0kouBtvb49ofnc9dZamWfL9gtFNdQL5muOCk1BbVUkAPFatlfDxwvXslKP3SKrinNTK+184v7unlomZJoQragUvLSwiaJX9W85NF4KpRbO84yclOlQ1wp7M+PD+zf4cgbbkdrkQgSaKgLF1MEs7Lq4JHj7YHgup2e/sLGOpbUvV6Y3FBvZJ+KX2+5JXt8GUrwf+lj0p++9bNYTUto/QfD+2JyhP1WMuWfMPWPu2TDmnoGBgYGBgYGBzwtjgWlgYGBgYGBggOeJIhGhlprV1lulfSklLKlKpWhJQrSgWql1QqdKqSXp152VlAjmhjpBwCWhqkU2YpK1wPpZgnIjvgzzoAfDBqprEcg8kst9ViJt9/+Pr3slTOkZMCUJua0tawZGhsabBYlXiibhKJkvEkdar+EZ0s6I69+3HXfcwINpzl2dKsqksLhFjsl22LXtWhRzW8/dSc/H/aiiUWlflIMcmE8P6zFSfBDX0ttrlrkx7I7cz5/tTPsyFY1j2AS+oGocpyPn6cT9fMbuY9y0MlFCktF7ql8IaFxLyewUaw2zy0UEm0/4MoNnnokLkdIS1f19HG0qhUv+f7vvG+m776fHZPDFa2wqlf7a1uc7SPaU73bamoN3QvsRmdy37SqHbcz8NAneMfeMuWfMPWPuGRgYGBgYGBj4XDEWmAYGBgYGBgYGuCSL3MPGyCzyMUop6zYqmrkoNf5bKqVUaq0cDgfqVIOcKwXdFV3vq/HNLEPIe3W+RWU9BBmXJN0TRUC2q5SyEpK+VvRzQUJyQdiRZLCvxNqn0G23fC3pf0QEsykhvAWpGJycJif7CRMhj0pzd0tVgXSmjyfkXZLHwVKmZRbCVAozzmKNPZXbw+A7CR/nuDzkxTWoZmc5WgreFpZlWZUIiiA1smYubMQ01R77zr7oTE2FQCgqhArWQJyrw4Flafhy5nw6gxSkTJQyxVjZt1UFKYU6ObY45/M5Sd8d0dsW3Bb27GmQuo670On/f1lsY+8/5Uxxe+UpES8b8fvnQOKOuScw5p7/r71zbXLcuKHoBbpJaVzO//+VqWw23szOiADyAegmqdFMPE5V4t3c41KtvOKz2e5yHeLBtef3w7WHEEIIIeTPAl8wEUIIIYQAENmloSBLIwFZqke1sghU4CIIaUBvQF+gywVtWaFrgy4LpC+wNJqAKBRxUHCJR5lc0RJyktH4mt8tZmw3zDaoCLIaUh6jiZRADojvjdbPUeMyI/RDYiq/GFtlagAcyAyA2jNUDiW2xoiMaPkqBYWAIMsyhRtUBKkph6hzAIoIoItXxoMDbrvkDdQ1VET/zCao+4r86VzCS9BD0SuDwZD3puJwZCmuzGaQjK4fp2kpfmF1OPgUiKqK9vSEl5cXxGYlWHX2hBFVQHN+eIwMBAGg0FCIlzCWPbsDdYwsm7XApEZkAZrdAHfY6w3WnnHrAVkdagvQcqRFFKoCz5kIDYHfDNAGl8pqsW3OqywF5Xt2g5R4r3JaMR/jaYaMkT6mYlQWh88sijdZJiIprlHPrA5777yHuPXjc43ztvUkKktD5kyDVm8Xd4QERFt+d4cfTvLx64ofB649XHu49nDtIYQQQgj5UeELJkIIIYQQ4BjmD4/MHsj+G4p1WUoKKrR1SF+h6wX9+oR2fYJeVrR1QVtXtGVB9gJxRMh+7FGtJ1L4oRqkuwCtHJh7wMNm5HwWhfKUXDoirpF9LSq6f0Riawk6HMTcUbsOhX2qFjSc3ygHNc8ru5ArwTzKII0eLwKFNs0+IcOmAoCnfFMIQhQqgfAcAHevxvZ1jRFw8/kITpHjsp8fkgozyjE2yXHzEIgCreQ7gMp+qLFFwGIcP02yxPgdmS0QmUlwvVywyS2zCQAsqnOsRm+Smh4p5qOepXk9R4VIPvN87gJIyx4pMuL7kaWszIBwbLdX4CUgi0B0zfJU6NDQeR6MlwCWvUyk5VN12/b7ikOayoE9m6TGLgRyt52MRy1j2z3b47ydzAGIMdfmFHrn5AfBK9inyJTJ9XdeGSbHfbPsWL5IcPjdeWWe4qfIMuDaw7WHa08+Qq49hBBCCCE/HHzBRAghhBByxxRHItheb9jMsjxUX9H7Bct6Rb88QdYntPWKfrlC14bQltHiqikTzTOZYOitSL04SlWJOMQBjL4ho1xPlUcSAVRSzYYDoVGR2Q4pr+eQzBIQgSIq46COM7/v/TbubrR82y5Xp0gemxzGQ0QrYr3uKVIeumXZrRTbJZohUAXCYjZtH70sjr1Qjue9P99R8iICUufOXiOe44PKeNBd5mprAAKmgJghSjA7UlhHAJrDXMcS9L6gSWYOmFlKx/ro4ToBzOt3s4xufzN+ghilsFSnhM/nVaLXDZtt2J5f8tnJBW3sI0tqTE1p7UDK/+0VXRrCN9h2+3wpJ/3325161fyH/vT+OT/Yoob40C8nd5z7nD4YEv/nhWvPYRNw7eHa88fg2kMIIYQQ8t+DL5gIIYQQQu44iiVVRYySU61D+4rWL5DlWhkEF8i6QHtGjIs2iESJUkFsW0rFPHJFa6fYggccDt9Kao3G9vuVDL+JgMM9faeLoqGi66sHiAPokiWm9h4mUccborT+ulIa3pQgwi58ASA84LWJViS8jCwGIKUkgBCDbdsuRaUyDnAWvNmjJFKijt4vDyTvkZiyFVMEqgh6a/DNUN1jsjeM7yWZPIAmCukCq74oKimKhzy+/2hvWFSgZrAtxXvIVPQQ2cfJvCRz3dM9UdceOdD1ASykym819KbYbq/4x99/Q4RAJUV59mHp0CbQaLCbwG+ZdaDaEXaD2XY67/HFRA5J7OkBdQlvUgjmLNvHeo73e0hliBz2GXPwzRg8OM6Qtfn7nVQ+7CM1D0/3qJrP7yeGaw/XHq4978C1hxBCCCHkTwlfMBFCCCGEHDiKpQwCb/VDNlGXdoG0C6L1zBrQUX4oP9pGkaaMUA8R2K0ivitqGpJt0AVDXuYpNC8As1RUbaV1HelXs8/Gcbux9bBnI9I/RgmjGb0/JNs58ry1NvfLP0smR6CrZl8UUYhE9WtRaAWZm6fgDbPZrwWz14nnvlUwy72awJc8fyN47yVkoPqfpPBro9iRAOkVDaOckSgg5ilnAwhzuFRGRgBds39JlCnXB5IXInlvrUGbwaz6okzROzIWpO4/r3f2TBn3pYoopz4/klkYgCIkM0EsHH25wNzx9ctfoXD88utfIBA0ecpMhOpL4xHwzbC1wOvrd7jl7R1dAAAEoUlEQVTZm/GaGRd7jbHpej9So8cMhxTTwH53d8ePmHPz+N/KI6H7ESnj9yyC84/x8N7mPP9J4drDtYdrDwCuPYQQQgghPxR8wUQIIYQQ8gFDpF7WK5b1gvVyxXK5QtYVopLlq9qQfBWdr4pRwil7p2TEu7ulgG3v/y/YLjzvf3ik3XI7FUUrwTqirIeKAzAFs4ieJO9wgu5e99Gm8IwAWu8lADPyPyLLdaGivrdtg5ul5Ozj6rJfR4q6vPDQIXntFHn/KHPh3XE5jM8o0TXFtgrUK3peAbcUyg5HuEB6y/uIHIMQO433zCJou3g2d5iVwC5pPlDVLGkV+7Xfl/k6Cl6c9m0zBj88e7Us1yuWtuHrl79lrxN0XHqHrBeM3jvaBDDAfcPry/ccyw9H7G78PsoiGAL1kDHxR3iYTXH3bOMwP/dXKR8zx/X/LIOAaw/XHq49vw+uPYQQQggh/zv4gokQQgghBKhw9fE9/z0c+P7PZ2y3DdpX6PUX4HqFrit671h6R1NF6wv6umbfD5eKwq/yPdWwPJBR2iMCGw5ssVXZnw5p2dg93Csa/C7iv6L3RVNvRjbxyOwGUcwGH9jFoocDMZIOFKoNrSLeZ8Q/MMWklwzuumBZsuxTyl1Pkdz6zGQwd7SegruLwG9bRuibZWmrVtkLbgAiI+9VYRYQiezdMsYCVc4JQ/nJLgFPUlD2uxtZCmnVsxl7jZciS1R5ePYdyZucklMciHDI8R9RqPYU9JpCsa+AmcNu24yuH9kBI5NDK0rfquxWXn2VBhspIhVt73As2iszpaF1VJf5DlVgiWf89vVLCtcmWEWhSwd6y8yVm0E2hz1/y3lynL4j80XuRKgcikqJPp76yPHITXIexZytjyTsx5kDjzILYuTNVIbKsZ/JIwnsd8e+F+afzVr4U8O1h2sP1x6uPYQQQgghPyh8wUQIIYQQAmDoxajSOSgh9e3bN2y2oV1+haxPwHKBLB1LX7AsPcswaYe0/B5whNnuIhEI95KQujted2xIcQvJ0kdeUlAz/SClLrJ8VYrI2r0i53Ob/HNIsKnLSkoOwakqkKaHLUp4Kg5yMktWNW0pcm83NG3ofZkZAnBH7x3QDliK1lH6CTJkKaoIV2UShM++J6deGyd/OAcMMS8vDpvJ8eYySyEMgoCKwjXv2QOVxTDuJbMYQuXQb0OAyGJiTbN/DTQlL7TVc0wb2bvAuuF2u9WwOgI6n4HEGP9dbMp++eeo+YhZBuucBdGBUFzbCmuC5+dvaOuC5XJFWxukL+hLQF5ugN1gLy9VDuzRPB4WFWPWnLIa5mw/ZHCMOT+uJyXsgyN/QqyeBG8MZZxjn+XTUFk2e5bAyDgYY3U8hs/yWT8jXHu49nDt4dpDCCGEEPJjIozAIYQQQgghhBBCCCGEEEIIIZ/hca46IYQQQgghhBBCCCGEEEIIIe/AF0yEEEIIIYQQQgghhBBCCCHkU/AFEyGEEEIIIYQQQgghhBBCCPkUfMFECCGEEEIIIYQQQgghhBBCPgVfMBFCCCGEEEIIIYQQQgghhJBPwRdMhBBCCCGEEEIIIYQQQggh5FP8CwIIhEW5qTTbAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3xeGiNoVAq7t"
+ },
+ "source": [
+ "### Create Captions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "ergScfHaAwbw"
+ },
+ "source": [
+ "russan_captions = [\n",
+ " 'Зеленое яблоко', 'Красное яблоко', 'Фиолетовое яблоко', 'Апельсиновое яблоко', 'Миска с фруктами', 'Гроздь бананов свисает с дерева' \n",
+ "]\n",
+ "\n",
+ "french_captions = [\n",
+ " 'Une pomme verte', 'Une pomme rouge', 'Une pomme violette', 'Une pomme orange', 'Un bol rempli de fruits', 'Un tas de bananes pendu à un arbre' \n",
+ "]\n",
+ "\n",
+ "german_captions = [\n",
+ " 'Ein grüner Apfel', 'Ein roter Apfel', 'Ein lila Apfel', 'Ein orangefarbener Apfel', 'Eine Schüssel voller Früchte', 'Ein Bündel Bananen hängt an einem Baum' \n",
+ "]\n",
+ "\n",
+ "spanish_captions = [\n",
+ " 'Una manzana verde', 'Una manzana roja', 'Una manzana de color lila', 'Una manzana de color naranja', 'Un frutero lleno de fruta', 'Un racimo de bananas colgados de un banano',\n",
+ "]\n",
+ "\n",
+ "greek_captions = [\n",
+ " 'Ένα πράσινο μήλο', 'Ένα κόκκινο μήλο', 'Ένα μοβ μήλο', 'Ένα πορτοκαλί μήλο', 'Ένα μπολ γεμάτο με φρούτα', 'Ένα τσαμπί μπανάνες κρεμάμενες από ένα δέντρο',\n",
+ "]\n",
+ "\n",
+ "swedish_captions = [\n",
+ " 'Ett grönt äpple', 'Ett rött äpple', 'Ett lila äpple', 'Ett oranget äpple', 'En skål fylld med frukt', 'En klase bananer som hänger från ett träd' \n",
+ "]\n",
+ "\n",
+ "all_captions = {'Russian': russan_captions, 'French': french_captions, 'German': german_captions,\n",
+ " 'Spanish': spanish_captions, 'Greek': greek_captions, 'Swedish': swedish_captions\n",
+ " }"
+ ],
+ "execution_count": 16,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AleQ_9u5r_FN"
+ },
+ "source": [
+ "### Prepare Images for CLIP"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "PDvfAOlOruTq"
+ },
+ "source": [
+ "img_input = torch.stack([compose(img).to('cpu') for img in images.values()])"
+ ],
+ "execution_count": 17,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kAHNhOG5DJNc"
+ },
+ "source": [
+ "### Generate Text & Vision Embeddings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "jh4CEXWKGRJD"
+ },
+ "source": [
+ "with torch.no_grad():\n",
+ " image_embs = clip_model.encode_image(img_input).float().to('cpu')\n",
+ "\n",
+ " language_embs = {}\n",
+ " for lang, captions in all_captions.items():\n",
+ " language_embs[lang] = text_model(captions)\n",
+ "\n",
+ "print(\"CLIP-Vision: {}\".format(image_embs.shape))\n",
+ "for lang, embs in language_embs.items():\n",
+ " print(\"{}: {}\".format(lang, embs.shape))"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nN2d9mJoFoso"
+ },
+ "source": [
+ "### Compare Predictions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pvcy1M27G4td"
+ },
+ "source": [
+ "Compare the Cosine-Similarities between the image embeddings and the different language embeddings."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "QjF_zccgGcTF"
+ },
+ "source": [
+ "def compare_embeddings(logit_scale, img_embs, txt_embs):\n",
+ " # normalized features\n",
+ " image_features = img_embs / img_embs.norm(dim=-1, keepdim=True)\n",
+ " text_features = txt_embs / txt_embs.norm(dim=-1, keepdim=True)\n",
+ "\n",
+ " # cosine similarity as logits\n",
+ " logits_per_image = logit_scale * image_features @ text_features.t()\n",
+ " logits_per_text = logit_scale * text_features @ image_features.t()\n",
+ "\n",
+ " # shape = [global_batch_size, global_batch_size]\n",
+ " return logits_per_image, logits_per_text\n",
+ "\n",
+ "# CLIP Temperature scaler\n",
+ "logit_scale = clip_model.logit_scale.exp().float().to('cpu')\n",
+ "\n",
+ "language_logits = {}\n",
+ "for lang, embs in language_embs.items():\n",
+ " language_logits[lang] = compare_embeddings(logit_scale, image_embs, embs)"
+ ],
+ "execution_count": 22,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fXQ49XtJL1V1"
+ },
+ "source": [
+ "### Visualize Results"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uNU1R2rkGrMD"
+ },
+ "source": [
+ "Here we will not visualize the results, so that every column is the Softmax distribution over all the texts for the respective image."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "CRap5vgT57nt",
+ "outputId": "d4526146-17e8-4a58-c7eb-586e8cde8b2d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ }
+ },
+ "source": [
+ "def plot_heatmap(result_matrix):\n",
+ " height, width = result_matrix.shape\n",
+ " fig, ax = plt.subplots()\n",
+ " fig.set_size_inches(8,8)\n",
+ " im = ax.imshow(result_matrix)\n",
+ "\n",
+ "\n",
+ "\n",
+ " # Create X & Y Labels\n",
+ " ax.set_xticks(np.arange(width))\n",
+ " ax.set_yticks(np.arange(height))\n",
+ " ax.set_xticklabels([\"Image {}\".format(i) for i in range(width)])\n",
+ " ax.set_yticklabels([\"Text {}\".format(i) for i in range(height)])\n",
+ "\n",
+ " for i in range(height):\n",
+ " for j in range(width):\n",
+ " text = ax.text(j, i, result_matrix[i, j],\n",
+ " ha=\"center\", va=\"center\", color='grey', size=20)\n",
+ "\n",
+ " fig.tight_layout()\n",
+ " plt.show()\n",
+ "\n",
+ "for lang, (img_logits, txt_logits) in language_logits.items():\n",
+ " # Convert Logits into Softmax predictions\n",
+ " probs = img_logits.softmax(dim=-1).cpu().detach().numpy()\n",
+ "\n",
+ " # Transpose so that each column is the softmax for each picture over the texts\n",
+ " probs = np.around(probs, decimals=2).T * 100\n",
+ "\n",
+ " print(\"Language: {}\".format(lang))\n",
+ " plot_heatmap(probs)"
+ ],
+ "execution_count": 54,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: Russian\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeWwc6WHn/e/T1fdBsnnfFEmdI43mkOdyxvGMHTu+ci2cbJAggdfIBngD48VmgxcJ8gbYBHizePd9g+xu8gYJYtgx3kXWxuay3/iIz5lxJuu5pdExo4uSSPGQKJ7dZN/V9f5R3ZRabIqkRhKP+n0AQWRV9VNVD6urfvXUU1XGcRxEREREvMC31QsgIiIi8qAo+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZ/i3egE2K9nsc7p7d9xi7whXTye2ehF2Nz064r4xls7h7hfHLm/1IohsWo5lCk7e1Bu34xJEd6+fr3y9fasXY1f6rQPPbfUi7GpOsbTVi7BrWfHYVi/CrmWnUlu9CCKb9qrz/TXH6TRJREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8w7/VC7CdOA5cOX+AK+cPklpIApBoXGDP/nMMHngXY25OuziX5OI7R1iYbSW7HKNUDBIKZ4k3LjJ08B26B67UTL8RU1f7uXD6YRZmW3EcQ0PTPEMH32Fg34V7uJbbiz/so2V/nOTeGNG2IMG4H8d2yNwocP1UiumTqU2VF0z46f9AM8nBGP6Ij8Kyzdz5JcZensPOl+/TWmxfLYcSNPZHiXWGiXWE8Icspk8tcv6rk5suK5jwM/BcG03DMQIRi8JSidlzS4z98AZ2znt1W0/rwSj7Pt4KwMh3Z5k+vbzhz0aa/fQ+00hjbxgr6COfKjFzPsPkaynKtnO/FnlbCyb8DDzfQdPe+M1t7myKsZemN7XN+cMWfR9so+VgA8G4n2LWZuHiEqMvXKeQLt3HNdi+vFy3Cj63eOOHz3P10l5C4Qx9QyNYVonpyR5O/OhZ5qY7eN+Pv7gy7cJsK1Nje2hum6al/Tr+YIF8NsrUWD+vvvAR+ocv1Ey/npF3HuLtV3+MYChH//AFfL4yE1cGefPl50jNN/Pwk6/e+xXeBloPJhj+WDuFdInFsQz5VIlAzKJlf5x9n+ggORTl3FevbaiscFOAh3+ll2DMz+z5JbKzBeLdYbqfSNI0FOPUf7tKyWMH6L5nW4l3hinlbQrpEv6QdVflhJMBjn5mD8G4n9lzaTIzeRLdEXqeaiY5HOPkl0YpZe17vPQ7SzBuMfh8M3ahjBXcXGN6vDPIQ59ux/gMcxcy5NM2jX0h+p5upLEvxDt/N43jseoNJ4Mc/eyQu82dTbnbXE+EnqdbSe5NcPKLlza0zfkjFkc/O0S0NcTCpSVunF4k2hqi47EkyX0J3v7CCPmF4gNYo+3D63Wr4FMxMbqHq5f2Eo2neP6nvkoonAegbPt45YWfYGxkH139V+jZcwWA3qGRui0xxUKAF7/+M4yN7GPo0Bma226sO+/ldJxTbzxFMJTj+Z/6B2KJJQAOPvoWL/zjz3LhzFG691ympX36nq3vdpGdL/DO304yf7H2zHj0pVke+dU+Wg8mmDmwxOy5pXXLGvpoG8GYn0vfnWbqzcWV4Xs+1ErPk0kGPtjKyLd3Xx3eyeXvXCefLpKbK9I4EOXhXx24q3KGP95JMO5n5J+uMfX6/MrwwY+00/N0CwPPtzHyzY0F1N1q+CdbKOVs5i5m6X5fw8Y/aGD4oy1YAR9nv3aD+UvZlVH7P9VKy74oXY83MPn65lo/d7rhT3S529y3Jpl6bW5l+OBHO+l5ppWBD3Uw8o31Wy4HPtxBtDXExI9muPydm9to15PNDH+8m72f7ObMX4/el3XYrrxet+rjUzE1ugeAfUdOrYQeAJ9V5qHH3gDg0ruHV4ZbVv2Wg0CwSEfPOABLqY3t/EYvHKBs+xk6dGYl9AAEQwUOHD0BwOWzhza6KjvK4mh2VegBKC7bXDvhhpeG/si65YSbAiSHYuQWijWhB+Dqy7PYhTJthxP4Apu8/rjDLY5myM29tzOucDJAcjhObr5QE3oAxl6awS6UaX+40XN1e6vOxxI09oW4+J057OLmLks19IaItgRIjedqQg/A6D+79d3xcPyeLetOEE4GSe5NuNvcLQdmgLEXp7ELNu1Hm9bd5nwBH+1Hm7ALNmMv1p70TL02R26hQHJvglBT4J6vw3alulXwWZHLugfXWGL1WVUskQZg5nonZfvOVVYqWdyY6gagMTl/x2mrqtNXA9OtOnqv1kzjJU61X0N5/QNJYyUcLVzOrBpnFxxS41msoI9Ed/ieLqMXNA7EAJi/tDqg2oUyqasZt2571g+ou1Gk2c/As41MHU+Tnsiv/4HbNPa52+T8ldyqcflFm+xckXCjn1CjdxroG/dUt7nVLb12oUxqrLLN9UbvWE6iN4IV8JEay2AXVp+szo+45TcNeidYqm7XCT7GmBZjzInKv2vGmIlbfg9uZAbGmN+9w7hjxphTxpiLxpg/MWaz3YHvnWDY3ekspxOrxlWHOY5v1filVAPvHH+cM28d461/eZbv/N2/ZnG+hf1Hj9PYPLeqrHrSi40AxBsWV42LRLNY/iLZTJxS6e76Z+xIBtqOuC1m85dWh5nbRVrczTE7X6g7PjfvtnpEmje02cotqnWbm6tft9nK8Op0nmJg78dayKdsrr68+vu7EZGke0Zc3UZvl1soVabzTvCJtFa2udn6QfLmNhe6YznR1lDN9Lerlu+lbVd1u07wcRxn1nGcRx3HeRT4C+A/V393HKf+2q62ZvAB/hz4t8C+yr+PbbDMe66zdwyAi2ceppC/+Qcvlw3vHj+28nuhULsxLKUaOHviGOfefpwr5w9RyIU58r5XOPz4Gxued7HobhiBYP0qrQ4vFrbfBnS/7HmulVh7iLmLy3VbcW5nhdxNea27EUqVO7qq08nG+cNuna3VMbx6t5w/7KFgXtH3dCOxtiAXvzN713deWSH3fK/eWTN4c9utdsJfe5tzO95Wt821WCvl1O+ou1K3Htp2Vbd30bnZGHMM+GMgDswAnwEywGvATzuOc84Y82XgB8AwEDHGnADOOI7zy7eU0wU0OI7zSuX3/xf4WeBb72mN7lLf4CXGRvYxPdHHd//h03T1jWJZNtNTPeQyESKxNNnlBMbU7tw6e8f5V//m85TLhsxSnKuX9nLmrSeYud7F089/D98afYFkbV3HGul5KklmpsCFr3u7w6xsX/HOID1PNjD5VpqlqY2eB4rIVtvsKYQB/hT4tOM4x4AvAn/oOM4i8DngS8aYXwSSjuN83nGc3wGylRaiX76trB7g1k4t45VhW8L4HN7/E9/m8LHXCIVyjI3sY2xkH/GGRZ775P9HIOA2Q4fCq6/DA/h8DvGGNIcePc5Dj73JtasDXHzncN1pbxcI3LlFpzp8rRah3aTz8UaGPtJO5kae018e3/Dt5/bK2UX9TdpfbRHy4LN83qvq32CtM8BqS8RaZ367koG9P9lCdr7E1f+58J6KsvPuydRat8B7cdstrdPqYK3TalF1s/WifqvDSt16aNtV3W6+xScEHAG+W+mOYwFTAI7jfNcY8/PAnwGP3MuFNMb8OvDrAF0996/ZzOdzOHD0bQ4cfbtmuF2yWEo1EgxlVzo630lH71XOvPkkM9e62f/wqXWnTzQuMjsdYSnVSChc2zs+m4lglwJEokv4/dtvA7qXut7XxNBPtLE8nefMVyYoZja+vtnZynXpZP3wGK70o1jrerSsrVq34TX6R1X7TVWn8wIraIg0u9vU0/9rf91phj/SwvBHWph6K8WVl9YOR9lK3x53G82uGh9u8lem254Pg7sfsjOVbW6NfiY3t7k7dybPzORrpr9dtXwvbbuq280HH4N7yeqZVSOM8QGHcC97JaltzalnAui95ffeyrBVHMf5S+AvAQ4fDT7wR5iOXx6iXLboGxrZ0PS5ZbfXvPFt7AytrWuS2elOrk/0rnpWz/XxvpVpdrOep5Lseb6Vpes5znxlglJ2c2e3i2PuAaNpcPWdCFbQ0NAbwS6USU/Wb7GTtS2OundzJYdiq8ZZQR8NfVG3bidWH7R3K6cE10/Vf7ZUrD1IvCNIaiJHdq5Eep3LYItXc/Q+1UhyT3jVs3pCjRaR5gC5xRL5Re8En8Ur1W1u9R1BVtBHQ39lmxu/c/+/9HgWu1imoT+KFfSt6kdVLX/h8vrPCdstVLebv9SVB9qMMc8AGGMCxpjq9ZzfBN4Ffgn4K2NM9eb94i0/r3AcZwpIGWOertzN9avA1+5mJe6VYmH18wYWZps59fpTBII59t/SEjQ/01q3jHwuzOk3nwBudpi+OS5EeqGRfK42aQ/sO4/PKnHp3cMsp29ujIV8kHMnHwVg8OC7d7dSO0Dv+5vd0DOV48yX7xx6jA8izQHCtz0bIrdQZP7SMuGmAF3HGmvG9T3bghX0ceNMmvImn7HiJcbn3oFRbR2rys0XmR9ZIpwM0vVEsmZc/wdbsYI+pk8teqpuy7bDpe/N1f1XfRbPjXeWufS9OWbPuwcQn98QTvoJJmpbrVPjeTKzRRp6wySHah8JMPCsW99rhazdKjdfYP5i2t3mnmyuGdf/XDtW0GL65ELNNhdpCa66g6hcLDN9cgEraNH/XHvNuK4nmwkng8xfTG/LpwvfL6rbzbf4lIFPA39ijGmsfP6/GGNKwK8BTzqOkzbG/BD4PeA/4LbUnDTGvFWnn89vAF8CIridmrekY3PVy9/+BJa/REPTPP5AkfRiE9eu9mP5SzzzE98mEr2ZgN/6lx+nkAuRbLtBNLaEMQ7LS3Guj/dj2366+q+wZ9/5mvJH3j3M2RPHOPjomzz02Fsrw2OJNA+/7zXefvX9vPCPP0fv4MjKKyuymTj7Dp/clU9tBmg7kmDgx1twyu6zdrre17RqmvxikelT7iXGYMLP47++h9xikTf//ErNdJe+c4OHfyXE0EfaaRyIrryyoqny8+hLMw9ilbaV5gNxWg64j2AIxtyve6Inwr6f7gKgmLG58j132womAhz7jWFyCwXe+NPa1s2Rb13j6Gf2MPyxTpoGYyuvrGgajJGZzTP6wvpPKPe6eGeQwz/fweLVHO/87S3fZwdGvjPLQ59uZ/+nWiuvrCjR2Bcm3hkiNZFj6i1vPbUZYOSbUxz9bIThj3fTNBhfea1C9efRH1yvmf7Y5/YD8PIfnK4ZPvr96zQOxOh5ppVYR5j0ZJZoa4iWgw0UlkqMfHPqga3TduH1ut1w8HEc5/dv+fXH60yy8mhhx3H+/S0//zbw22uU+QZun6FtoWfPZcYvD3H10l7skp9wdJnBA++y/+jbRGO1D2/bd+Qkk6MDLMy2cn2il3LZRyiUo61rkv7hC/QMXtrUS0qHHzpDNJ7mwumjjF3ch4Mh0bTAQ4+/satfUlptuTE+Q/dtrQlVi2OZleBzJ7mFIm9/6Sr9H2ghORQlORyjsFRi8vV5z76kNN4RpuOR2jAZaQ6uXJfPLRRWgs+d5OaLnPjCZQY+2EZyOE5yb5xCusTEq3N6Sek9sHStwKn/fo2+Z5poHAhjBXzk0yWuvrLI5Gspz72nC9yWiROfH2HguXaSe+Mk91W2uVdmNvUizVLW5uQXLtH/XBvNBxpoGIhSythcPz6/rV+keT95vW6N4+ys5unDR4POV77evv6Esmm/deC5rV6EXc0pbs+dwG5gxVf3P5J7w055r7VJdr5Xne+TcubqNj9454lYIiIi4nkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hkKPiIiIuIZCj4iIiLiGQo+IiIi4hn+rV6AzRp/p5H/7bFPbPVi7Er5rzds9SLsaqFPXdvqRdi1yvv6tnoRdq83z2z1EojcU2rxEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHP8G/1AuwUj32mg3BD/eoqLNu8+YVrGy4rGPfR91QDTQNh/BEfhWWb+ZEcV19LYeede7XI21ZywaJ3MkBD2iJQMhQDDkvRMuPdBWab7ZXprBIMjAdpm/UTzvko+yCVsBnrLTDfZN9hDvW1zFn0jwdJLFvgwHK0zERXgWsdpXu5etuGP+yjZX+c5N4Y0bYgwbgfx3bI3Chw/VSK6ZOpTZUXTPjp/0AzycHYynY7d36JsZfnsPPl+7QW0HIgTkN/hFh7iFh7EH/IYvp0igtfv75q2lAE3vdhs2ZZNyYczh/f3PwTSejdB4km8FmQW4brV2Hq8tqfSbZDzzDEGsAYyKRhahRujK/9mbZe6NoD0Tg4DiynYGIE5qfX/kz3ILT3QTgGZRvSCzB+AdLz9af3+aBnL7R1u3VVKkFqFsbOQ3Zp9fSNrZD8aCexjjCxzjCBqJ/FsWVO/dUdVv4eCib8DDzfQdPeOIGIRWGpxOzZFGMvTWPnNr7N+cMWfR9so+VgA8G4n2LWZuHiEqMvXKeQ3p3f//V4uW4VfDahlC8zdWL13sEubDyshBotjvx8G8GoxdxIlux8iXhHkK7H4jQNhDj9tzOUNrHR7TTDl0MMTATJBcvMNJcoBhyCRUNiyaJp0b8SfPwlePxklHjGYilqM9lVxLKhddbPY6ejvLs3x1RnccPz7ZkMcOBSmIK/zLX2ImUD7TN+HroQIZ4pcHEwf79Wecu0Hkww/LF2CukSi2MZ8qkSgZhFy/44+z7RQXIoyrmvbiywh5sCPPwrvQRjfmbPL5GdLRDvDtP9RJKmoRin/tvV+7bd9r6/mXhHCDtfJp8u4Q9Z635madFhbnUuIpPe3LybO+DgMSiXYWYSSkVIdsDQYUND0uHcW6s/07kHho8YigWHGxPglKGlC/Y/aoglHK68u/ozew5Bz7Ahn3W4PgbGB63d8NCThpHTDteurP7MgcehtduQWXLH+wPuZ5LPwNk3WbX+xgeHn4aGZkN6wWH2sht+WrrcoHb6FVhaqP1M1x5o6WzFLpbJzRUIRB/cISOcDHL0s0ME435mz6bIzORJ9EToebqV5N4EJ794iVJ2/RMgf8Ti6GeHiLaGWLi0xI3Ti0RbQ3Q8liS5L8HbXxghv7Dxfclu4PW6VfDZhFK+zPirm9xz3mbouSaCUYvLLy5w7eTyyvCBDzTS/VicvmcauPzCwh1K2Lm6rwUYmAgy1V7k7N4czm0XWs0tx83B0RDxjMV0S5EzB3M4lZP4wECBJ96Osv9SiLlkiXxo/dAZzhn2Xg5R9Du88WiGXNj9zJX+PO87EaN/Ish0S5FUw+4KnNn5Au/87STzF5drho++NMsjv9pH68EEMweWmD1X51T/NkMfbSMY83Ppu9NMvbm4MnzPh1rpeTLJwAdbGfn2HZom3oMr379BPl0iN1+koT/Cw7/Uu+5nllNw9fx7m6/lh+GjbuvL6R/BUmW1R8/BkacdWrsNs9ccZiZvfiYUgcFDUCw4vP3PkM+6w8cuwCPPOvQMG2anHNK3fMUTSTf0ZJcd3n4Z7MpxYmIEHvmAw+AhmL9+syxwA05rtyE153D6FTdcAVwbhYff7y734g/AvuXY1T3ohp6ZydrA1jwJh54w7HvE4fhLtXUwcRFG//4CmZk8oYYAT/y7A++tUjdh+BNdBON+Rr41ydRrcyvDBz/aSc8zrQx8qIORb0zeoQTXwIc7iLaGmPjRDJe/czPodz3ZzPDHu9n7yW7O/PXofVmH7crrdas+Pg9QqNGiaSBMbrFUE3oArr6Swi6UaTsYwedfu6l+pzJlGBoNkguV64YeoGZY25ybyS/3F1ZCD0Ax6DDWXcAqG7quBzY0767rASzHMN5VWAk9ACU/jPa6LT0914KbX6ltbnE0uyr0ABSXba6dcI/iDf2RdcsJNwVIDsXILRRrQg/A1Zdn3e32cAJf4P5st4tjWXLzD/6ssaULgiHDzOTN0ANuyBg75/7cOVD7mY4+8FmGqSu1QcUuwvjF+p+p/j5+4WboAffz16645bX31f/M2LmboQfc5ZyZcpe7pav+Z25vcZq7DouzDtGEobGldlx6ATI38vCAr8CHk0GSexPk5gs1B2aAsRensQs27Ueb1t3mfAEf7UebsAs2Yy/WBvOp1+bILRRI7k0QatrYvmQ3UN2uE3yMMS3GmBOVf9eMMRO3/L6hI4Ux5nfvMO4PjTFXjTHrn3JuAz7L0HogQs/74nQ+EqOhNwib2Nc39oYAWBxbfVmlXHRITxWwAj7inbvvINy8YBEs+phuKYG52d+mdyJAQ2r1ZhgsuBWbDa9uhclVhiUX1r/kAZBcdKebTa6+3ly9tLbRsnYLx64cycrrH9EaK+Fo4XJm1Ti74JAaz2IFfSS6w/d0Gd+LYBg6+qF3r/t/NLH5MqohYP7G6nGLc2CXHBJJ9xLSymda3f8X6jR+VfvqVKfZyHxWPnNLIDE+aEi681+cu8NnbplPOArhqCG75NQEsjvNZys17okBMH+pXteCMqmxjLvN9UbvWE6iN4IV8JEay2AXVu9L5kfc8psG4/dgqXcG1e06l7ocx5kFHgUwxvw+sOQ4zh9tch6/C/zHNcb9I/D/ABc2WeaWCMYs9v1kc82w3GKJke/Nk5oorPv5SJNb3dmF+h2+cgslGIBI0k9qfHf1OWlIu8Gi7HN44rjbd+dW8w0lTh/KUQy4B+JiwCFUMITzPjLR2i9VOOceaaLZjTVYRjPudJnI6i9nIehQ8jmECz58NpS9kH8MtB1pAGD+0uowc7tIixvEs/P1t/Fqa0ykOcjiaJ2j6hZIthmSbbXDFmcczp+AQm5jZUQq++vs6kYzcCCXgViDIRx1VjoGR2Jrf6aYd8NKKGLw+RzKZbezdChisEsOxTpf+Wo5kVuOHeEoGJ8ht+TUbYnJVT8T2+C64K7L7fPZSpFWd5vLzdbfD2bnCiSBSEuIxctrrBQQbQ2tTF9PtfzqNu4Fqtu76ONjjDkG/DEQB2aAzwAZ4DXgpx3HOWeM+TLwA2AYiBhjTgBnHMf55VvLchznlUqZ72UdHogb72RITebJzpawiw6hBovOR+J0HIly8KdbOP03N8jM3LkHuxVyD8D10jFAqdJJ2gpt//rYrEDRXaf+8SCZaJk3H86wFLcJ53zsvRyiZcHPkXfDHD/qHjhnkyW6rwcZGg1y+mBupWUtUDT0T7pfpEBpY/Xkt93p7DW2dtvv4C8Y/LahYO3+u+r2PNdKrD3E3MXluq04t1vZbtfovFyq3NFVnW4rlW24et5h9trNg3msAfr2Q1Or4cgzDid+6E63Hn9le7HXuMpml2qnA7AqrfqlNXYFpZLbd8gKQDl/87OlTczDH6gdV28et04H7jzvNJ/qcGub9PqsdmBfq8O8na/cBBG+8zZnrZRT/w++su2GvXDG41Ldbr6PjwH+FPi04zjHgC8Cf+g4ziLwOeBLxphfBJKO43zecZzfAbKO4zx6e+jZacZfS5MaL1DMlimXHLJzJS6/sMDU8SWsgHt7uqytGlEcAycfyrLYaGNbsBwrc+pQllywTDLlX7nsdWmgQC5Upn02wJPHo+y7FOLghRBPvRWl6HdWypLN6TrWSM9TSTIzBS58feOPYNgpigX31uzllBsM7BKk5uDMq5Ced4jEDB39W72UIrKVNht8QsAR4LuVVpzfA3oBHMf5LnAK+DPg1+7lQhpjft0Y84Yx5o2Cs8F26gfk+im3KTDRHVp32uqzTqxg/Wr3BystE7vwWT6lSkvKUrxc08EY3MtLc5X+N9VLYoWgw+uPZBjvKmDZhp6pAC3zfq63ljh90G0Vql4W2+i8rTXOkK1Ky1Fpl7f2dD7eyNBH2sncyHP6y+Mbvv18Zbtd4wzQX20Ruo/P8nnPHLg+5v7Y0HznSauqLSfWGn0zV1pRbtmuqq1D/jVaTm5vRarXOrPePNZrnanXimSvM5/1WpEetNI6rQ7WOq0WVTdbL+q3Oqxsu2u0WuxGqtvNX+oyuJesnlk1whgfcAj3slcSuMOjujbHcZy/BP4SoNHftq2OTsVs5aCwgTtaqn17qn19bheu9gGa3yZ7n3uo2r+m5K//5ytWqsQq36zHYtDh/HAehmuvRVc7IqfiG/tCZaJlgikf0ayPVKD2yxwsGPxlQy5Y3tX9e7re18TQT7SxPJ3nzFcmKGY2vjPKzrrX8CPJ+tfqw0n3qLnWtf7tolhZPGuDf+fskvvQwkgMlhdvG2ncvjblsrNySQ3cPjSBkPuZ9G1PpQiEwPK7z+opVzbDsg35rNvvJxBa3c9npc/QLXnOvVsAACAASURBVP1Qcxlwyg7hqLsct/fzCdfpZ3R7H6TbhaOr57OVsjPuHyvcUv+EMtJc6Xe2Rj+VqsxMvmb621XLr27jXqC63XyLTx5oM8Y8A2CMCRhjDlfG/SbwLvBLwF8ZY6rnFsVbft51qndg5VLrh5XFSoflxv7VG5wvYEh0BbGLZZaubb8N5b2ab7JxcIhlfHU7ZMYrHZDr3cV1u85pd3O63raxgDjf6B7kW+ZXB86WOWtl+XarnqeSDP1EG0vXc5z+8vimQg+4t5MDNA2uvsvDChoaeiPYhTLpye3VGnu7RNL9P7d+tyYAFmfd/2/vJA3Q2OyGmPR87e3kizPu/03tqz+TbK+dZiPzWfnM7M1hThlS8+78G+u0XtWbTy4DuYxDJG4I1XmCQb35bKXFK25qSw6t7m1tBX009EfdbW78zn/M9HgWu1imoT9at6W9Wv7C5W2S+B4A1e3mg08Z+DTwn4wxbwMngPcbYw7gXt76Lcdx/hn4Ie5lMHBbak4aY/769sKMMf+XMWYciBpjxit3jm07kaS/7rN1QgmLweeaAJg5e3MjMT4IJ/2EGmtPLfOLNgujOcKNfjqP1p569T3dgBX0ceNslnJpWzVq3RO5sMNMc4lw3kffZG0Obp63aJ63KFrOzVvOHbDqHJ87p/10TvtZSNjcaKkNPoGiIZrxrXSkrprqKGIbh96pIOHczXH+EgyMuyF0onP3hU1wn3q85/lWlqZynPnyBKXs2sHS+CDSHCB823M3cgtF5i8tE24K0HWssWZc37Mt7nZ7Jk25uPXbbWyNrnaNLe4D/ABuTNSOs/xuS0jgtvOR2Sko5h1auyF+y2obH/RXnuN37bZns12/CmXboWsPNQHDCri31tf7TPX33n21l9VCEfcp0GXbYfpq/c/0H6i9nT7eCK1dUMi7HbzrfWbPodrhzR3Q2GLIpJ1tE3xy8wXmL6YJJ4N0PVmb7vqfa8cKWkyfXKjZ5iItwVV3EJWLZaZPLmAFLfqfq02jXU82E04Gmb+Y3pZPF75fVLdgHGfrd1ab0ehvc55p/LkHOs/epxJ0PxYnNVEgny5hFxzCTX6Se8L4/Ib5yznOfWN25cwvlLB4/N90kkuVOP6l2ufGr/XKisa+ENn5Iqf/ZuteWZH9H/e3g3Yobzh2Mko472OusUQ6XiaSM7TO+sHAmQM5brS6Ycay4dlX48w1lciGHRwDTSmLxrTFcsTm+JEshdue2jw4GmTwaojLfXkuD9QGmd7JAPsrr6yYbiutvLIiXPAx1vNgXlkR+tSD7UzcdiTB/k914pQdpt5cWLnL4lb5xSLTp9ynkYca/bzvfxkkt1jkzT+/UjPdWq+saBqIkp0tcPI+vrKieV+M5v3u2WMwZpEcipGdL5Aad1uYShmbKzfcE5Ajz7iXetJzN29bjza4d3QBjJ51Vh4kWNXeC/seNVy/6nDx7dvmfdsrK4pFd1g0vvoJyFVde2Co8sqKmcmbr6wIRQwTI+u/smJ26uYrKwLBDbyyIu0wNw2ByisrfL61X1lx5JZXVizO3HxlhVOu/8qKRBI6Yu5AK+ij9aFGCksl5i/efIL9ha/dliTvkbVeq9A0GCczk1/1WoVn/8MRAF7+g9M15dz+WoX0ZJZoa4iWgw0Ulkqc/OIlcms8qmG38kLdvup8n5QzV7cPyja5eXF7S43niTT5ibUFSHQH8fmN+6CnyTw3zmaYObvxZ5fkF21OfeUGfU8naBoI07QnTHHZZur40q5/SWk+5PD6oxn2jAVpm/PTlLIoWQ6zzSWu9BVIJ24eOMsGrrcVaUz5aV5wt91MpMzIQJ6r3YVN98cZ7y6SDZXpnwjSOR3AVF5Semkgu2tfUlptuTE+Q/cTybrTLI5lVoLPneQWirz9pav0f6CF5FCU5HCMwlKJydfn7/tLSmMdIToerg3lkWRwpc9RbrHIlcrD/6bHoaUT4k0QCLovCC0WYGbSYeqKe4fXZsxdh1M/cltjWjrBVF5SevmMw+Qa7+mcuuJeVuoZdkMVQGYJRs85a76k9Mq7kEk7dO5h5a6zpUWYGHHWfEnpuePunWrtfW7Ycmz3wYprvaTUKcOZV6B3r0Nrj9sCZpdg7traLymNxKDj0dptJxj31wy7X8EnN1/gxOdHGHiuneTeOMl9cQrpEhOvzGzqRZqlrM3JL1yi/7k2mg800DAQpZSxuX58flu/SPN+8nrdqsVHVtzvFh+ve9AtPp5yZO9WL8Gu5bx5ZqsXQWTT7tTis/VPHBMRERF5QBR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQz/Fu9AJvl2Db2YmqrF2NXyn/hwFYvwq729xe/vNWLsGv94kBpqxdBRHYItfiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGco+IiIiIhnKPiIiIiIZyj4iIiIiGf4t3oBdoqWQwka+6PEOsPEOkL4QxbTpxY5/9XJTZcVTPgZeK6NpuEYgYhFYanE7Lklxn54AztXvg9Lv/UCPoeORIm2WIlEqEzY71B2IJ33MZEKML7oB0zNZ3zGobexSE9DiWigjM8HuaJhJuPn8lyAXGlzub0pbDPcUqApYmMZWC76mFj0c2U+sGreO43jwDvnDvLOuYPMzSdxgGTTAocPnOXwwXcxt6ze33/9U0xe675jeYf2n+XDP/7DDc//8lg/x08eZWa2FccxNCfnOXLoDIf2X7jLNdr+tE+4/4IJPwPPd9C0N36zXs6mGHtpelP14g9b9H2wjZaDDQTjfopZm4WLS4y+cJ1CunQf12D78nLdKvhsUN+zrcQ7w5TyNoV0CX/IuqtywskARz+zh2Dcz+y5NJmZPInuCD1PNZMcjnHyS6OUsvY9Xvqt15kocaQzT65kmMtYXCsaQn6HjniJhzvztMVKHJ8MUw0gBocnerM0R8ss5Q2T6QBlxw0ve5JFehqKvDIWZamwsfDTHi/xWHeOsgNTKT/FsqE9VuJQuxuETkxG7uPa33/fffF5zo/sIxLOsG/4In5/iasTvbz4Lx9g6noHH3nuxZVpD+0/T0/XVN1yTr5zmHw+zEDf1Q3P++SZw/zwRz9GOJTjwN4L+KwyI5cH+f4Pn2d2vplnn3r1va7etqR9wv0VTgY5+tkht17Optx66YnQ83Qryb0JTn7x0obqxR+xOPrZIaKtIRYuLXHj9CLR1hAdjyVJ7kvw9hdGyC8UH8AabR9er1sFnw26/J3r5NNFcnNFGgeiPPyrA3dVzvDHOwnG/Yz80zWmXp9fGT74kXZ6nm5h4Pk2Rr557V4t9raxXDS8OR5metni1taVc1aZ9w9k6UzYdMRtri+5m2RH3KY5WmZm2eL18XDNZ/a25NnXWmSwucCpa+F15+33ORzpyIMDr45FSOXdA9SFmSBP9mXpSthcTxSZSgfu6To/KCNX9nB+ZB8NiRQ//zP/QCScB8C2fXzrex/h3MX9DA1cYXjwCuAGn3rmFxp5/fgxopEMgwNXNjTvVDrOv7z2FKFQjl/42b+nIbEEwBOPvcnffO3nOHHqEYb3XKarY/o9r+d2o33C/TX8iS63Xr41ydRrcyvDBz/aSc8zrQx8qIORb6zfujbw4Q6irSEmfjTD5e/crMeuJ5sZ/ng3ez/ZzZm/Hr0v67Bdeb1u1cdngxZHM+Tm3ltyDScDJIfj5OYLNTs4gLGXZrALZdofbsQX2NmXXeqZy/iZXl59Oatg+xhbcANHc/TmGUY06Da13rgtKAFMV8JR0HI2NO/OeImQ32Ey7V8JPQBlx3B+JghAf9P2OyvZqEtX9gDw6MMnV0IPgGWVeep9bwBuS856zpw9BMDB/eewfBur23fPH8C2/Rx96MxK6AEIhwoce+QEAKfPPrShsnYa7RPun3AySHJvwq2XWw7MAGMvTmMXbNqPNq1bL76Aj/ajTdgFm7EXa8P31Gtz5BYKJPcmCDXtzJOeu6G6XSf4GGNajDEnKv+uGWMmbvk9uJEZGGN+d43hUWPMN4wxZ40xZ4wx/+fdrMBO0jgQA2D+0vKqcXahTOpqBivoI9Gzsy+7bJbj1P4Pbt8fgLaYDdQehNvjbkCaWd7YpYXm2NrTz2csSmVoipTxmY0d7LebTDYKQGMivWpcYyIFwNS1Lmx77a+7bfs4e3Ef4HD4wNkNz3t8sgeA/t7Vl8YG+sYAmJi8c38iL9M+ob7GPdV6WVo1zi6USY1V6qU3esdyEr0RrICP1FgGu7C638r8iFt+02D8Hiz1zqC6XSf4OI4z6zjOo47jPAr8BfCfq787jlPY4DzqBp+KP3Ic5yDwGPBjxpiPb7DMHSnS4mbF3Fz9qstWhlen8wKDQ0+j2wHu1mByY9niWtqiNWbz7J4sh9rzHGjL82RvluGWAlfmAystReuJBdwv5XKd/kAOhmzRh89AJLAzg084nAMglU6sGreYbgCg7Pjqjq8auTJILhehr2eCxobVAWot84uNADQ1Lq4aF4tmCfiLLC3HKZburv/Lbqd9Qn2R1kq9zObrjr9ZL6E7lhNtDdVMf7tq+V6qX9XtXVzqMsYcM8a8ZIx50xjzbWNMlzGm0RhzzhhzoDLNl40x/7bSihOptBD99a3lOI6TcRznhcrPBeAtoPcerNO25Q+71V1ao8e8nS9XpvPOQWJ/W4FEqMz0ksVM5tYuZ4bjk2EuzASIBcvsSRYZai7SErOZy1hMpfw4G7wTK1C5JFYq15++VPlzBDZ4eWe72VNpWTlx+mFyuZs7K7tseO3NYyu/5/Jr78iql7kOH3x3U/MuFNydWihYf+cXrAyvTie1tE+or9pRfO16cVtxq/W3FmulnPoddUuV+rU8VL+q2813bjbAnwI/4zjODWPMvwb+0HGczxpjPgd8yRjzX4Gk4zifBzDGfK7SYrR2ocY0AT8F/NfNr4LsVANNBYaaiyzlDSenajsp+4zD0c48bfES71wPcX3JouwYmiI2D7Xneao/y/HJ8Ep/Hy/bNzTCuYv7GBvv47//3c8zODCKZZUYn+hhORslEU+TXkpg1riUt7DYwMRU96Y6NYuI7FSbbfEJAUeA7xpjTgC/R6WVxnGc7wKngD8Dfm2jBRpj/MCXgT9xHOfSGtP8ujHmDWPMG0XqN8/tBNWEvVaStkLVs7/df+tqf1OBhzoKpPM+Xr0aoXhba8xQc4GuhhLnbwS5uhigYPsolQ0zy36OT4bxGTjUvrFtoWi7ZfvXaNHxV/4cty/DTuHzOXzyo//EM0+8Sjic4+yFfZy9sJ/GxhSf/qmvEQi4HXCjkVzdz99Np+aqaotOfo0WnWpLT3CNFiGv0z6hvtI6rQ7WOq0WVTdbL+q3Ovgr9Wt7qH5Vt3fX4nPGcZxnVo0wxgccAjJAEhjfYJl/CVxwHOe/rDWB4zh/WZmOBtO8M69HANlZd+cfbq5/kIhUhlen2632JAscandDz2tXwxTqdLqtdmCezaz+UqXzFgUbogGHgM9ZN7AsF300RcrEguWau7rA7WMUCZQpO5At7szgA2D5HI498jbHHnm7ZnipZLGw2Eg4nKWhTudn2/Zx9sJ+NtupuSrZuMhULsLCYiORcO2dHcuZCMVSgHhsiYB/++38tgPtE+rLzlTqZY1+Jjfr5c4nP5mZfM30t6uW76X6Vd1uvsUnD7QZY54BMMYEjDHV+2R/E3gX+CXgr4wx1Z6nxVt+rmGM+T+ARuDfbXrJd6DFUffOjeRQbNU4K+ijoS+KXSiTnsg+6EV7YIaa3dCTyrktPfVCD4CvkkGC/tU512eclVaa8gZi8Fyl03RrbPXBNxm18ftgIeuj7Ozc4LOWC5eGKZct9g+N1B1/6coesnfRqbmqt3sCgLHxvlXjRq/2A9DTvfknGXuF9gn1LV6p1svqO4KsoI+G/kq9jGfuWE56PItdLNPQH8UKrt7XVMtfuLz6DqfdSnW7+eBTBj4N/CdjzNvACeD9lU7Nvwb8luM4/wz8EPcyGLgtNSdv79xsjOkF/nfgIeCtSgfoDV8i286Mz+3JHk7W5r3cfJH5kSXCySBdTyRrxvV/sBUr6GP61CLl4o5t1Lqj4ZYCB9oKLOZ8vHY1snIJqp65jLtpDjcXV91mvrelgM+4YcW+Jaz4fQ6xYJmQVdtEe23JT6EE3YkSDaGb4cdnHPa3umcjG71DbLsqFFYv/43ZlpWHCz5eeabO7c6c21in5mwuxPxCI9lc7Vniof3nsawSJ985TCp9c0eaywd58223a9+Rg+9sal12I+0TNic3X2D+Ytqtlyeba8b1P9eOFbSYPrlQUy+RluCqO4jKxTLTJxewghb9z7XXjOt6splwMsj8xfS2fLrw/aK63cSlLsdxfv+WX3+8ziSHbpn239/y828Dv12nvHF20AuSmg/EaTng3g4cjLnVluiJsO+nuwAoZmyufM9t6g8mAhz7jWFyCwXe+NPaM+2Rb13j6Gf2MPyxTpoGYyuPp28ajJGZzTP6wo0HuFYPTk9Dkf2tBcoOzGUsBpKrmz+zRfe9XQAjc0Ha4zatMZsP7Mkwk7Gwy4ZkxKYpUsYuw7vTtQfhjniJo115xhf9NU90LpUNp66Heaw7x1P92ZpXVsRDDlNpi6n0zu4k/bVvfRLLKtHSPE8gUGB+IcnoWD+Wv8SnPvpt4rHVZ28Liw2MT26sU/PJM0d4/fgxnnjsTZ469ubK8IZEmvc/+Sr//KMf43989V+xb2hk5ZUVS8txHn347V351GbQPuF+G/nmFEc/G2H44900DcZXXqtQ/Xn0B9drpj/2uf0AvPwHp2uGj37/Oo0DMXqeaSXWESY9mSXaGqLlYAOFpRIj36z/+pbdzOt1u7P39g9QvCNMxyNNNcMizcGV65u5hcLKTu5OcvNFTnzhMgMfbCM5HCe5N04hXWLi1bld/ULCSOVZOj4Dg831zwBmMzeDT77k43+ORhlsLtAeK9HTUMIYyJcM44t+Ls0F6z6XZy3TS35evRphuLlAZ6KEz0Cm6OPd6cCueEnp8OAlLowMc+7iXkolP/HYMocPvsuxR08Qj61+OB64LzUFc1edmm/1yOEzNMTTHD91lLMX97kvKW2a56ljr+/ql5Rqn3B/5eYLnPj8CAPPtZPcGye5r1Ivr8xs6kWapazNyS9cov+5NpoPNNAwEKWUsbl+fH5bv0jzfvJ63RrH2VlNqA2m2XnK+uhWL8aulP6FJ7Z6EXa1b/zff7zVi7Br/eLAB7Z6EXavsjqmy87zqvN9Us5c3TNavatLREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPEPBR0RERDxDwUdEREQ8Q8FHREREPMM4jrPVy7ApDabZecr66FYvhsjmle2tXoJd64kTqtv75a1f2L/Vi7Cr2edHtnoRdqVXne+TcuZMvXFq8RERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHP8G/1AuwULYcSNPZHiXWGiXWE8Icspk8tcv6rk5suK5jwM/BcG03DMQIRi8JSidlzS4z98AZ2rnwfln57U93eX8GEn4HnO2jaG79ZJ2dTjL00vak68Yct+j7YRsvBBoJxP8WszcLFJUZfuE4hXbqPa7D1fNcSWCNtmFQICn4IFyk3ZbH33sBpyaya3sxGsc514JuLgu3DiecpD8xhD8+A2dy8TSqEdbYT340YlCycaIFy7wL2/mmwnHu0hlujuc9HQ7tFrMkQTfrwBww3rpS4+KPiqmmNgY59FrGkj1jSR6TB4LMMI68WmL5k39X8460+eg/7SbT48FmQXXKYvlTi2nkbdnbVrsvL+wUFnw3qe7aVeGeYUt6mkC7hD1l3VU44GeDoZ/YQjPuZPZcmM5Mn0R2h56lmksMxTn5plFL27r7EO5Xq9v4JJ4Mc/eyQWydnU26d9EToebqV5N4EJ794aUN14o9YHP3sENHWEAuXlrhxepFoa4iOx5Ik9yV4+wsj5BdWH6x2A+t0F/4L7TjBEuWuRZygjVkO4ptqwDfZSOnYGOX+hZXpfZMN+F/bA74y5d4FnICN71oD/lM9mNkYpadGNzxvMxcl8PIQlA3lnkWcSBHfjTj+s534phMUnx3Z0eGn93CAWNKHXXTIZxz8jWunQp8fBo8FAShkHYo5h1BskynyFskeHweeDVK2YXbMplRwSPZYDD4epKHV5vy/FO667O3O6/sFBZ8Nuvyd6+TTRXJzRRoHojz8qwN3Vc7wxzsJxv2M/NM1pl6fXxk++JF2ep5uYeD5Nka+ee1eLfaOoLq9f4Y/0eXWybcmmXptbmX44Ec76XmmlYEPdTDyjfVb1gY+3EG0NcTEj2a4/J2bddj1ZDPDH+9m7ye7OfPXGz+g7xg5P9aFNpxQkcKHz0Po5hmsuREj+PJe/O92UqgGn6IP//FeMA7FD4zgJLMA2A9dI/DyMNZkE+XxRcq9C/XmVssB/1t9GNui+PRlyl0ptywH/K8NYE02YV1swz4wfc9X+0G58laRQsYht+TQ0O7j8IdDa05btuHdF/Msz5cp5qD3iJ++h++ut4blh+EngzgOnPlBnuU5NzyOnSxx+ENBWvotWq5azI7tzhMlr+8X1MdngxZHM+Tm3ltyDScDJIfj5OYLNQdmgLGXZrALZdofbsQXuPuzmJ1IdXt/hJNBknsTbp3csnMDGHtxGrtg0360ad068QV8tB9twi7YjL1Ye5Cdem2O3EKB5N4EoabAPV+HrWYyQQyGcjJTE3oAnLZlHL/tXvqq8E00YQoByj0LK6EHAMuh9JB7YLAutWxs3jNxfOkw5ZalldDjjoDSkSm3rCstO/qSTGq6TG5pYyvglGFhyg0971Vzv0UgbJgZs1dCT3UeY6fcv3Pnvrtred7utF9Q8HmgGgdiAMxfWl41zi6USV3NYAV9JHoiD3rRdjzV7WqNe6p1srRqnF0okxqr1Elv9I7lJHojWAEfqbEMdmH1tf/5Ebf8psH4PVjq7cWJ53F8ZXzzUcjXHgjNTAxTsii33axf34xbB+WO9OqyWpZwLBszFwN7/QDuu7F2WcQKlOM5TCYIy8HNrJIAjR3uoW9havX2nJouY5cc4q0+zC48Qmq/sE7wMca0GGNOVP5dM8ZM3PL7hr5txpjfvcO4fzLGvG2MOWOM+QtjzO6M2BWRFrfKcnP1rx1nK8Or08nGqW5Xi7RW6mQ2X3f8zTpZ+/ICQLQ1VDP97arl78q6DdrYh6cg7yf4vQP4j/dinenE/9oAgX8ZotyepvTY+MrkJu3WlROvU+c+cKIFjGMwGwgrdywLcGLu38O3dOe/n6wWSbiHvlyqTideB/JLDj6fIRzffS3E2i+s08fHcZxZ4FEAY8zvA0uO4/zRJufxu8B/XGPcLziOkzLGGOBvgZ8HvrLJ8ncMf9j9spXW6DFv58uV6XZ1/rsvVLerVTuJr10nbv+Fat2txVopp35/h1Klbq1dWrf23hmcaAH/W33upaWKciyP3T9Xewms6NaBE1ijb0igXDPdnZjSemXZGy5LalmVqy/2GlfYS0WnMp1hR19LrEP7hbvo3GyMOQb8MRAHZoDPABngNeCnHcc5Z4z5MvADYBiIGGNOAGccx/nlW8tyHKd64doPBNltW5iI7HjW+Tasd7qwh2bc29FDRcxSGP+ZLgJvDFBajGBX+tyIyPa32SuYBvhT4NOO4xwDvgj8oeM4i8DngC8ZY34RSDqO83nHcX4HyDqO8+jtoWelQGO+DUwDadxWn12rmrDXStJWqNpqsTvvJLifVLerldY5c7PWOfOrunkGWP/MzV+pW3sX1q25EcN/ppty5yL/f3t3HxzHfd93/PO9O9wdng7PBMEHgCQgkRQpSg4l2kr9QD/JsZM6TaIkbdwmqaq4Mx1NO3Knsbt+WgAAIABJREFUdZPx1HKbzCTTSZXGeXDlyHaacdMkbmfixHJs2rFsy5EsyRIFkRRJAXwAnwCSIEAAxMM9/frHHh6OAPFAcHng/d6vGQ4Pu3u/3f1yefjcb3+7m9tzXqpOSzEnVz+hzNtPyiXTir7VMjvOptALYzfqhclEipZbjIst1VZ02W2h2HRPT/QG425jhYG9uUz5fRfnc2HlwSchabekA4VenE9J2iRJzrkDkt6Q9IeSHltug865D0lqK7T9voWWMbOPm9krZvZKRgufl7wTTAwG50KTjQuf86wsTJ9eDstHbeebuFyoyQ3O1c/WZPH/U+OXp4qWv950++VY20h/SpKUb5k/aF4xp3zDuEymyHAwaN7VBrWyhcbd5IOrxJy5mfE5i1m0LWlmnFD+BmOAcGMTo8Ev9WRqgV+BJiVqTPm8W/YVZ3cSPhdursfncKEH537n3L3OuYclycwiknYqOO3VsJJGnXOTkv5a0k/fYP7TzrkHnHMPVOjOHch39XTw4dmwrXrevGg8otTmKuXSeY2em5g3H4ujtvNdPTVdk/lXVUTjEaXaCzU5O//Ow3ONnp1QLpNXqr1K0fj8j4zp9odPzr9K5E5n+WB/bWrhb7U2fSl7JPgFmW8OahAZqJ2/7GCNLBeVa7y2rJsOTl8ttlBbuhZXZCwpV5UOeqGwIlcHguBT3zb/eE6tiygaM41dzsuV4c3e+VxYefCZktRiZg9JkplVmNmuwrwnJL0p6ZckfdHMpjsRM3NezzCzGjNrK7yOSfpJSUdvYh/WHIsEI9mTDcW7PTmU0VDvmJINcbU9WJwN29/TrGg8ootvXFW+DLtXbxVqu3yTQ2kN9YwGNdnXWDSvff86ReNRXeweLqpJZVN83lUY+UxeF7uHFY1H1b5/XdG8tn2NSjbENdQzuibv0Lpa+abgQzt6qkmaKB4SGemvlQ1Wy0XyyjcGv0zyG4fl4tngfj5Dc26dkDPFjqwPXm4bLF5J1oIruMaLj2nXPKZ87aQigzWKXEjNmSHFDrUFbW0ZXPEjMHwSrZCStaaKZPH0K305ZSadmtujqm6cLaBFpPZ7g3/n/rfW3imaW4HPhZUPbs5LekTS75tZXeH9v2dmWQWnt/Y550bN7HsKToN9WtLTkrrN7NXrxvlUS/qqmSUUBLDvSPrc6nYnPI3ba9S0PfjmFa8Oyla7sVJ3fTT4AMqM53TqW8FNnOK1Fdr7bzo1OZzWK5/tLWqn9+v92vOrW9T5E+tVv7V65rEK9VurNT44pdPfuXQb92ptoLbh6X32gvY8WqnOD29Q/daamVvTT78+/fcDRcvvffxuSdLznzlUNP30twdU11GtjQ81q7o1qdHzE6pqTqhpR0rpsax6ny3Pwb35jVeVPzWqyKVaxb+1I3hkRTIrG00o0p+SyZTddV5KFH5JVuSVfdsZxV7aoorvdwaPrIjngsdbjCWV2zCs/MbiuzbbUJXiz3cp3zymzLvmHNMmZX/sjCqe36bYDzuKHlkRGa5SvvGacl139jHdsDGixk1Bb1q8MgggtU0Rdb49CIHZKafTB2evmtuwM6bKVLBcdUPwvb1lW1S1LcHr0Uv5oud2NW6KqusdcV08kVXvD2d/AeeyUu9LaW1/Z1y73pfQ5cIjKxo3RlWZimiwL1e2d22W+FxYdvBxzj0558d3L7DIzjnLfmLO609K+uQC7Q1IenC56y+1mtakWu+rL5pW2RifOb85OZye+eW8mMmhjA4+c1Id72lRQ2eNGrpqlB7N6twPr3j7IE1qG57JobQOfr5XHfvXqaGrRg13FWry4uUVPYwwO5FT9zMn1L6/RY3bU0p1VCk7ntPAa0Nr+mGEq2ZS5sdPKHqiWZGz9YpcqJNyEakiq3zrqHKdl+Rai7vy8xtGlHlXT/CQ0vN1Mw8pzd57bsUPKXWN48rsf0vRN4NncykbkavMKLujvyweUlrdENG6bcW/hpK1ESWn77Mzli8KPvVtEdW1Fp92TLVElWqZ/im77AeWDp3L6/C309q4K6amzVFFItLkmNOpV9O6cLx8Q4/E54I5d2f9x0lZo3t79OFSbwawcvny/jAtpQcPUtuwvPoLd5d6E8pa7njv0gthxX7ovq0Rd2XBrxlleENuAACAhRF8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPBGrNQbcFPyuVJvAYA15OX7o6XehLL1RM/flnoTytpTXTtLvQneoccHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALwRK/UG3EnitTF1vLdV9V01qqiMKj2W1eDREfV996Jyk/lltxNLRrX5PS1q2pFSvCamzEROwz1jOv2dAaVHsyHuwdpFbcNDbcNFfVdv+Ox6DRy9SxNXU8pOJRSvnFBV45DW33NcNS1XipbNZWK6cGiHhvo2amqsWpFYTtVNV9S265hSbRdvYt1t6j9yt8avNMg5U2XdVa3b3qvmztO3avfWJJ+PW3POlXobViRlje7t9v7bvt5kQ1x7Ht2meE1Mg0dHNH55SrUbK1W/tUbjl6fU/YUTyk7klmwnVhnVnke3qao5oeETYxo9P6Gq5oSadqSUHsvq9Wd6NTWcuQ17tHZQ2/BQ23D5UN8net4Mtf0zr96r/sM7FEtMqX7zOcUSaU2N1mj47Aa5vGnrP3pJzdv6JEnZqQq9+Y33avJqnSrrrirVNqBcNqbhMxuVnUpoyzteVstdp5a97oGjnep7+ccUS0ypseOMLJLXlb5NyoxXqfWeY2rf2x3SXs96qmtn6Ou4ng/H7Q/dtzXirthC8+jxWabOj7QpXhNT79fP68JLs99Atj68XhsfalbH+1rV+7XzS7bT8f5WVTUndO6Fyzr5zf6Z6W37GtX54Q3q+skNOvzl8v6mcT1qGx5qGy7quzqZiYT6j2xXLDmp3T/1TVVUTs3MG+lv0bED+3X+9V0zwedc9y5NXq1TQ/tZdb7rRVkk+OKeuf+Qjjz7AfW9/DbVbRhQvHpiyXVPjVXpzI/uUzQ+pXs+8i0lasYlSRv2HNGRr39AA0e2q7H97Lwep3Lg+3HLGJ9lSDbE1dBVq8mhdNFBIkl9z11ULp3Tuj31ilQsGC5nRCoiWrenXrl0Tn3PFXfJXnjpiiaH02roqlWivuKW78NaRW3DQ23DRX1Xb2qsWnKmmubBotAjSan1lxSpyCgzmZiZNty3UZK08b7DM6FHkioqp9R6z3HlczFd6t2yrHVf7tkql4+qdUfPTOiRpFgio7bdQS/XxeOdN7traxbHLcFnWeq2VEuShk6MzZuXS+c10jeuaDyi2k1Vi7ZTu6lS0YqIRvrGlUvPP4c61Bu0X7+15hZs9Z2B2oaH2oaL+q5eMjUqi+R0bbBRmcl40bzRgWblMxVF43Yyk0lJUqJmfs2np41eaF3Wukf610mS6jb0z5s3PW16mXLCcbtE8DGzJjM7WPjTb2bn5vwcX+y9c9r4jWUs81UzO7Tcjb7dKpuDXZ0cnFpw/sSVdLBcU2LB+dOqmhNFy19vuv3KpmWVtixQ2/BQ23BR39WLJTLa9GNvKDOR1KGvfkinXtirM6/uVs/33qFj33q3Um392vL2H81ZPqjF1Fj1vLamxoJfsBMjtcta92RhuWRqfgCIV00qEssqM16lXDa64v1ayzhulwg+zrlB59z9zrn7JX1O0lPTPzvnFt7b+RYNPmb2s5LmH3lrSCwRHPjZG4x0z00Fg8BiycU70KIz7Sw8aCw7FbQfTZbXf7TFUNvwUNtwUd9bY/3Ot9T1nn+QcxFd6tmm/sM7NXR6s+LV42ruPFV0Cqxu4wVJ0rnXd8nNKXtmMq6BN++SJOXSyzu1kssEy0UrFh58Oz19ue3dKThub2Jws5ntlfTfJdVIuizpVyWNS3pJ0kedc8fM7M8l/b2kTkmVZnZQ0mHn3Meua6tG0ickfVzSX65iPwAAd6ALh7fr7Gu71bqjR+u296iiclKTV2t19rV7deL5d2j8Sr02731DUjC2Z+T8eg31bdbhr6WUWj99VdcGxasmlL5WLS0+NAVY8Rgfk/RZSY845/ZK+oKk33LOXZX0uKQvmdk/ldTgnPu8c+4/SZoo9BB9bIH2/quk31UQnNas7BIJOLpEgp42m6QXTsCxRNB+7gYJuhxR2/BQ23BR39Ub6W/R2Vf3qH7TebU/8LqStdcUjeVU3TSsrv3/oIqqcfW/uV2To8GprXjVpO75yLe0bnuPcpmYLh7v0tVzbWrcckad735BklSRnFzWumd6dDIL9+jM9AjFy+s2DRy3K+/xSUjaLemAmUlSVNIFSXLOHTCzn5f0h5LuW6ohM7tfUqdz7gkz27LEsh9X0CukpBYfcBWGicvBWb3kDc55VjYG5zAnbnDOdNr45ami5a833f7E4HLPIt75qG14qG24qO/qDZ9rkxRcwXW9aOHGhMNnNmn8Sr2StdckBVdwdex7TR37XitafuRCiySpumloWetOpkY1dimhyZGaeZesp8eTymdjqqgaVzS29n5xrwbH7c31+ByeM87nXufcw5JkZhFJOxX03jQso62HJD1gZqckPS/pbjN7bqEFnXNPO+cecM49UKHFB1yF4eqp4D9cw7b5o9Oj8YhS7VXKpfMaPbt4x9Xo2QnlMnml2qsUjc8v/XT7wyfX9JCnW4rahofahov6rp7LBfubnVz4cz07FUyPRJa+k/DlE1skSY1b+5a17tT64Gqxq+fXz5s3PW16mXLCcbvy4DMlqcXMHpIkM6sws12FeU9IelPSL0n6oplN9x9m5rye4Zz7Y+fcBufcFknvlHTcObf/JvYhdJNDaQ31jCrZEFfbvsaiee371ykaj+pi97Dymdn7SlQ2xeeNZs9n8rrYPaxoPKr2/cWXSbbta1SyIa6hnlGv7oBLbcNDbcNFfVevdt1lSdLFt7YpPZ4smjd8br3GLjbLojnVrBuUJDkn5TLzT61cPtGuwRMdqmm5rIbN54rmZSbjmrhaO+9y+ebOk7JITgNHuzQ1NnsmITtVoQuHgrspr7u7d/U7ucZw3K78VFde0iOSft/M6grv/z0zy0p6TNI+59yomX1P0qckfVrS05K6zezVG4zzuSP0PntBex6tVOeHN8zc1nvuLb5P//1A0fJ7H79bkvT8Z4qv0j/97QHVdVRr40PNqm5NzrvFd++zF27bPq0V1DY81DZc1Hd1GjrOKvXWgEb6W/XGV39CDZvPFQY3pzR8tk2SadPbuhVLBKdL8tmoDv7VR5VqG1Cidkxm0uilJl271Kxk3Yg63/2C7LrBzRePdel89y5t2HNYG+87MjM9UTuuzXu71ffy23Tk2Q8s+MiKcrxrs8Rxy7O6ViCeqlDH/nVq6KpRrCqq9OiNH+r2zk/vljT/QJGCwWDt+1vUuD2leG1M2fGchtb4Q93CRm3DQ23DVe71DftZXfm86eKxLl05tVkTV1PKZ6OKxdOqbr6i1h09qtswULTs6Rf3auxSs9LXKiVJidSYGjvOqHXnWwuOxzn3+j0LBp9pw2fa1H9ku65dqZecKVk/otbtPbftIaWleFaXVP7H7WLP6iL4AABuKOzg47tSBZ9yt1jw4ZEVAADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALwRK/UGAADWrqe6dpZ6E8raN84fLPUmlKV9Hxq/4Tx6fAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgjVipN+BOEq+NqeO9rarvqlFFZVTpsawGj46o77sXlZvML7udWDKqze9pUdOOlOI1MWUmchruGdPp7wwoPZoNcQ/WLmobHmobLuobHmq7tCMn2tV3fp36Bxs1MFivdCau3V0n9TPv/8EN33Omv1nPv3qvzl5sVjYbVWPdqO7f3qsHdx9TJOIWfM/x0xv14uv3qH+wQfm8qaXxqh6457ju235ixdt8M+u/lcy58FdyK6Ws0b3d3n/b15tsiGvPo9sUr4lp8OiIxi9PqXZjpeq31mj88pS6v3BC2Yncku3EKqPa8+g2VTUnNHxiTKPnJ1TVnFDTjpTSY1m9/kyvpoYzt2GP1g5qGx5qGy7qGx5favuN8wdX9f6nv/IRDQw2Kl6RUW31uAaH6xYNPsdObdJfffPdikVz2tV5WpWJtI73bdTgcJ12bjutRz74/XnvefnQ3fq7H+xTZXJSu7adVjSa15sn2jVyrVrv2HNEH3zo1WVv782s/2bs+9AZvfL6pC00jx6fZer8SJviNTH1fv28Lrx0ZWb61ofXa+NDzep4X6t6v3Z+yXY63t+qquaEzr1wWSe/2T8zvW1fozo/vEFdP7lBh798OpR9WKuobXiobbiob3io7fI8/NCPVFszrsbUqE5faNWf/c0Hb7jsVLpCf/vddyhiTr/80QPa0BLUdf+DB/Vnf/tBvXmiQ4d6+rS7a7Yew6PVOvDiXlUmpvTYz35d9bXXJEnv2vuGnvl/H9aL3fdo59Y+bVp/ecltvZn1h4ExPsuQbIiroatWk0Ppov+AktT33EXl0jmt21OvSMWC4XJGpCKidXvqlUvn1PfcxaJ5F166osnhtBq6apWor7jl+7BWUdvwUNtwUd/wUNvl27JxQE11o7LFSyFJevNEu8Ynk9rVdWomdEhSLJbX/geDnqcfHbm76D0Hj3Yql4vqgV3HZkKPJFUm0nrn2w4F73nzrmVt682sPwyLBh8zazKzg4U//WZ2bs7P8eWswMx+Y5F5z5nZsTltrlvpDtwOdVuqJUlDJ8bmzcul8xrpG1c0HlHtpqpF26ndVKloRUQjfePKpeefnx7qDdqv31pzC7b6zkBtw0Ntw0V9w0Ntw3Hy3HpJUufmC/PmdbRdVEUsq7MDLcrmZqPBqfPBe7o2z+9d6yxMO1VoN4z1h2HR1p1zg865+51z90v6nKSnpn92zqWXuY4bBp+Cj81p8+ISy5ZEZXOQ8SYHpxacP3ElKEVlU2LRdqqaE0XLX2+6/cqmZWXKskBtw0Ntw0V9w0NtwzF4NSVJaqobmTcvEnGqrx1TPh/R0MhsEBwcDt7TWD//PbXVE6qIZTRyrVqZTDSU9YdhxbHKzPaa2XfN7Edm9g0zazOzukLPzfbCMn9uZr9mZr8tqbLQm/PlW771t0ksEfyDZm9wFUFuKhhgF0suXs7oTDsLD8jLTgXtR5NLH0DlgtqGh9qGi/qGh9qGYyodnNJLxBcOgtPTp6Zmg+Bk4T3J+MIDwKenT6aXDo83s/4wrHRws0n6rKSfds5dMrNflPRbzrlHzexxSV8ys/8hqcE593lJMrPHCz1GN/JFM8tJ+r+SftPdaZeZAQCAO8ZKg09C0m5JBywYSRWVdEGSnHMHzOznJf2hpPuW2d7HnHPnzKxWQfD5F5L+1/ULmdnHJX1ckpJa/JxuGLJLfLuILvHtZNrst5SFv13EEkH7uRt8OylH1DY81DZc1Dc81DYciULvzNQNemempycSsz0yyXhG45NRTaYrVJWc31Mz2yO09OiXm1l/GFZ6qsskHZ4zJude59zDkmRmEUk7JY1LalhOY865c4W/RyX9b0n7brDc0865B5xzD1Ro8XO6YZi4HPwjJG9wPrmyMfjHmrjB+ehp45enipa/3nT7E4Ph/qOvJdQ2PNQ2XNQ3PNQ2HNNja6bH2syVz5uGR2sUieTVkJodVN5UGNtzZXj+e0avVSqTrVCq+poqKpYOjzez/jCsNPhMSWoxs4ckycwqzGxXYd4Tkt6U9EsKTl9NXx+YmfN6hpnFzKx5uh1JPyXp0E3sQ+iungou4WvYNn/AVTQeUaq9Srl0XqNnxxdtZ/TshHKZvFLtVYrG55d+uv3hk+H+o68l1DY81DZc1Dc81DYcWzcG9zHqPdM2b97pC+uUyca0qfWSYtHZnrQtG4L39JzZMO89vYVpWzb2z5t3q9YfhpUGn7ykRyT9jpm9LumgpB8vDGp+TNK/d859X9L3JH2q8J6nJXUvMLg5IekbZtZdaOecpM/f3G6Ea3IoraGeUSUb4mrb11g0r33/OkXjUV3sHlY+Mzs8qbIpPu9KgXwmr4vdw4rGo2rfX3zlftu+RiUb4hrqGfXqDq3UNjzUNlzUNzzUNhw7t/WpKjmpwz1bdP7SbF2z2YieezkYirv3nuNF77lve6+i0ZxeObxdw6PVM9MnpuJ6/rXdwXt2vlX0nsmpCl0eSmn0WuWq1x8GHlmxTCu9ffo7Px0cEM9/prgTa6nbp3d/4YQmh/zodp1GbcNDbcNFfcPjS21X+8iKoyc36dipzZKka+OV6j27QQ2pUW1eH9wdpio5VfRIiaMnN+krBwqPjOg6rcrElI6f3jTzyIif+8D3590M8aVD2/WNHzy47EdWvH5sm7763I9rz929+un3vjBve1e6/pvBIytugcmhtA5+vlcd+9epoatGDXfVKD2a1bkXL6/ogXnZiZy6nzmh9v0tatyeUqqjStnxnAZeGyqLB+bdDGobHmobLuobHmq7PAODjeo+3lk0bWikVkMjtZKkupqxomCyY+tZ/cpHD+j5V3fr6InNyuaiaqgb1QcfekX7dh9bMHTs231M9TVjeqH7HnW/tU3OmZobrmr/g6+v+CGlN7P+W40eHwAASmS1PT5Y2GI9PjyrCwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3zDlX6m1YETO7JOl0qbdjmZolXS71RpQx6hseahseahseahuuO6m+Hc65loVm3HHB505iZq845x4o9XaUK+obHmobHmobHmobrnKpL6e6AACANwg+AADAGwSfcD1d6g0oc9Q3PNQ2PNQ2PNQ2XGVRX8b4AAAAb9DjAwAAvEHwuY6ZjZV6GyTJzLaa2Q/NrMfM/sLM4qXeptVaQ7V9vFBXZ2bNpd6eW2UN1ffLZnbMzA6Z2RfMrKLU27Raa6i2z5jZ62bWbWZfMbOaUm/Taq2V2k4zs99fa9t0s9bKfpjZl8zspJkdLPy5v5TbQ/BZu35H0lPOuS5JQ5L+VYm3p5z8QNIHdOfcD+pO82VJOyTdK6lS0mOl3Zyy8oRz7j7n3B5JfZIeL/UGlRMze0BSQ6m3o0z9B+fc/YU/B0u5IQSfGzCz/Wb2XTP7azM7YWa/bWYfM7OXzOwNM+ssLPePCz0zr5nZt8ystTC9xcwOmNlhM/sTMzs93btgZv+80M5BM/ufZha9bt0m6X2SvlKY9KeS/snt2/twlbK2kuSce805d+q27vRttAbq+6wrkPSSpE23c//DtAZqO1JY1hSEyrIZpFnq2ham/TdJ//F27vftUOrarjnOOf7M+SNprPD3fknDktokJSSdk/SZwrx/J+n3Cq8bNDtI/DFJv1t4/QeSfr3w+icUfEA1S9op6W8kVRTm/ZGkX75uG5ol9cz5ebOkQ6WuTTnU9rrtOSWpudR1KeP6Vkh6VdK7Sl2bcqqtpC9KGpD0HUlVpa5NudS2sI4n5m7Tnf5nDdX2S5KOSeqW9JSkRCnrEhMW87Jz7oIkmVmvpG8Wpr8h6b2F15sk/YWZtUmKSzpZmP5OST8jSc65vzOzocL090vaK+nl4EubKiVdDHk/1iJqG661UN8/kvQ959z3b8kerR0lra1z7l8WvlV/VtIvKghC5aIktTWzDZJ+XkFAKFelPG5/XVJ/oc2nJX1S0n+5ZXu2QpzqWtzUnNf5OT/npZnQ+FlJf+Ccu1fSv5aUXKJNk/SnbvZc53bn3JPXLTMoqd7MptexSUFCLyelqq0vSlpfM/u0pBZJn7jJ7V/LSn5GEaWrAAABt0lEQVTsOudykv6PpJ+7ie1fy0pV27dJ6pLUY2anJFWZWc/N78aaVLLj1jl3wQWmFAT1favYj1Uj+KxenWZDya/Mmf4DSb8gSWb2sGYHzH1b0iNmtq4wr9HMOuY26IK+we9IemROu38dytavbbe8tigSSn3N7DFJH5L0z5xz+ZC2fa275bW1QNf0a0kflXQ0tD1Yu8L4zP2ac269c26Lc26LpHEXXFjim7A+E9oKf5uC8aqHQtn6ZSL4rN6Tkv7KzH6k4qfWfkbSw2Z2SEEXar+kUefcEUmfkvRNM+uWdEDBedfrfVLSJwrfOpokPRPeLqxZTyqE2prZvzWzswp60rrN7E/C3Y0160mFc+x+TlKrpBcKAx7/c4j7sFY9qVtfW5P0p2b2hoLTE20q4emCEnpS4Ry3CK+2X55z3DZL+s3wdmFp3Lk5JGaWkJRzzmXN7CFJf+ycK+m9C8oFtQ0X9Q0PtQ0PtQ1PudWWwc3haZf0l2YWkZSW9Gsl3p5yQm3DRX3DQ23DQ23DU1a1pccHAAB4gzE+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADe+P+vcXyhhVNWfQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: French\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeWwk2WHn+e/LyJuZTCbvm1Vknd1dVV1dfZWOPiR1Wy3Z0mJHGg88GK/QKwsLQ95de4DRrNfAyMB617MYjA/BO4YEydodaLTA2FrJtlpSt1p9SJb6qO6uqq6zi2SRrOJ9M8m8I2P/SJJVbJLFZHWxSGb8PgABMiLyZcTLx4hfvHgRaRzHQURERMQNPNu9AiIiIiJ3i4KPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGd7tXYLOqqz1Oa6u13atRlvrOVW73KpQ3PTpiyxiPzuG2ilMobPcqiGxamgWyTsasNW/XBZ/WVou/f652u1ejLH1p/8e3exXKmpPLb/cqlC1PMLDdq1C2Csnkdq+CyKa97ry47jydJomIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGt4t3sFdhLHgSuXD3PlvUPMTFcDEKuaZv+BSxw4dAFjbiw7MtzMT577zLpl3Xf0HU489Pqm3v/aQDvn372fqckaHMdDVXyKg4fPs2//e7e1PbuBN+ih5kCE+L4KwnV+/BEvju2QHM8y+u4cY2fnNlWeP+ql/aPVxPdW4A15yC7YTL03z8AvprAzhS3aip2r5nCUWHuYisYgFQ0BvAGLsXdnee/7Q5suyx/10vFEHVVdFfhCFtn5PJOX5xl4dRw77b66Beh4rJqKxgChuA9vyEMh75CZyzPVvcDI23PkN1Ev/ohF20eqie8N4Q1aZBfyTF1Jcu2X065su7DY5p5soGpf5EabuzTHwCtjm2pz3qBF2+N11ByqxB/xkkvZzHTP0//SKNlEfgu3YOdyc90q+Nzk5698nKs9+wkGk+zt7MbrzTM01MJrv3yMsbEGPvr4S6te09A4RGPT6oNIfcPwpt774oV7eeNXHyUQSNG57woeT4H+vk7+6dWPMT1VzUOPvHbb27WT1R6K0vXJerKJPLMDSTJzeXwVFjUHIuz/VAPxzjCXvz9SUlnBKh9H/lUr/govk+/Nk5rMEmkO0vxQnKrOCt79z9c2dSAqB20fqSXSGCSfsckm8ngD1m2VE4z7OPqFPfgjXiYvJ0hOZIg2h2h5pJp4VwVnv91PPmXf4bXf+ZoejLEwmmGmP0UuaWP5DNGmAO0frqbhaCXvfmeQbGLjeglUeTnyW83FtntlgdRUjmhjgOYHY1TtDXHuvwy5ru0G436OPttZbHOX5optriVEy6O1xPdFOfut3pLanDdkcfTZTsK1AWZ65xk/N0u4NkDD8Tjx/VHOfLOHzEzuLmzRzuH2ulXwWdTft4erPfuJROf49Ge+RzCYBsC2Pbz84tP0dh+kvaOPjj1XV7yusWmI+x849YHeez4R5dQbJwkE0vz6Z79HJJoA4NjxU/zwB/+MC+fup2PPVeobRj/Q++xEqeksF/52iOnuhRXT+1+Z5Nhvt1F7KMrEwXkmL89vWFbn03X4K7z0vjDG8Fuzy9P3fKyWlofjdDxeS89Pxu74NuxkV58fJZPIkZ7KEesIc+S3O26rnK5nGvFHvPT8eIThN6eXp+99qp6WR2voeLKOnudKC6jl5PW/6MOxnVXT2z8Sp/VknNZHquj96eSG5XR+orbYdn86wcg7N3o59zxZTfODVbR/tJreFybu6LrvdF2faiq2uR8NMfzG1PL0vU830nKylo6PNdDzw417Ljs+3kC4NsDgrya4+vyNNtr0cDVdzzSz79PNnP9O/5Zsw07l9rrVGJ9FA/17Abj3vjPLoQfAsgocP/EmAJcu3Lcl733lvYMUbC+H7jm3HHoAAoEsR+5/G4D3Lt2zJe+93Wb7U6tCD0BuwWbkdDG8VLaHNiwnWOUj3llBeia3IvQAXPvFJHa2QN29UTw+s04J5Wm2P0l66oOdcQXjPuJdEdLT2RWhB2DglQnsbIH6IzHX1S2wZugBmLhcbNPBuG/DMgJVXuJ7w6RncitCD8DAL6aLbfeeiKvqNxj3E98XLba5mw7MAAMvj2FnbeqPVm1YJx6fh/qjVdhZm4GXV570DL8xRXomS3xflEDVxp9TuVDdKvgsSyXDAESiq8eULE0bHWnEtldWWWKukosX7uXs6eNcee8gc7OxTb/3yHALAM0t11bNa2ktThteXMZNlg8qhbUPLjeLLYajmavJVfPsrMPc9RSW30O0OXhH19ENYh0VAEz3rg6odrbA3LVksW5bNg6oblHdVdyfJMezGy4ba1tsu/2pVfMKOYe5wXSxfpsCd3Yld7DYnqU2t7qn184WmBtYbHOt4VuWE20NYfk8zA0ksbOrLxVO9xTLr9obuQNrvTuobje41GWMqQFeXPyzEbCB8cW/H3YcZ8P/amPMHzqO87+vM+8E8G0gBDwH/E+O42x8lNsCS70884nKVfOWpjmOxXyikljVzPK83p4D9PYcWLF8x54eTn7kFQKBjXd6ALOzVQBUxmZWzQuHk3i9OZILEfJ5L17vzhwsdscZqLuvWO/TvavDzPuFavxA8dLZWtLTxV6PULWf2TUOMLK+pbpNT61dt6mpLPGu4nKzfRt/VuWo+aEYls+DFfAQafRT2RpiYSzD9ddX/0+/X6i6eEa8Xs9cejoHeyFY7WN2IL3mMuUmVLvY5iYza85PTWWJA6GaALNXVwfyJeHawPLya1kqf6mNu4HqdoPg4zjOJHA/gDHmq8C84zj/YZPv8YfAmsEH+E/A7wCvUww+nwR+tMny74jWtgGu9u7nwrmj7O3qJhAofmiFgofTbz+4vFwmU/ywA8EUDzz4Gq1t/USiCWzby+REHW+fepj+vi5SqTCf/PQPVtwJtp5cttgw/P61G5DPnyWf95HN+l0TfPY8UUtFfYCp7oU1e3HezwoUe+LWuxshv3hXzNJyUjpvsFhn6w2uXbrjyBu8vYHT5aD5oRj+ihu70+neJN0/Gief2nhA8lKbzK9z59Zy/d7mwPTdaGlb129zxYG3S21zPdZyOWsP1F3eL7io7apub2Nw82IvzX8EIsAE8AUgCbwBfMZxnMvGmO8CPwO6gJAx5jRw3nGcf3lTOU1ApeM4ry3+/f8A/w3bFHz2dHbT072focF2vv93v0l7ex+WZTM01EIqGaaiIsHCQhRjih1S8fg08fiN8Q4+X56W1mvU1Y/wD9//PGOjTVwb2EN7R992bM6u1nQiRssjcZITWa78o/sGzMruc+r/GgDAF7aItgToeKyaY/9dCxf/boSFsdJ6fkXk7tjs6a8BvgZ8znGcE8C3gD9xHGcW+DLwbWPMvwDijuN8w3GcfwukHMe5/+bQs6gFuH7T39cXp20Lj8fh40//mAcefI1gMEV39wG6uw9QWTnLp37j+/h8xW7oYOjWl0n8/hx7O68AMDrSVNJ7+xZ7erLZtbsEN+oRKieND8TofKqe5HiGc9+9XvItvPby2cXaTdq71CPk0uehfBBLn8F6Z4DLPRbrnPm5SS5pM3UlyYX/OoI3aLH/U/UbvuZGj84G9ZtxT/3mN+h1sDbotVhyo/di7V6H5f2Ci9qu6nbzPT4B4D7gBVO8hmMBwwCO47xgjPk88FfAsTu5ksaYLwFfAmhu2bpLFR5PgSPHTnPk2OkV0+28xdxcjEAwRfSmu67WszReKJ8vrXpjsRnG0iHmZqsIBlfesp5MhsnnfYQr5sv+MlfTg1V0fqKOhbEM5//fQXLJ0v9hUpPFUBiKrx0el+6uWe96tKxvqW6D1WvXbWhx+tJyApm5PMnJLJGGAN6Q55aXvFKLY3uC1Wvf/bLUdj/o3Xm7SWpisc3VrD2g+0abW3ucypLkRGbF8u+3VL6b2q7q9vZ6fM4v9uDc7zjOEcdxngYwxniAwxQve8VLKGsQaL3p79bFaas4jvN1x3EedBznwZrquz9G42rvPgoFi72d3SUtPz5ePMsrJSQBNDYVN3tosG3VvMHrxWlNTWtWTdloeSRO5yfqmB9Nc+671zcVegBmB4o9cVV7V9+JYPkNla0h7GyBxJA7BofeSbP9xQGO8c6KVfMsv4fKtnCxbgc1aPxm/kjxTNjZoJNx9tpi2+1YfVecx2eobAkW63f41geicjLbt9TmVt8RZPk9VLYvtrnrtx7/l7iews4VqGwPY/lXHzuWyp+5uvFzwsqF6nbzwScD1BljTgIYY3zGmHsX5/0+cBH4LeBvjDFLpy+5m35f5jjOMDBnjHnUFLuPfhv4we1sxJ2Sza4+45qarOHUm4/i96c5cvSd5ekT43VrltHTvZ++3n14PDZ79vasmJdOB5mdqSKdXnlL9b4Dl/FYeS5duI/5RHR5eibj593TDwBw4NCF296una71Q9XsebKW+eE05787eMuzY+Mp3gUTfN+zIdIzOaZ7FwhW+Wg6sfKRAm0fqcHyexg/n6CQ25abBncF4ynegfH+Z8+kp3NM98wTjPtpemjlOU3747VYfg9j7866rm6DcR+Wf+27F9o/Esdf4WVuML18KWup7QaqVvYEZ2byTF9NEqzy0Xi8clU5lt/D+IV5V9VvejrLdHei2OYerl4xr/2Jeiy/xdjZmRV1Eqrxr7qDqJArMHZ2Bstv0f7EysuOTQ9XE4z7me5O7MinC28V1e3mL3UVgM8Bf2mMiS2+/s+NMXngixRvcU8YY14F/gj4d8DXgbPGmLfXGOfzu9y4nf1HbNPA5iUv/PjXsSybqvgUPl+W2Zk416+14/XafOypHxGuuJGAX/7Z03hMgZraccIV88t3dU2MN2CMzckPv7riYYRQfADimXce5NjxUyue9hyNJnjwodd447WP8I8/+G/Z09mz/JUVyYUI99x3uiyf2gxQd1+UjsdqcArFZ+00PVi1apnMbI6xd4t16Y96eeBLe0jP5njrP/WtWK73+XGO/KsAnU/VE+sIL39lRdXi7/2vuOvJtwDVByPUHCyG6aW7jqItIfZ/pjj+LJe06ftp8eFj/qiPE7/bRXomy6mvrQztPT8a4egX9tD1yUaq9lYsf2VF1d4KkpMZ+l8ax23inSHaP1pNYjBNejZPPmXjq/ASawsSrPKRnc/T85Mb9eKPeDn+37eRns3x9tdXPrOr96cTHPmtZjo/UUusI0RqMku0KVj8fSrLwM+n3v/2Za/nuWGOPhui65lmqvZGlr9WYen3/p+t3Cee+HLxsSK/+ONzK6b3vzhKrKOClpO1VDQESQylCNcGqDlUWfyMntvc1wuVA7fXbcnBx3Gcr97052NrLHL4pmX/4KbfvwJ8ZZ0yT1EcM7QjdOzp5WrvPnp79mPnvYQrFjhw6CJHjr1DRcXK5xkcPHSe4aFWxsYayaSDOEA4vEDX/kvcc++7VNds/Jj6mx2+t/jU5vPvHqOn+wA4hljVNMdPvFHWX1K61HNjPIbmh9a+Qjo7kFwOPreSnslx5tvXaP9oDfHOMPGuCrLzeYbenHbtl5RGGoI0HFsZJkPV/uXr8umZ7HLwuZX0dI7T37xKx+N1xLsixPdFyCbyDL4+5dovKZ3tTzFWlaCyNUhFfQBv0IOdc0hPZbl2fp7ht2dLHpyfmclz9j8P0v7haqr2hoh3hsnN5xk6NevaLylNT2c5/Y0eOp6oJ74vQnz/Ypt7bWJTX6SZT9mc/WYv7U/UUX2wksqOMPmkzeg70zv6izS3ktvr1mzT8wJv29GjPufvn6vd7tUoS1/a//HtXoWy5uR25k6gHHiC7nmq8d1WSLrzoZSyu73uvMicM7XmtWg9zU1ERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcw7vdK7BZ/Rdi/A/3fWq7V6MsPfvume1ehbL27QePbfcqlK3c8a7tXoWy5Xnlne1eBZE7Sj0+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIa3u1egd2q9lCY/c/UAtDzwiRj5xZKfm2o2kvryRix1iCW30NmLs/Ee0mG3pijYDtbtco7wvxgPdOXOsnORrCzfryhNIHqWaoP9RKqm15ebvhX9zPX23bLssIN47R94rWS3zs1Hmfy3H5SE3Ec28IXXSDWNUD8wFWMi04B1HY3p7auQCzmEIk4VEQcvF4YHTVcvrj27tOyHNraC9TWFQgGwbYhkTBcH/AwM7P5hlZdU6C1rUAk4mAMLCwYhgc9jI6Wf6P1R710PNlA1b4IvpBFdj7P5KU5Bl4Zw04XSi7HG7Roe7yOmkOV+CNecimbme55+l8aJZvIb+EW7FxurlsFn9vgj1jsfbIaO1vA8m9u5xNp9HPP5+oxHsPUlSSZhE2sLUDbozFibQEu/N0Yjr1FK77Nxt85zNSFfViBLJHWYaxAlmyigvnrjcwPNNH4oXeI7R0EINI6gq8iuWY5c1dbyc1XUNE8VvJ7J641MPTzBzFWgcqOITz+LAuDjYy/dR+p8WpaPvrWHdnGnU5td/PaO2wiEcjnIZsB7y32ml6vw7HjeSoqYGEBhoY8WJZDTY3D0ftt3rsEIyOl13tzi82+/QVyORgb9VAoQF1dgYOHbcIRh6s91h3Ywp0pGPdz9NlO/BEvk5fmSE5kiLaEaHm0lvi+KGe/1Us+tXGD84Ysjj7bSbg2wEzvPOPnZgnXBmg4Hie+P8qZb/aQmcndhS3aOdxetwo+t6Hr12rIp22mulM0P1hZ+gsNdD1dg+XzcOkH40z3ppZnHfj1Wmr2h2l6oJKhN+e2YK23Vz4VYOpiF1YwzZ5Pv4I3mF2elxyp4dqLH2Ly7MHl4BNtGyHaNrKqHDvrZerCPozHprLzeknvbee8jL5+DGMc2j/xS4I1swAUjl3m2k9PMj/QzFzfMJV7hu7Alu5sarub19NtkckY0imIVTkcu3/9A0LHngIVFTA+brh4wQLHANDnczh+Ik/XfpupaUM2YzZ830DQobOrGHrefstLJl18zUC/h+Mn8rS1FZgYNyTmyrPnp+tTTfgjXnp+NMTwG1PL0/c+3UjLyVo6PtZAzw83/p/t+HgD4doAg7+a4OrzN/YpTQ9X0/VMM/s+3cz57/RvyTbsVG6v2/L8j9lCjcejxNoCdD8/hZ3bXNd+ZWuAcI2PuevpFQcOgP6fFy/zNByJ3LF13UlyCyFwDKHamRWhByDcOInHmyOfDmxYztzVVhzbItI2sqqc9cwPNGFnAkQ7hpZDD4DHKlB77BIAM1f2lL4xu5Ta7u2ZnfGQThlg47BSU1u8RNB/9UboAcjlDIPXPVgWNDaWdhmhsbGAxwNDg57l0AOQzxsG+os9Pc3NpV+S2E2CcT/xfVHS09kVB2aAgZfHsLM29Uer8Phu/Zl4fB7qj1ZhZ20GXl7ZQzz8xhTpmSzxfVECVb47vg07lep2g+BjjKkxxpxe/Bkxxgze9Le/lDcwxvzhLeb9iTHmmjFmfrMrvh1C1V46PhJj+J0EicHMpl8fawsCMN2XXjUvM2uTmsoRjHkJxMqvI84fXcB4bFITVeTTK5tOcrSaQt5HReP4huXMdHcAULWv9LOIhZHieJa1Lo2F66cwVp7UeJyCXb7nAWq7d4d/sWmnV1cTqVTxQFIVLy10Li03NbX6ADS9OK2qqjzHVcX2VAAw3bv60GBnC8wNJLH8HqKt4VuWE20NYfk8zA0ksbOrQ+J0T7H8qr3lGdrXorrdIPg4jjPpOM79juPcD/w18GdLfzuOU9rpNqwbfIB/AB4usZztZWDfJ2vIzNlc+8XsxsuvIRQvJt/09NrXPNMz+cXlyu/gYQVy1B6/iJ0O0PePTzDy+lHG3znE0M9PcP1njxJuHKfhkbO3LCM1Hic7U4kvOk+4cbLk987NFf/x/NHVg3iNx8EXSYLjITd/63/0XUtt967JLVZPMLh6XihUDCnhcGlhZWn5VHJ18MlmDbYNgSB4POUXfkK1xQSZnlw7pKemioefUM2te4nDtYEVy7/fUvmhmpLO48uC6vY2LnUZY04YY14xxrxljPmJMabJGBMzxlw2xhxcXOa7xpjfMcb8KRBa7CH6zvvLchznNcdxhu/Admy5tkdjVNT56X5+8rbvXrECxR3YWukYIJ8pLC5Xnj0P1Yeu0vzYKRzHMNvdwdSF/SQGmvFWpIh1Xtvw0tVMdzuwud4eKI7xAfD41z5oe3zFg3Yhu/O6ZO8Etd27Z2qyWE8de2zgRl37fA4trcU6utXg6JstLZdfZ0hRPr9yuXLiDRQv5eXXubvIzhQrxRu8dXuzlstZuxKX222wfAeJv5/qdvODmw3wNeCzjuOMG2N+E/gTx3GeNcZ8Gfi2MeYvgLjjON8AMMZ8ebHHaNeKNPppebiSobcTzA+X2tEl7zd5vouJM4eIH7xK1YE+vKEM2bkI46cPMfzLB0hPV1L/wMU1X2tnvST6mzc1qFnUdu+2/j6LeHWeunqHcDjP9IwHy+NQU+uQzQBBcMqvg0ZkV9ns6VkAuA94wRhzGvgjoBXAcZwXgHeBvwK+eCdX0hjzJWPMKWPMqWxhjYvnW8nAvl+rITWd59ovZz5QUXamuMdb7zZi7+LZsp0pvwGLydEaJk7fQ6R1lPoTF/BHk3i8NsHqWVoeO4U3lGL6UhfZxNqXm4qDmr2bGtS8xNqgR6ewQY/QrqW2e9dls4Z33vIyOOjB8hYHH1fXOIyPebhwodjOciU2s+UenXVOmJd7hHbmo1I+kPwGvQ7WBr0WS270Xqxdicvtdp1ei3Kkur29Hp/zjuOcXDXDGA9wGEgCceCOnZY7jvN14OsAMW/tXT1fsvyGUHXxgPno/9i+5jJdT9XQ9VQNw2/P0ffK+geY1OL4iGDcB6RWzQ9WeReXK7892fxgAwDhholV8zxem2DtDPPXmshMx/BHVz+/Z7Zn8TLX/s3fGumrnCc9VUU2UbHiri4Ap2CKY3tMoTjWp4yo7W6PXM7Qc8Wi58rKA0JVVfFAkkhsfHcYFAdD+/0OobBDYm7la/x+B8uCTBoKhdLK201SE8WTm+A640xC1cVxI6l1xqksSU5kViz/fkvlpybd0xuqut188MkAdcaYk47j/MoY4wMOOI5zHvh94CLFwcx/s7hMDsgZY3yLv+86Th5G3137prOKej+RBj9zg2lSU3kSG1xKmL2WpvWRGPE9wVXPOwnELELVPtKzeTKz5XfwcOyl9L/2P5u9eKeX8aw+y0hNVJGZjhUHNTeUPqh5SUXjBIm+VhaG6lc9qyc5Vo1jewnVT+Kxyqu3Qm13Z6lfvI19rMQnLs9MG2Ixh+pqh8T7Ho8Ury6e/83MlF/oAZjtK96IEO9cfUeQ5fdQ2R7GzhZIXL/1yUriego7V6CyPYzl96wao7ZU/szVXXFj8R2hut38pa4C8Dng3xtjzgCngQ8tDmr+IvCvHcf5OfAqxctgUOypObvW4GZjzP9pjLkOhI0x140xX73N7dgyBduh96dTa/4sPc9k/MICvT+dYvK9YkPxeA3BuBd/dOUZ39z1DMnJHJWtQeKdoRXzOj4SB9Y/UO12ofpiYJnpbieXXHnLy/xgPanxaoxlE6qbWvXa2aVb2Dfo7bGzXjKzEfKpleEq0j6MFciQ6G8mPRlbnl6wPUycObRYdt+mt2mnU9vdDg4ea3WndH1DgYYGh9lZw+TEyrDi9RV7dby+la8bHSk+qbm5pUAgeGOe1+vQ3lG8fDA0VJ6DydPTWaa7EwTjfpoerl4xr/2Jeiy/xdjZGQo3PY8qVONfdQdRIVdg7OwMlt+i/Yn6FfOaHq4mGPcz3Z3YkU8X3iqq2030+DiO89Wb/nxsjUUO37TsH9z0+1eAr6xT5r8B/k2p67BbRBr93Pv5Bmavpbnwtzc9O8aBnucnuedz9Rz49drFx/7nibUFiTQGmBtMM/x2+T35FiDaPsxs4zjJkTr6/uGJ4lidUIbMbISFwQbAUHf/RazAyn8SO+dlbmlQ895bXz2dv9bIyGvHqey8RtPJ08vTLV+ehkfOMvTzEwz89ENUdgzi8edYGGwkOxch0j5EtKP8n9pcCrXd1WpqC8sPJlx6Tk9lpcOBQ8XerVzOLH91hMeCkx/KMz1tSKcMjgOVMYdYzGFhAS6et3j/gxBbWgp07CnQ3+ehv+9G4EynDb09HvbtL/DAiTzjYze+siIQhGvXPGX71GaAnueGOfpsiK5nmqnaG1n+WoWl3/t/Nrpi+aMh8+AAACAASURBVBNfPgDAL/743Irp/S+OEuuooOVkLRUNQRJDKcK1AWoOVZKdz9Pz3K64sfiOcnvdluGNkDvb/EiWd//LCG0nq4h1BLF8HjKJPNdem2Xojbmy/K4jAGOg9cnXmX5vD4m+FuavNVKwLSx/jormMeKHrlLRtPoBhnNXW3DyXqIdg5se1HyzaNsIbZ/4JVPn95O41lT8ktLIAnUPnCd+sBdTnlcM7ii3tt1IxKGxcWVvTCh04zk76fSN78xyCjA+ZqiMOcQXH0CYSsHVXg+D1z2bHo8zNGiRThta2wrUNxQwBpILhr6r5f8lpenpLKe/0UPHE/XE90WI74+QTeQZfG1iU1+kmU/ZnP1mL+1P1FF9sJLKjjD5pM3oO9M7+os0t5Lb69Y4u+zeypi31jkZ+ex2r0ZZ+sKpM9u9CmXt2w8e2+5VKFu5413bvQply/PKO9u9CiKb9rrzInPOGo89R9/VJSIiIi6i4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIiruHd7hXYLMcuYM/NbfdqlKX/+5NPbvcqlLU/f/c7270KZev3Oj683asgIruEenxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDW8270Cu4k/6qXjyQaq9kXwhSyy83kmL80x8MoYdrpQcjneoEXb43XUHKrEH/GSS9nMdM/T/9Io2UR+C7dg+1S3W1Q2WITjFuG4B6/fMN6bo+efMuu+JlLnoeWIn2ithceCVKLAeHeekcs5cDb3/qGYofWon8pGC8tnyMw7TPblGTyfxbE/4MbtAI4Dve8dovfyIeZmqnGAytgMnQcv0nXwIsbc+rWv/OTTjA61AvD5L3wdj2dzFXz1ygG6L97L3EwcYwpU1Uxy6L4zNLcPfICt2h20X9g6qtut4+a6VfApUTDu5+iznfgjXiYvzZGcyBBtCdHyaC3xfVHOfquXfGrjI6g3ZHH02U7CtQFmeucZPzdLuDZAw/E48f1Rznyzh8xM7i5s0d3VcsRPRbWFnXPIJh28/lsciYF4q8WBx4MUbJjsz5PPOMRbvex5KEC03uLKq+mS3ztS6+HwUyGMgamBPNkFh8pGi9ZjfiqbLC6+kMIp/f98R3rtlY8x0LufQDBJe2c3ljfP6FArb/3yMSZGG3n08ZfWfe2Vi/cyNtyMZeWx7c3vEk6/8SiXzx0jVDFP58GLFGyLgatd/Pynz/DAo79g/z3nP8im7WjaL2wd1e3WcXvdKviUqOtTTfgjXnp+NMTwG1PL0/c+3UjLyVo6PtZAzw+HNiyn4+MNhGsDDP5qgqvPjyxPb3q4mq5nmtn36WbOf6d/S7ZhO/WfypJNFkgnHCobLO55OrTuspYPOk8GcBy48HyKhaliKrl2Oss9T4Wo6fAytcfLZF8JZxMGOk8GsbyGyy+lmL5+4595/2NBajq8NB32MXR+5/1zlup63x4GevdTEZnjqc/8fwSCxVBo2x5++bOn6e85QGtHH617rq567dxsjLNvPsLB+84wcHUfyfnopt57YrSBy+eOEYnO8tRnvoc/kAXg0JHTPP/3/4zTbz5Kc1s/FdH5D76hO5D2C1tHdbt13F63GuNTgmDcT3xflPR0dkUjARh4eQw7a1N/tAqP79a9GB6fh/qjVdhZm4GXx1bMG35jivRMlvi+KIEq3x3fhu02N2qTTpR2+aS63Ysv6GGyL78cegCcAlw7UzywNhworY4qGyzCVR7mRu0VoQdg4O3Mpsraqa737wXg4H1nl0MPgGUVuO+BN4Fir877FQqG11/5GBXRBPc9cOq23rv70j0AHD72znLoAaiIzrPv8HkKtperVw7dVtk7nfYLW0d1u3VUtxsEH2NMjTHm9OLPiDFm8Ka//aW8gTHmD9eZHjbG/NAYc8kYc94Y86e3swF3Q2xPBQDTvavPWu1sgbmBJJbfQ7Q1fMtyoq0hLJ+HuYEkdnb1tZXpnmL5VXsjd2Ctd6/KRguAmaHVXa1zozZ23iFS58GUENtvlLW6dygz75CaLRCIeAhEbv1PvpOlU8Xes0h0btW8pWnjI43Y9soKu3D6AaYna3jksZewrNu71jc23AxAU+u1VfOWpo0uLlNutF/YOqrbraO63SD4OI4z6TjO/Y7j3A/8NfBnS387jpO91WtvsmbwWfQfHMc5BBwHPmyMeabEMu+qUG0x46Un1x6Im5oqVkWoJnDLcsK1gRXLv99S+aGakjJl2QpVFptlem6Ng7EDmfkCHo8pKazcsiwgnSisWG43WurlmV/jMtV8ohIAx7FYWPwdYHK8jgtnjnP46Gmqaydu633zOS+pZASvN0sonFw1P1o5C0BiNnZb5e902i9sHdXt1lHd3salLmPMCWPMK8aYt4wxPzHGNBljYsaYy8aYg4vLfNcY8zuLvTihxR6i79xcjuM4ScdxXlr8PQu8DbTegW2647yBYq9Bfp2R7nam2DPhDd66Oq3lctYeNJbPFMu3gtZtrWe5sBYHPudza18asxf/zzYaIA3F8UIA+XViur34HlYJZe1UTW3FO6feO3eUTObGzqpQ8HDunQeX/85mi/PyeYvXX32SWHyae4+/fdvvm8sVd2g+/9qVuzQ9l731DnS30n5h66hut47qdvODmw3wNeCzjuOMG2N+E/gTx3GeNcZ8Gfi2MeYvgLjjON8AMMZ8ebHHaP1CjakCfgP4i81vgoi7te/tob/7ACODbfz4e/+c5vY+LMtmdKiFdDJMuCJBciGKWXwGwJk3H2UhUcknfuN7eDy7/HY2EZFN2mzwCQD3AS+Y4oNBLGAYwHGcF4wxnwf+CjhWaoHGGC/wXeAvHcfpXWeZLwFfAghy6+uOWyG/QQK2NkjQS24k6bUTsDdQLN9eJ0G7hZ0tHqC9PkNmjQf2WIs9p/nsxoOl7cWbtbzr9LZaiwP47BLK2qk8HoePPvVjLp87Qn/Pfvq6D2BZNvWNQ3z4Yy/wTz97CoBAKMXYcBPdF+/lvuOniNdMbVDyrfl8Sz06a1fu0nSff/1nNe1m2i9sHdXt1lHd3l6Pz3nHcU6ummGMBzgMJIE4cL3EMr8OXHEc58/XW8BxnK8vLkelqb7rR6jURHEHH1znmmeouriDT61zzXRJciKzYvn3Wyo/NVnq8KnylJorEKm1CFZ6VtzVBYCBQMRDoeCQmd+4KaQWx/YEKz3A6n/AYNSzYrndyuMpcPjoGQ4fPbNiup23mJ+LEQimiEQTDA7sAQzn3nmIc+88tGZZ//XbXwLg6c/+LfGayXXf0+vLEwrPk0pGSCXDq8b5JOaKY3uisdnb37AdTPuFraO63Tqq282P8ckAdcaYkwDGGJ8xZuk+2d8HLgK/BfyNMWbpHrbcTb+vYIz534AY8D9ves3votm+BQDinatHp1t+D5XtYexsgcT11QM8b5a4nsLOFahsD2P5V1f9UvkzV8vzmSelmhspBpSq5tVnEpUNFpbXMD9eKOmhgzfKWp3xAxFDKOYhM18oKUTtRgNXuygULNo7uwGIVU2x98DFNX+83uIOau/+S+w9cJFAYOOHRNY3FZ/1MXy9bdW8pWkNTRs/D2Q30n5h66hut47qdvPBpwB8Dvj3xpgzwGngQ4uDmr8I/GvHcX4OvAr80eJrvg6cff/gZmNMK/C/AvcAby8OgP7i7W/K1klPZ5nuThCM+2l6uHrFvPYn6rH8FmNnZyjcNBg3VONfNZq9kCswdnYGy2/R/kT9inlND1cTjPuZ7k7syCdd3k1TA3lyaYeaPV4qqm80UeOBtmPFOh19b2UdeSwIVhr84ZWDlOdGbZIzBSobLOKtK4NU+wOBNcvajXLZ1ecW05M1nHnzUfz+NIePngagsWWQhz/y6po//mDxDO7BDxf/DkcWlstKJcPMzVSRfd9lrX2HLgBw8cxxspkb8xYSEbov3ovHyrN3/6U7vr07gfYLW0d1u3VUt5u41OU4zldv+vOxNRY5fNOyf3DT718BvrJGedcpXjrbFXqeG+bosyG6nmmmam9k+RHfS7/3/2x0xfInvnwAgF/88bkV0/tfHCXWUUHLyVoqGoIkhlKEawPUHKokO5+n57nhu7ZNd1O8zaK6rdjcfMHixx6ts+j6UDF85NIOA28XexzsHPS+lubAY0HueTrEZF+efLb4lRWhmIfJ/vyqpzZHaotPg54bsbnwQurGDAd6f5Xm8FMh9j8WZGogT2bBIdZoEam1mBuzGb648/4xN+vlH38ay2sTi0/h8+WYm6li6Fo7ltfmo5/48Zq3m2/G2VMP09d9kIc/+hJ797+3PL22YZQD957hvfPH+PH3P0/bnt7Fr6zoJJsJ8sCjvyjbpzaD9gtbSXW7ddxet/rKihKlp7Oc/kYPHU/UE98XIb4/QjaRZ/C1iU19qVs+ZXP2m720P1FH9cFKKjvC5JM2o+9M7+gvdfugKuIWdV0reyWCUc/yGJvMfGE5+ABMX7M5/3yKliN+qtu9eKziM3f6TmUYubS5oDI/UeDcc0lajwWINXmxfJBZcLh+Jlv8ktLdPbwHgLa9Vxno7aK/Zz923ksovEDXwUscPvYO4YqFjQv4AI4/8hpV1VNcuXgvPZcPY3CI105w6L6Xy/5LSrVf2Dqq263j9ro1jrO7xjZUmmrnEfPx7V6NsuTt3LPdq1DW/uyl72y8kNyW3+v48HavgojsIK87LzLnTK15VWn3Pq5WREREZJMUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDW8270CsnPk+65t9yqUtd/r+PB2r0LZ2v9mYLtXoWxd/c2m7V6Fspbv7dvuVXAd9fiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIa3i3ewV2E3/US8eTDVTti+ALWWTn80xemmPglTHsdKHkcrxBi7bH66g5VIk/4iWXspnpnqf/pVGyifwWbsHOVHM4Sqw9TEVjkIqGAN6Axdi7s7z3/aFNl+WPeul4oo6qroobn9HleQZeHd/UZ1RO1G5vX/BalNiZxlsu4+Aw9uvdAFSebiB0vfKWy2dqksycHCx5HXxTQSquVOObCWJsQ74iR7ptjuTeGTAlF7MjVbdbVDZYhOMW4bgHr98w3puj558y674mUueh5YifaK2Fx4JUosB4d56RyzlwNvf+oZih9aifykYLy2fIzDtM9uUZPJ/FsT/gxu1wbt4vKPiUKBj3c/TZTvwRL5OX5khOZIi2hGh5tJb4vihnv9VLPrXxf4o3ZHH02U7CtQFmeucZPzdLuDZAw/E48f1Rznyzh8xM7i5s0c7R9pFaIo1B8hmbbCKPN2DdVjnBuI+jX9hT/IwuJ4qfUXOIlkeqiXdVcPbb/SV9RuVE7faDyVdmmN8/ueY831SIwGSYbH1yeVqmcR47tHY9BAejeJN+svULJb9/YKSC2FtNOB6HTHOCgq9AYLSC6IU6fNNBZk+MbG6DdpiWI34qqi3snEM26eD13zrJxVstDjwepGDDZH+efMYh3uplz0MBovUWV15Nl/zekVoPh58KYQxMDeTJLjhUNlq0HvNT2WRx8YUUTpmeK7l9v6DgU6KuTzXhj3jp+dEQw29MLU/f+3QjLSdr6fhYAz0/3LiHouPjDYRrAwz+aoKrz9/YaTU9XE3XM83s+3Qz57/TvyXbsFNdfX6UTCJHeipHrCPMkd/uuK1yup5pLH5GPx5h+M3p5el7n6qn5dEaOp6so+e53X2g2Cy12w8mH8uSj02tOS/+i1YAUu2zy9MyjQtkGlcHG5PzUNETx/EUSLXNlfTeJueh8mw9GIfpk9fJVxV7QeYPThJ/rYXgcJT04DyZlvnNbtaO0X8qSzZZIJ1wqGywuOfp0LrLWj7oPBnAceDC8ykWpoqp5NrpLPc8FaKmw8vUHi+TfSX0MhjoPBnE8houv5Ri+vqNg/z+x4LUdHhpOuxj6PzOO2jfCW7fL2iMTwmCcT/xfVHS09kVjQRg4OUx7KxN/dEqPL5bn614fB7qj1ZhZ20GXh5bMW/4jSnSM1ni+6IEqnx3fBt2stn+JOmpD7aDCcZ9xLsixc/optADMPDKBHa2QP2R2IafUTlRu9063jk//pkQdjBHpmHjHpzg9Sim4CHTuIDjL60bITAcwZP1km6eXw49AFgO8weLvVDh/thtrf9OMTdqk06Udn2qut2LL+hhsi+/HHoAnAJcO5MFoOFAaW2wssEiXOVhbtReEXoABt7ObKqs3Ub7BQWfksT2VAAw3bv6zMrOFpgbSGL5PURbw7csJ9oawvJ5mBtIYmdX7/yme4rlV+2N3IG1dpdYx9JntPogZGcLzF1b/Ixa1j+jLDdqt1snNFAMHKm2uZLG2Swtn7ypd2gj/sliW83WrW7TueoUjlXANx0C2x1hvrKxeAl8Zmj1JZi5URs77xCp82BKOKrdKGt171Bm3iE1WyAQ8RCIlF/dar+wQfAxxtQYY04v/owYYwZv+ttfyhsYY/7wFvN+bIw5Y4w5b4z5a2PM7Q3u2GKh2uKmpifXHnCXmiqebYRqArcsJ1wbWLH8+y2VH6opqWrlJkt1ll6nbm98Ru6pW7XbLWIbgoNRHOOQat/4spVvOogvESBfkSVXmyr5bbzzxfrMV6zRG+oBO5zDOAYr6Y4RC6HK4uEqPbdGj5kDmfkCHo8pKazcsiwgnSisWK6caL+wQfBxHGfScZz7Hce5H/hr4M+W/nYcZ+2tXW3d4AP8c8dxjgH3AXXA50ss865aGmybX2eku50pnoF4g7f+J7GWy1l70Fg+UyzfCu7I/LejLdX9+p9RYXE599St2u3WCA5F8OQssnVJCqGNx5OEFi9HpTbR2wNg8sXPxfGt/fkVvMXpnrw76t1aHPicz619acxePCJtNEAaiuOFAPLrHMXsxfewSihrt9F+4TYudRljThhjXjHGvGWM+YkxpskYEzPGXDbGHFxc5rvGmN8xxvwpEFrsIfrO+8tyHGfpdMkL+Nn0zYgiInfX8mWrjo2DjMl5CA5HNjWoWUS21maDjwG+BnzOcZwTwLeAP3EcZxb4MvBtY8y/AOKO43zDcZx/C6QWe4j+5ZoFGvMTYAxIAH97uxuylfIbJGBrgwS95EaSXjsBewPF8u11ErSsb6nu1/+MlnqE3FO3ard3npXw458uDmou5bb04GAUY29uUPMSZ7FHx+TW/vw8iz1CBW/51zuAnS2eF3vXGXRrLV5RyWc3Pn+2F68eete5CmMtvoddQlm7jfYLmw8+AYqXpV4wxpwG/ghoBXAc5wXgXeCvgC+WWqDjOL8GNC2W/bG1ljHGfMkYc8oYcyrH+g+22iqpiWJ/aHCda56h6uJ/T2qda6ZLkhOZFcu/31L5qclSryLKkqU6C65Ttzc+I/fUrdrtnRfuLz6ccCsHNS/JR4r16V1Y466YAlhJH45xsMM78yFxd1pqcTxOcK1xNwYCEQ+FgkNmfuOwcsuygGDUs2K5cqL9wu31+Jy/aZzPEcdxngYwxniAw0ASiG+mUMdx0sAPgM+uM//rjuM86DjOgz5uPeBqK8z2Fc/s4p2rR6dbfg+V7WHsbIHE9eSq+TdLXE9h5wpUtoex/Kurfqn8mau797kc22W2f+kzqlg1z/J7qGxb/IwGSx9cutup3d5htiE4WFnyoGbvdADf3OYHNS/J1hRf4x9f3aZ9UyGM7SEXT4FVfr0Sa5kbKfYcVDWv7mGobLCwvIb58UJJDx28UdbqgeGBiCEU85CZL5QUonYb7Rc2H3wyQJ0x5iSAMcZnjLl3cd7vAxeB3wL+xhizdJqSu+n3ZcaYiDGmafF3L/Bp4NJtbMOWS09nme5OEIz7aXq4esW89ifqsfwWY2dnKNw06C5U4181mr2QKzB2dgbLb9H+RP2KeU0PVxOM+5nuTuzIJ13uFMZTrNtgfGWTSk/nmO6ZL35GD63M3e2P12L5PYy9O7viMyp3ard3VnB4aVDzQkmDmsMDpQ1qNjkP1rwPT3rlAT3TNE/Bnyc4FME7c9MJn22IXK4BShtnVC6mBvLk0g41e7xUVN84dBkPtB0rttnR91a2QY8FwUqDP7yye25u1CY5U6CywSLeurLe2x8IrFlWudB+YfNPbi4AnwP+0hgTW3z9nxtj8hQvbz3sOE7CGPMqxctg/w74OnDWGPP2+8b5VAB/b4wJUAxgL1G8c2xH6nlumKPPhuh6ppmqvZHlR3wv/d7/s9EVy5/48gEAfvHH51ZM739xlFhHBS0na6loCJIYShGuDVBzqJLsfJ6e54bv2jbtFNUHI9QcjALgryg2yWhLiP2faQIgl7Tp+2nxAVn+qI8Tv9tFeibLqa/1rCin50cjHP3CHro+2UjV3orlr6yo2ltBcjJD/0vjd3Grdga12zvnxqDmjXt7TM5DYCha0qDmwEgFsTONpFrnmLv/xufh+ArMHR0j9lYT8V+1Ln5lhU1gNIJ3wU+6KUGmeeedTW9GvM2iuq34P+8LFsNJtM6i60PF8JFLOwy8XbxUYueg97U0Bx4Lcs/TISb78uSzxa+sCMU8TPbnVz21OVJbfBr03IjNhRdu6nVzoPdXaQ4/FWL/Y0GmBvJkFhxijRaRWou5MZvhizvvgH2nuH2/UHLwcRznqzf9+dgaixy+adk/uOn3rwBfWaO8UeChUt9/u6Wns5z+Rg8dT9QT3xchvj9CNpFn8LWJTX2pWz5lc/abvbQ/UUf1wUoqO8Lkkzaj70zv6C9120qRhiANx6pWTAtV+5evHadnssvB51bS0zlOf/MqHY/XEe+KEN+3+Bm9PuXaLylVu70zrIQP/9TmBjV7bA/p5sSmBzXfLNO4wPTJ61RcqSYwEln+ktLEPeNl8SWlFXGLuq6VvbfBqGd5jE1mvrAcfACmr9mcfz5FyxE/1e1ePFbxmTt9pzKMXNpcUJmfKHDuuSStxwLEmrxYPsgsOFw/ky1+SWkZ7y7cvl8wjrO7uv4rTbXziPn4dq9GefLsvOctlJXCzru7oVzsf/Puj/1zi6u/2bTdq1DW8r19270KZel150XmnKk1Tw3K77GUIiIiIutQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREdfwbvcKyA5SsLd7DURuy5WHMtu9CmXrf+n5++1ehbL2f3Qd3e5VcB31+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+IiIiIhrKPiIiIiIayj4iIiIiGso+Pz/7d15cJz3fd/x93dv3DdIECQBEjAvURRVUXToyjUlRXJkp06TyE0btUmrKu4/mnbkTps646nlNpkkk0mdxjlcOZLtZpQ0idsZJ7EdQMrB5gAAGZ5JREFUiXEsWlKlUBcJkeIhAiTAAwQIECAA4ljs7q9/7OIi7uPhLvb5vGYwXDzH7/k9XzwgPvt7nn0eERER8Q0FHxEREfENBR8RERHxDQUfERER8Y1QtjuwnkRKQjQ8uIHy5mLCBUHiQwl6zwzQcbSb5Ghqye2EYkG2fKKGql2lRIpDjI8k6T8/RPsPu4gPJjzcg9yl2npHtfWW6rtyzsG1D5voOt/Erf4ywCgsu8nG5lY27jiP2ex1ei9v4sqp3QzdqMA5o6j8JnU7P2RD04Vlb3+gu5qO9/cyeL2KVDJIrGSQjc1tbNp1Dgu41e9gDvPzcWvOra8fbqlVuo/aw3d8u7GKCPue3E6kOETvmQGGe8YoqS+gfFsxwz1jtLzQRmIkuWg7oYIg+57cTmF1lP62IQavjlBYHaVqVynxoQQnnm9lrH/8DuxR7lBtvaPaessP9f1Ca4tnbZ959WNcv9BIODZC1eYrBEJJ+jo3MnKzjNrtF9j5wBszlr96Zgetxw4Qio5S09iBBVL0tG8hPlxE/Z7TbD/w3pK33dtRzwdHP04gmKSmsYNQZIwbl+sZGSijuqGD3Z94ba13d06/3rTvjmxnOj8ct3/vfsCAuzFHdNaIz5I1faqOSHGI1u9fpfPYjcnp2x7dSP2hahoe2kDrd68u2k7DwxsorI5y5Y0eLrx8bXJ63cFKmh7bRPOnN3HqxXZP9iFXqbbeUW29pfquXE/HZq5faCRWPMT+T71EODYGQCoZ4PTRj9Pdto2qLZeobrgMwOhQEW1v30soMsa9n36JWPEtALbue5/j3/sJrnywm+qGS5TW9Cy67UQ8xIdvfhQzx75Hf0BJdfpn13hvCy0vP0xP+1a6LzRQuy2/aj7B78etrvFZglhFhIrmEkb74jMOEoCOV7pJxpPU7isnEJ4zXE4KhAPU7isnGU/S8Ur3jHmdx24w2h+normEaHl4zfchV6m23lFtvaX6rk5vxxYA6vecngw9AIFgiob9JwC4enbH5PRr57fjUkE27To3GXoAwtFxtuw9BUDn2eYlbbunfSvjozFqGtsnQ8/Ethv3p0e4Os8tra31Rsetgs+SlDUWAdDXNjRrXjKeYqBjmGAkQMnmwgXbKdlcQDAcYKBjmGR89jnUvtZ0++Xbiteg1+uDausd1dZbqu/qxEdiAMRKZtcvVpyeNtBVSyqZ/jN1s3MDABX1nbOWr6xPj070X9uwpG1PLDdXW2UbugmEEgx210xuO5/ouF0k+JhZlZkdz3xdM7Mr076PLGUDZvYrS1jmL83s5FI7facVVKd3dbR3bM75Izfi6eWqogu2U1gdnbH87SbaL6haUmnzgmrrHdXWW6rv6oSj6f0aHZz9h3F0KD3NucDk6+GBUgAKSgZmLR8pHCUQGic+XEQyEVx02yMTbZXObssCjljxUHrbc/RtvdNxu0jwcc71Ouf2O+f2A18DvjLxvXNu7r2dbcHgY2Y/A8yOnjkkFE3/IiXmudI9OZa+CCwUW/jdQXCynbkvGkuMpdsPxhb/xc0Xqq13VFtvqb6rU7k5PUpz5fQuxsem/jimUkb78akLfhPx9LzkePqUSSgy98WyoXB6ejK++KmViWUm1pmvrcR47v3RXi0dtyu4uNnM7gP+O1AM9AD/ChgGjgGfcc6dNbM/Bf4OaAIKzOw4cMo598RtbRUDnwc+B/z5KvZDRETWkZrGdrrbGum7uol3vvNpqrZcJhBM0d+5gfhIAdGiW4zdKgLW1yePJfct9wSmAV8FHnfO3Qe8APyac+4m8DTwTTP7Z0CFc+7rzrn/DIxkRoiemKO9/wb8NunglLMSiyTg4CIJesJUkp47AYei6faT8yTofKTaeke19ZbquzoWcOx56CiN/+A9wrExulq309W6jYLSQe557AjBzKhLJDYKMPl9Yp4RnURmRCg4z4jQdBPLTKwzX1uh8FJPbKwfOm6XP+ITBfYCRyx9Z6kg0AngnDtiZp8Ffh+4Z7GGzGw/0OSce8bMGhdZ9nOkR4WIsfAFV14Y6Ukf/LF5znkWVKaHQ0fmOWc6YbhnbMbyt5tof6Q3/37Z5qPaeke19Zbqu3qBgGPL3tNs2Xt6xvRUMsDIQAmh6CixkvQnuApLBxi4HmNksJRwbOZH1uPDMVKJMJHCWwRDi/+hLSgdYKi3ipGBUkqq+mbMcyljdKgYs9ScF16vdzpuVzbic2radT53O+ceBTCzALCb9OhNxRLaOgQcMLOLwGvADjN7Za4FnXPPOecOOOcOhFn4gisv3LyY/sWr2D77QrdgJEDp1kKS8RSDlxceuBq8PEJyPEXp1kKCkdmln2i//0L+/bLNR7X1jmrrLdXXO9cvNOBSwRn30Smr6wKg70rdrOVvXNkEQPnGriW1P7HcXG3d7KollQhRUnudQHDpdzBeL3TcLj/4jAE1ZnYIwMzCZnZXZt4zwGng54FvmNnEGOL4tNeTnHN/6Jzb5JxrBB4AzjnnDq9gHzw32hen7/wgsYoIdQcrZ8zberiWYCRId0s/qfGpc9EFVZFZV7OnxlN0t/QTjATZerh2xry6g5XEKiL0nR/01R1wVVvvqLbeUn1XLxGffdJh6EY5be+kb1S4ee8Hk9M3NrVhgSRXz+xgdKhocvr4WJhLJ9N/hup2nr+t/TDDN0uJD8dmTK9u6CAUHeX6xQYGe6Z+dqlkgIuZC6vrdsxsK1/ouF3+qa4U8Djwu2ZWlln/d8wsATwFHHTODZrZj4AvAl8CngNazOzdea7zWRdav9fJvicLaHps0+Rtvaff4rv972a+07jv6fSNt1778sxP6bf/oIuyhiLqD1VTtCE26xbfrd+bfV+JfKfaeke19Zbquzon//YhAsEkheU3CYbHGblZyo3L9QRCSfY8eJRo4cjksrGSW2y77z3a3jrAe9/95JyPrLj9rs29HZs59/8OUdvUxs5/+Obk9FAkwUcOHeP00QdoeflhahrbCUfj9F6aemRFTWPu3XF4rfj9uNWzupYhUhqm4XAtFc3FhAqDxAfnf6jbA1/aC8w+UCB9MdjWwzVU7iwlUhIiMZykL8cf6uY11dY7qq238r2+Xj6r6/LJ3Vy/2MDIYDGpZJBo4QgV9VfZsvcU0aKROdfpvVTP5Q92cau3Epd5qOmmXefmfEhp1/ltcwafCTe7q7n0/l4Gr1eTSgaIlQyxsbn1jj6kNBvP6oL8P24XelaXgo+IiMzLy+Aj2Qs++W6h4JN/9+MWERERmYeCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+IaCj4iIiPiGgo+IiIj4hoKPiIiI+EYo2x0QEZHc9etN+7Ldhbz20tXj2e5CXjr4yeF552nER0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8Q8FHREREfEPBR0RERHxDwUdERER8I5TtDqwnkZIQDQ9uoLy5mHBBkPhQgt4zA3Qc7SY5mlpyO6FYkC2fqKFqVymR4hDjI0n6zw/R/sMu4oMJD/cgd6m23lFtvaX6eke1XdwHbVvpuFrLtd5KunrLiY9H2Nt8gZ9++PV517l0rZrX3r2by93VJBJBKssG2b+zlfv3niUQcHOuc669njdP7OFabwWplFFTeZMDe85xz862Zfd5JdtfS+ac9xtZS6VW6T5qD9/x7cYqIux7cjuR4hC9ZwYY7hmjpL6A8m3FDPeM0fJCG4mR5KLthAqC7HtyO4XVUfrbhhi8OkJhdZSqXaXEhxKceL6Vsf7xO7BHuUO19Y5q6y3V1zt+qe1LV4+vav3nvv0punoriYTHKSkapre/bMHgc/biZv7i5X9EKJjkrqZ2CqJxznXU09tfxu7t7Tz+yKuz1nnr5A7+5vWDFMRGuWt7O8FgitNtWxm4VcSP7fuARw69u+T+rmT7K3Hwk5d4+8SozTVPIz5L1PSpOiLFIVq/f5XOYzcmp297dCP1h6ppeGgDrd+9umg7DQ9voLA6ypU3erjw8rXJ6XUHK2l6bBPNn97EqRfbPdmHXKXaeke19Zbq6x3VdmkePfQOJcXDVJYO0t65gT/+q0fmXXYsHuavj/4YAXP8wmeOsKkmXdfD9x/nj//6EU63NXDyfAd7m6fq0T9YxJE376MgOsZTP/N9yktuAfDx+97n+f/7GG+27GH3tg42b+xZtK8r2b4XdI3PEsQqIlQ0lzDaF5/xCwjQ8Uo3yXiS2n3lBMJzhstJgXCA2n3lJONJOl7pnjGv89gNRvvjVDSXEC0Pr/k+5CrV1juqrbdUX++otkvXWN9FVdkgtnApADjdtpXh0Rh3NV+cDB0AoVCKw/enR57e+WDHjHWOn2kimQxy4K6zk6EHoCAa54F7T6bXOf2RJfV1Jdv3woLBx8yqzOx45uuamV2Z9n1kKRsws19ZYN4rZnZ2Wpu1y92BO6GssQiAvrahWfOS8RQDHcMEIwFKNhcu2E7J5gKC4QADHcMk47PPT/e1ptsv31a8Br1eH1Rb76i23lJ9vaPaeuPClY0ANG3pnDWvoa6bcCjB5a4aEsmpaHDxanqd5i2zR9eaMtMuZtr1YvteWLB151yvc26/c24/8DXgKxPfO+fiS9zGvMEn44lpbXYvsmxWFFSnM95o79ic80dupEtRUBVdsJ3C6uiM5W830X5B1ZIyZV5Qbb2j2npL9fWOauuN3pulAFSVDcyaFwg4ykuGSKUC9A1MBcHe/vQ6leWz1ykpGiEcGmfgVhHj40FPtu+FZccqM7vPzI6a2Ttm9pKZ1ZlZWWbkZmdmmT81s18ys98ACjKjOS+uee/vkFA0/QNNzPMpguRY+gK7UGzhcgYn25n7grzEWLr9YGzxAyhfqLbeUW29pfp6R7X1xlg8fUovGpk7CE5MHxubCoKjmXVikbkvAJ+YPhpfPDyuZPteWO7FzQZ8Ffgp59x1M/s54Necc0+a2dPAN83sfwAVzrmvA5jZ05kRo/l8w8ySwP8BftWtt4+ZiYiIyLqx3OATBfYCRyx9JVUQ6ARwzh0xs88Cvw/cs8T2nnDOXTGzEtLB518C/+v2hczsc8DnAGIsfE7XC4lF3l0EF3l3MmHqXcrc7y5C0XT7yXneneQj1dY7qq23VF/vqLbeiGZGZ8bmGZ2ZmB6NTo3IxCLjDI8GGY2HKYzNHqmZGhFa/OqXlWzfC8s91WXAqWnX5NztnHsUwMwCwG5gGKhYSmPOuSuZfweBPwEOzrPcc865A865A2EWPqfrhZGe9A8hNs/55ILK9A9rZJ7z0ROGe8ZmLH+7ifZHer39oecS1dY7qq23VF/vqLbemLi2ZuJam+lSKaN/sJhAIEVF6dRF5VWZa3tu9M9eZ/BWAeOJMKVFtwiHFw+PK9m+F5YbfMaAGjM7BGBmYTO7KzPvGeA08POkT19NfD5wfNrrSWYWMrPqiXaAnwROrmAfPHfzYvojfBXbZ19wFYwEKN1aSDKeYvDy8ILtDF4eITmeonRrIcHI7NJPtN9/wdsfei5Rbb2j2npL9fWOauuNbfXp+xi1XqqbNa+9s5bxRIjNG64TCk6NpDVuSq9z/tKmWeu0ZqY11l+bNW+ttu+F5QafFPA48JtmdgI4Dnwsc1HzU8B/cM69CvwI+GJmneeAljkubo4CL5lZS6adK8DXV7Yb3hrti9N3fpBYRYS6g5Uz5m09XEswEqS7pZ/U+NTlSQVVkVmfFEiNp+hu6ScYCbL18MxP7tcdrCRWEaHv/KCv7tCq2npHtfWW6usd1dYbu7d3UBgb5dT5Rq5en6prIhHglbfSl+Let+fcjHXu2dlKMJjk7VM76R8smpw+Mhbhtff2ptfZ/eGMdUbHwvT0lTJ4q2DV2/eCHlmxRMu9ffoDX0ofEK99eeYg1mK3T295oY3RPn8Mu05Qbb2j2npL9fWOX2q72kdWnLmwmbMXtwBwa7iA1subqCgdZMvG9N1hCmNjMx4pcebCZr59JPPIiOZ2CqJjnGvfPPnIiJ/98Vdn3Qzx2MmdvPT6/Ut+ZMWJs9v5y1c+xr4drfzUg2/M6u9yt78SemTFGhjti3P86600HK6lormYio8UEx9McOXNnmU9MC8xkqTl+Ta2Hq6hcmcppQ2FJIaTdL3XlxcPzFsJ1dY7qq23VF/vqLZL09VbScu5phnT+gZK6BsoAaCseGhGMNm17TK/+JkjvPbuXs60bSGRDFJRNsgjh97m4N6zc4aOg3vPUl48xBste2j5cDvOGdUVNzl8/4llP6R0JdtfaxrxERERyZLVjvjI3BYa8dGzukRERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3zDmX7T4si5ldB9qz3Y8lqgZ6st2JPKb6eke19Y5q6x3V1lvrqb4NzrmauWasu+CznpjZ2865A9nuR75Sfb2j2npHtfWOauutfKmvTnWJiIiIbyj4iIiIiG8o+HjruWx3IM+pvt5Rbb2j2npHtfVWXtRX1/iIiIiIb2jER0RERHxDwec2ZjaU7T4AmNk2M/t7MztvZn9mZpFs92m1cqi2T2fq6sysOtv9WSs5VN8XzeysmZ00sxfMLJztPq1WDtX2eTM7YWYtZvZtMyvOdp9WK1dqO8HMfjfX+rRSubIfZvZNM7tgZsczX/uz2R8Fn9z1m8BXnHPNQB/wb7Lcn3zyOvDjrJ/7Qa03LwK7gLuBAuCp7HYnrzzjnLvHObcP6ACeznaH8omZHQAqst2PPPUfnXP7M1/Hs9kRBZ95mNlhMztqZt8xszYz+w0ze8LMjpnZ+2bWlFnuH2dGZt4zs781sw2Z6TVmdsTMTpnZH5lZ+8Togpn9i0w7x83sf5pZ8LZtG/AQ8O3MpG8B/+TO7b23sllbAOfce865i3d0p++gHKjv91wGcAzYfCf330s5UNuBzLJGOlTmzUWa2a5tZtpvAf/pTu73nZDt2uYc55y+pn0BQ5l/DwP9QB0QBa4AX87M+/fA72ReVzB1kfhTwG9nXv8e8IXM658g/R9UNbAb+CsgnJn3B8Av3NaHauD8tO+3ACezXZt8qO1t/bkIVGe7Lnlc3zDwLvDxbNcmn2oLfAPoAn4IFGa7NvlS28w2npnep/X+lUO1/SZwFmgBvgJEs1mXELKQt5xznQBm1gq8nJn+PvBg5vVm4M/MrA6IABcy0x8AfhrAOfc3ZtaXmf4wcB/wVvpNGwVAt8f7kYtUW2/lQn3/APiRc+7VNdmj3JHV2jrn/nXmXfVXgZ8jHYTyRVZqa2abgM+SDgj5KpvH7ReAa5k2nwN+Gfiva7Zny6RTXQsbm/Y6Ne37FEyGxq8Cv+ecuxv4t0BskTYN+JabOte50zn37G3L9ALlZjaxjc2kE3o+yVZt/SKr9TWzLwE1wOdX2P9clvVj1zmXBP438LMr6H8uy1Zt7wWagfNmdhEoNLPzK9+NnJS149Y51+nSxkgH9YOr2I9VU/BZvTKmQskvTpv+OvBPAczsUaYumPsB8LiZ1WbmVZpZw/QGXXps8IfA49Pa/Y4nvc9ta15bmcGT+prZU8AngX/unEt51Pdct+a1tbTmidfAZ4Aznu1B7vLi/9zvOuc2OucanXONwLBLf7DEb7z6P6Eu86+Rvl71pCe9XyIFn9V7FvgLM3uHmU+t/TLwqJmdJD2Eeg0YdM59AHwReNnMWoAjpM+73u6Xgc9n3nVUAc97tws561k8qK2Z/Tszu0x6JK3FzP7I293IWc/izbH7NWAD8Ebmgsf/4uE+5KpnWfvaGvAtM3uf9OmJOrJ4uiCLnsWb41a8q+2L047bauBXvduFxenOzR4xsyiQdM4lzOwQ8IfOuazeuyBfqLbeUn29o9p6R7X1Tr7VVhc3e2cr8OdmFgDiwC9luT/5RLX1lurrHdXWO6qtd/KqthrxEREREd/QNT4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIb/x+DowtK7GD08wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: German\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfXAc54Hf+e8zPe8YDDB4JQASIAHwTRIpSpQoyStbtFeWLTtnO4mT27Jrt1yuPf+Rcl3dJn9sam+rsnu5TV2uUptkfVubsste3+UcpSp7iXezlteSrRdbu7beKb6JbwAJEO/EOwbz3tP3R8+AHA5AACQhvPTvU8UqoLv5TPeDZ7p//fTT3cZxHERERES8wLfZKyAiIiLyUVHwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHP8G/2CqxXfYPl7Nq97VZ7Wxg5G9vsVdjZ9OiIjWPMZq/BzqV2K9tQhkVyTnbZHcO2SxC7dvv5zl/t3uzV2JH+5eGnNnsVdjQnX9jsVdixTGDb7cq2DSeb3exVEFm3N52frThPl7pERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQzFHxERETEMxR8RERExDMUfERERMQz/Ju9AluJ48DI5f2MXu5lcbYeB6ipm6N9/xXaD1zCmJvL5nMBRi4dIDmdYGG6gfR8HMfxcezTL9PQPnpXnz95vYPBcw+yMN0AjqGmfpaOgxdp6+2/Pxu4BfnDPhoPxEj01hBtDhKM+XFsh9SNHONn5pk4Pb+u8oK1fjo/3kBiXw3+iI/cos30pSSDb0xjZ4sbtBVbV+PhWuo6o9TsClPTGsIfspg4M8elH46su6xgrZ+uk83U99QQiFjkkgWmLiYZ/PkN7Iz36lZtd+MFa/10fbKV+t7YzTZ3YZ7B1yfW1eb8YYs9zzTTeChOMOYnn7aZvZJk4NVxcguFDdyCrcvLdavgc4vzv3ia8avdBMJpWvZdw/IXmB5p4+KvnmRuopkHPv63S8tmkjH63j0OQCi6SCCUJZeJ3PVnD314kEtvPUEglGFXdz8+X5GJgS4+/NunSc4k2P/4u/e8fVtR06Faej7bQm6hwNxgiux8gUCNReOBGPs/10qiO8rFH46tqaxwfYAjv7mbYI2fqUtJ0lM5Yu1h2h9PUN9dw5n/eJ2Cxw7Qe55uIrYrTCFrk1so4A9Zd1VOOBHg6Nf2Eoz5mbq4QGoyS217hI4nGkj01HD6+wMU0vZ9XvutTW13Y4UTQY5+vdttcxfm3TbXEaHjySYSvbWc/l7/mtqcP2Jx9OvdRJtCzPYnuXF2jmhTiNZHEiT21/LBd/vIzuY/gi3aOrxetwo+JTcG9jB+tZtwbIHHPv8iwXAWgKLt48xrzzDW30NT53VaugYBCNcscuy5l6htmCYQynH+jY8x1td7V5+dTtZw5Z3H8IeyPPb3fkQktgjA3odP886PPsf18w/S0jVAXcvk/dnYLSQ9k+P8X4wwc2WxYvrA61M8/Ft7aDpUy+TBJFMXk6uW1f1cM8EaP/0vTzD67tzS9L2faqLjRIKuZ5ro+8nEfd+GrezqS+NkF/JkpvPUdUU58ltdd1VOz/O7CMb89P3NGKNvzyxN3/fpFjqebKTrk830vbi2g/xOoba7sXo+1+a2uR+PMPrW9NL0fc/touOpJro+1Urfj1bvuez69VaiTSGGfznJ1ZduttG2Ew30PN9O7+fbOfeDgQ3Zhq3K63WrMT4lNwY7Aeh88PxS6AHwWUW6HzkFwNCFg0vTA6EcDW1jBEK5e/7s0cu9FIsWuw9dWAo95c/oOnIWgOFLB1f679va3EC66sABkF+0GTvlHgDinav3pIXrAyS6a8jM5isOHADX35jCzhVpfrAWX8CsUMLONDeQIjN9b2dc4USARE+MzEyuIvQADL4+iZ0r0nKkzoN1q7a7UcKJIIneWrfN3XJgBhh8bQI7Z9NytH7VOvEFfLQcrcfO2Qy+VhkcR9+aJjObI9FbS6g+cN+3YatS3Sr4LMmm3R1UJLZQNS8Sc8/Y5sZbKdr3v8pmxtoAaGwfrprX2OFOmxnddd8/d6tzbMf9oeisumxd6QAzezVVNc/OOcwPpbGCPmrbw/d1Hb2grqsGgJn+6oO8nSsyfz3l1m3H3V/q3WnUdu9N3d5ym6vuLbNzReYHS21ud/SO5dTujmAFfMwPprBz1ZcKZ/rc8uv3xe7DWm8PqttVgo8xptEYc6r0b8wYM3zL78G1fIAx5vfuMO+4MeaMMeaKMeZPjDGbdkpT7uVJJ2ur5qWT7h/OcXxLP99Pqbk4ANF4degKRdNY/jzZVA124e7GZ2xLBpofcutlpr/6gHC7SKPbHNMzy/fAZWbcXo9Iw5qardyiXLeZ6eXrNl2aXl7O89R271mkqdTmprLLzr/Z5kJ3LCfaFKpY/nbl8r3UdlW3qwQfx3GmHMc55jjOMeA/AP+2/LvjOGu9xrNi8AH+DPifgP2lf59dY5n3XePuIQCunz9MPnvzD1UsGq6eOrb0eyF7//+IhbzbFWgFl69SK+Du+Aq5rdeANsrek03UtISYvrK47Jnw7ayQ25RXuhuhULorprycrJ0/7NbZSoNry3cc+cMeCuZ3oLZ778qD8Fduc+7A23LbXIm1VM7yA3WX6tZDbVd1exeDm40xx4E/BmLAJPA1IAW8BXzBcZyLxpgXgFeAHiBijDkFnHMc56u3lNMGxB3H+VXp9/8H+BLw43vaorvUuvcaY33dTI908OYPv0hT53V8ls3MSBvZdIRQTZLsYgy8c5l907Qdr6PjiQSpyRyX/9pbA2Zle1PbFdn61nsKYYBvAV92HOc48D3gjxzHmQO+CXzfGPMbQMJxnO84jvPPgXSph+irt5XVAQzd8vtQadqmMD6Ho7/+Cj2PvksgnGHsSg9jV3qIxOc5/rkf4y/1ugTDmfv+2eWy7RV6dOxSj5B/hR6hnWTXo3V0f7qF1I0sZ18YWvMtvPbS2cXyTdpfPqv26PNQ7kX5b7DSGWC5J2KlMz+vUNu9fwqr9DpYq/RalN3svVi+12Gpbj3UdlW36+/xCQEPAS+XhuNYwCiA4zgvG2P+EfCnwMP3cyWNMd8AvgHQ2r5xd+D7fA5dR87RdeRcxXTb9pGajxMIZYjUrn5r6npF6+aZmwiTmq+lLlx53TWbimAXAoSii1j+rdeA7qe2x+rpfraZxYks5/7zMPnU2rc3PVW6Lp1YPjyGE254XOl6tKysXLfhFcaYlMeelJfzIrXd+ys9WWpzK4wzudnmlh+nUpaazFYsf7ty+V5qu6rbu+vxOXfLOJ8jjuM8B2CM8QGHcS97JdZQ1jCw+5bfd5emVXEc59uO4zzmOM5j9Y0f/XXuiav7cIoWrfuubkj5iV3uk56nRqo7vKaG3WmJtp3dbd7xRILuZ5tJjmc4+8LQug4cAHODaQDq91XfiWAFDfHdEexckYWR+99jt9PNDbh3cyW6a6rmWUEf8T1Rt26H0x/1qm0Jarv339y1cpurvpnECvqId5ba3NCdx1AtDKWx80XinVGsYPWxo1z+7NX7f0K7Valu1x98skCzMeYpAGNMwBjzYGne7wAfAl8B/twYU755P3/Lz0scxxkF5o0xT5bu5vot4C/vZiPul0Ku+nkDC9MJrrxzHH8wu/RMnbuVy4RYnIuTy1Qm7bbePnw+m6ELh0gnbx5c8tkgA2ceAqDjwMV7+uytbPfHGtj7ySaSoxnOvTBMIb1yF6vxQaQhQPi2Z0NkZvPM9C8Srg/QdryuYt6epxuxgj5unFugmF/99mKvMj73DoxyD0NZZibPTF+ScCJI2+OV5zSdzzRhBX1MnJnzZN2q7W6MzEyOmSsLbps70VAxr/NkC1bQYuL0bEWdRBqDVXcQFfNFJk7PYgUtOk+2VMxrO9FAOBFk5multilingual_cliplny68EZR3a7/UlcR+DLwJ8aYutL//3fGmALw28AJx3EWjDE/B34f+BfAt4HTxpj3lhnn80+A7wMR3EHNmzKwuezUy8/is2xq6mfxB/IsztUxNbQbn7/A0U+9SihaeUZ7+e3j5LNuiJmbcP/wg+ceZKx/HwDNnddp7ry+tPzQhUNc++Bh9j78Ad3HPliaHqlN0vPYu1x+6wTv/PXnadl7bemVFdlUDXseOLcjn9oM0PxQLV2faMQpus8raXusvmqZ7FyeiTPurf7BWj+PfmMvmbk87/7ZtYrl+l+6wZHfDNH96RbquqJLj/2vL/088PrOrMM7aTgYo/Gg+4iGYI37da/tiLD/C+6zo/Ipm2s/dR8+FqwNcPyf9JCZzfHOt/oqyun78RhHv7aXns/uon5fzdIrK+r31ZCayjLw6o2PcKu2BrXdjdX34ihHvx6h5/l26vfFll6rUP554JXxiuWPf/MAAG/8YeUJ6sDPxqnrqqHjqSZqWsMsjKSJNoVoPBQnlyzQ9+LdvVtxO/N63a45+DiO8we3/PqJZRY5fMuy//SWn38X+N0VynwHd8zQltDcNcjE1b2M93dj2xahaIr2A5foOnKWcE11t9+NgS4yi5XdhdMj7Us/h2OLFcHnTvYcvkAklmTw3AOM9fUsvSC1+5H3d/RLSstnv8ZnaH98+Sukc4OppYPHnWRm83zw/et0fryRRHeURE8NuWSBkbdnPPuix1hrmNaHKw/IkYbg0nX5zGxuKfjcSWYmz6nvXqXrmWYSPTESvTFyCwWG35z27EtK1XY3VmYmx6nv9NF1soVEb4zE/lKb+9Xkul6kWUjbnP5uP50nm2k4GCfeFaWQshl/f2ZLv0hzI3m9bo3jbK/u00NHQ853/mr36gvKuv3Lw09t9irsaE5+a+4EdgIT0GsHN4qTvfMgV5Gt6E3nZ8w708s+gMY7T8QSERERz1PwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz/Bv9gqs1+iHdfzRE5/Z7NXYkSb+S8Nmr8KO1vylK5u9CjuW1da62auwYxWuDW72KojcV+rxEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHPUPARERERz1DwEREREc9Q8BERERHP8G/2Cmw38Y4gbUcixHYF8Id8FDJFUlMFRk+nmB3MramMYI2PPSdi1HcG8Yd95BaLzFzNcP2dReyss8FbsPma5w3dN3w0JA0BG3J+mI849LUUGa9ztz+ahc+cDaxYxlCiyNvd9ro+tyFpODjqo2HRYBUhGYaBxiJ9LUUw97RJW1bj4VrqOqPU7ApT0xrCH7KYODPHpR+OrLusYK2frpPN1PfUEIhY5JIFpi4mGfz5DexMcQPWfnto2R+gZX+QSL17HpmeKzJxOcfEpfy6yonU+dh9LES81cIKGrLJIlNXCwyfzeKsr6nvGMFaP12fbKW+N3azzV2YZ/D1iXW1OX/YYs8zzTQeihOM+cmnbWavJBl4dZzcQmEDt2Dr8nLdKvisQ+dTMToeqSGbtJm5miWfcQhEDDXNAeIdwTUFn1Dc4qF/kCAYtZjuz5CetYm1BGh7uIb6zhBn/+s0hR0cfh4c8nFg3CIVcBitd8j5HUIFQ/2ioWnBLAWfstmIw2h99ZdwPrK+OmqbNZzosyj6YCjhkPc77Jr1cXTIojFpeKtnZx5Z9jzdRGxXmELWJrdQwB+y7qqccCLA0a/tJRjzM3VxgdRkltr2CB1PNJDoqeH09wcopHdmHd5J78cjNHUHyKWLTF7NUyw41LX76X4qQm2LRd8bmTWVE2uyOPxcFOOD6YECucUi8Ta/G4TaLD58KYXjsWwZTgQ5+vVut81dmHfbXEeEjiebSPTWcvp7/Wtqc/6IxdGvdxNtCjHbn+TG2TmiTSFaH0mQ2F/LB9/tIzu7vpC63Xm9bhV81qjlcISOR2qYuJCm/7X5qp2QWeNFw+5P1BKMWlz9xTxjZ9JL07s+FqP9WA17noxx9fWF+7jmW8feG4YD4xYDjUXe77Rxbqszs0yWmYs6XGi/tz2+34ZHBiwcA784YDNb437Q+fYiT1+y6Jj10TFdZLhh5wXOqy+Nk13Ik5nOU9cV5chvdd1VOT3P7yIY89P3N2OMvj2zNH3fp1voeLKRrk820/fi2P1a7W0h0emnqTtAZqHI2R8tLp2wGF+WAycjNPcEmR4sMDO4ylmvge5fC2MFDBdfSTFzvbx8lv3PRGjcG6DtgSAjZ9fWo7xT9HyuzW1zPx5h9K3ppen7nttFx1NNdH2qlb4frd5z2fXrrUSbQgz/cpKrL91so20nGuh5vp3ez7dz7gcDG7INW5XX61ZjfNbA+KDziRjZBXvZ0AOs6WwsFLeo7wyRmbcrQg/A9bcXsfNFmg9E8O3AOOorwgMjFqmgs2zoAXA26HJTx4whVDAMJ5yl0ANQ9LnhB6D7xs78KswNpMhM39sZVzgRINETIzOTqwg9AIOvT2LnirQcqcMX2KHXC1fQ0Ol+UUfPZSt6aZ0iXH8/C8CuQ8FVy4m3WkTrLebHCreEHtfgu26PUevB1cvZScKJIIneWrfN3XJgBhh8bQI7Z9NytH7VNucL+Gg5Wo+dsxl8baJi3uhb02RmcyR6awnVr3xZfadR3a4SfIwxjcaYU6V/Y8aY4Vt+X9M30Rjze3eY90fGmOvGmOR6V/yjVLcnSCDqY6o/g+NAfVeQ9kei7DoaIda69j9qXYdbZXPXs1XzinmHhdE8VsAQa915O7mWeTd8jNS742la5wz7x3z0jLtjfVYSzsHeGz4OjPrYe8NHPLX+z25acJv5eF11Op2qdSj4HBqSBp/HLiWsVV1XDQAz/YtV8+xckfnrKaygj9qOyEe9apsqEHHbVTZZ3VOYTbqNqbbVWrU3ON7mBqjZ4eqeoWzSIT1nE4r5CNV6J1jW7S23uepDg50rMj9YanO7o3csp3Z3BCvgY34whZ2r/oLP9Lnl1++L3Ye13h5Ut6tc6nIcZwo4BmCM+QMg6TjOv1nnZ/we8K9WmPffgf8LuLzOMj9SsRY33Dg2PPyPG4g2Voad+eEcF38ySyFz50slkXp3fEV6dvlrp5k5e2m5+eF7XeutpT7l7rRtH3zyvJ+6TOVOfDJW5M1um9xtObJ1wUdrxZU/ixuxIu/us0mvMR/WloZZJEPVfx/HQCoI8YyhJgsL3jp2r0mk0a3ozPTyl1rS0zkSPe5yc9fuIpluU+XveyhWHUhCMTft+HyGUMxHZn7lVB2Ju8uutExmvkikziISt8hu0cGi91ukqdTmpqpPEqHU5oBIY4i5q9WBvCzaFFpafjnl8stt3AtUt3cxxscYcxz4YyAGTAJfA1LAW8AXHMe5aIx5AXgF6AEixphTwDnHcb56a1mO4/yqVOa9bMOGK5/ZtR+LkpopcPa/TrM4WSAct+j6WIz6zhAHPlPP+b+cuWM5VrB08M8tH5AKpdRshbZ2fdyNUOlqy/4xHwsR+PnBArMRh5ocPDRk0Trv40Q/vHHQDX8FH1xosxmpL5IqfW/iacPhUR/NCz6evmR45XABew1jdQO2W5/5FZbNWw5gSsvtvHE+98ofdtt/YYU7PexssbTc3Q2c3q5mhvI0dQdoeyDE5NU8dmn/bwzsPhZaWs6/yve5vF8o5Jdve3a+vNy9r/N2UR6Ev3Kbc/cT5ba5EmupnOVPNgultmt5qO2qbtc/xscA3wK+7DjOceB7wB85jjMHfBP4vjHmN4CE4zjfcRznnwNpx3GO3R56tpNyLnOKcPHFWRbG3Ls3UtMFLv7NLNmkTV1HcF2XvbymvOt3DPyqp8BUzMG2YD4Cb/bYpAIOzcmbl71yAfiwvchcFPJ+999UrcPf7reZrikSyxr2Tu7McTmyPUxdKzA7XCAc9/Hwl2LsezJM1+Mhjnyhhnirf+lyl7K0yNay3iNHCHgIeLnUi/P7wG4Ax3FeBs4Afwr89v1cSWPMN4wx7xhj3skV06v/h/usPHBxcTJPdqEyJRcLLN3GHmu9cwdauaenfIZ3O3/Q/XPsxGf5lHtb5qIOqVDlPNsHE3F3mxOLdz47dgxca3L/Bo13GBtU+dlu2YEV7s682SO08+r9fiifGa50BmiFyj1CHrud3YGLP0sx+G6GQsahuTdAc2+QzHyRsy8uYpd6cPKrPBOlvF/wrzCY1AqUl7t/q77VFVbpdbBW6bUou9l7sXyvg7/Udm0PtV3V7fovdRncS1ZPVc0wxgccxr3slQCG7n31XI7jfBv4NkBdoOUjPzqlZ93r6is9X6fc1e+z7nwgLo/tKY/1uV247s5jgLazZNitu9xKl5v8pVC4hr9urtRq/WscjLwQhkQKYllTcVcXuLfQR3NQxGExtEIBHpeeco+44Yblr7VEStPLy3mJ48DI2VzVrebGB+G4j3ymuOzg51ulS2N7wvHlD0Tl6en5nbdfWEl6stTmGpf/Ut5sc8uPUylLTWYrlr9duXwvtV3V7fp7fLJAszHmKQBjTMAY82Bp3u8AHwJfAf7cGFO+7pO/5edtaW4oh+M4RBuWz4mR0vTswp13THPDbgOo21Pd4HwBQ21bADvvkBzfeg3lXk3UOjg4xDNm2a7/2rQbGheDqyefcq/Q4jKDlZczWeseWFrnqpt744LBXzRMxxyKunK2rLkBd4Bjorumap4V9BHfE8XOFVkY/uh7Y7eqpn0BfJZh8urqjxKYH3VPrOo7qvcvoZghUmeRTRbJLninR3LuWrnNVd8RZAV9xDtLbW7ozoPpF4bS2Pki8c4oVrD6C14uf/bqlr6x+L5S3a4/+BSBLwP/2hjzAXAK+Jgx5iDu5a1/5jjOL4Cf414GA7en5rQx5ge3F2aM+T+NMUNA1BgzVLpzbMvJJYvMXMsSqrVoO1p5i1/dniD1nUEKmeLSJS/jg3C9RShe2b2RnbeZHcwSjlvsOlJ5+9Cex2uwAj5uXEpT3IE3bqRDMFbnEM0ZeiYqm13LvKF13pCznKUnN9elWDYgNc8besfd/3/9tgcO+m2IZW4OpC4bTjhk/Q4dM+4TosvcZwu5ZfU3615243PvwAgnKs9TMjN5ZvqShBNB2h5PVMzrfKYJK+hj4swcxRUG5+5k1jKndNGEj87HQhSyDiNnbp7E+Cy39yZYU9kzPD9uk5q1ie/yk9hTGX46j4cBGL+4806G7iQzk2PmyoLb5k40VMzrPNmCFbSYOD1b0eYijcGqO4iK+SITp2exghadJ1sq5rWdaCCcCDJzZWFLPl14o6huwTjO9tpZ1QVanKcavvyRf26wxsdD/6CBUK3F7PUsqckCobhFw74QjgOXX55jut/t+gvV+nj0N5vJzNu8//9OVpSz0isr6nYHSZfuGNusV1aMfbdh9YXuQTgHz1zwE80bJmqLzEUdollD26x7IHi722Yk4W770xctYlnDdI1DutQLFE8bWkrP5DnfbnOxrTKsdE4ajg/4GWgs8t7eyt63219ZkfM7tM36qM0ahuuLvNVtb/j7upq/dGVjP2AZDQdjNB6sBSBY4yfRGyM9nWP+uns2l0/ZXPup+/CxUF2Ax//nXjKzOd75Vl9FOSu9sqJ+Xw2pqSyn/3xzX1nh7+zYlM996HM1FG2H1GwRO+8QqfNRv9tPsQAXX0mxMH6zTuKtFg98tob5sQLnf1J5Nn37Kyuyi0Xq2vzEmizmxwub+sqKwrXBTfnclV6rUL8vRmoyW/Vahaf/xUMAvPGHZyvKuf21CgsjaaJNIRoPxcklC5z+Xj+ZGW8FSy/U7ZvOz5h3ppfdq+/AZwRvjNxikdP/ZYrdj8Vo2Bci3h7EzjnMXMsy/N4iyYm1ddNk523O/MU0ex53X1Ja3xUinyoy+sHijn9JaSYIrx4ucGjUR9ucj6akIe+DsXqHS7uKzNwy/uZ6Y5H2WR/1Kbc3yDiQ9bsvJ+1vLjJVu756Gq13+MVBm4OjPtpnDVbRkAzB6d32jn5Jaaw1TOvD9RXTIg3BpevymdncUvC5k8xMnlPfvUrXM80kemIkemPkFgoMvznt6ZeUTg3kadwXoKk7gM+CXMph4lKekTNZcqm1t9HkpM3ZHy2y+1iIunYLK+DeFTZ0Kuu+pNSD1ZuZyXHqO310nWwh0Rsjsb/U5n41ua4XaRbSNqe/20/nyWYaDsaJd0UppGzG35/Z0i/S3Eher1v1+MiSje7x8brN6PHxis3q8fGCzerxEbkXd+rx0XBOERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDG3TQfQAACAASURBVAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDP9mr8B6ObZNcX5+s1djR7J+2LvZq7Cj/X+Df7vZq7Bj/cPdT272KojINqEeHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDP9mr8B24A/7aDwQI9FbQ7Q5SDDmx7EdUjdyjJ+ZZ+L0/LrKC9b66fx4A4l9NfgjPnKLNtOXkgy+MY2dLW7QVmy+w3VZ6oM2MX+RoM/BdiBt+xhN+7maDJIvmqVla/xF2iJ5msPu8iHLIV80TOcs+hcCTGXX33QTQZsD8SyJoI1lYLHgY3AxQH8yAJhV//9W5jhw9uJBzl44yNRMAgdoqJ/loYMXOXr4Aua2zcvmAnxw7gEu9Xczn4zhOIbaWJLevQMce/Ac0UhmXZ/fP7CHd88cZWKyEccxNCZmOPrAhzx44PL928gtKljrp+uTrdT3xghELHLJAlMX5hl8fQI7s/bvsz9sseeZZhoPxQnG/OTTNrNXkgy8Ok5uobCBW7B1qW43jpfr1jiOs9nrsC5xX6PzZOj5j/Qzdx2ro+ezLeQWCswNpsjOFwjUWDQeiOEPW0xeWODiD8fWVFa4PsCR39xNsMbP1KUk6akcsfYw9V1RUlM5zvzH6xTW0ejup6mvPrqh5f+93QvM5nwk8z6yRR+WcUiEbBLBIumC4RcTUTK22wl5vDFNR7TAfN7HdNYiXzTE/EVaIwV8Bs7MhLiaDK75s3eF8zzWlKHowHAqQL4IrRGb2kCRkZSfd6YiG7XZS1793/7thpX941dOcqGvl2gkTXfnAH5/gcHhDqZnExzuvcxnP/n60rLZXIAXfvhFZubqaW26Qfsut+0Oj7UxMdlErCbJV770l9RE02v67FPnHuDVv/sY4VCGgz39+Hw2l6/uI7kY4/iR03ziybc2ZJtv9Q93P7nhn7GccCLI0a93E4z5mbowT2oyS21HhPp9MVKTWU5/r59C2l61HH/E4ujXu4k2hZjtT7IwkibaFKLxUJxcssAH3+0jO5v/CLZo61Ddbhwv1O2bzs+Yd6aXPaNVj88apGdynP+LEWauLFZMH3h9iod/aw9Nh2qZPJhk6mJy1bK6n2smWOOn/+UJRt+dW5q+91NNdJxI0PVME30/mbjv27AVvDgUo7hMz8qhuiwH4jn2x3OcmQkDMJH2c3k+yHzeqli2MVTgqeY0D9RnGUn5yRZXv1rrNw4PN2RxgL+diDJXKvPCnMPHWlK0Rwu0p/KMpAP3vpGb4MrVLi709RKvnecrX/pLIuEsALbt47//9Fk+vLKfnr0D7N93DYAzHx5iZq6eBw9c5LlnflFR1k9e+wTnLx/gzIVDPPno+6t+9txCjJ+/eYJwKMNX/v4Pqat1vwNPPvo+/+mHX+TdM0fp3XeN9tad2aZ7PtdGMOan78cjjL41vTR933O76Hiqia5PtdL3o5FVy+n69VaiTSGGfznJ1ZdunkS1nWig5/l2ej/fzrkfDGzINmxVqtuN4/W61RifNZgbSFeFHoD8os3YKTe8xDtX7zEI1wdIdNeQmc1XhB6A629MYeeKND9Yiy+wvS+7rGS50AMwknLzd8x/s6freipQFXoAprJ+JrMWloGG0OpnJABt0QIhy2Ek5V8KPeX1uTAXAmBvbPue8V25theA40fOLIUeAMsq8rHH3gHgg3MPLE2fW4gD0N05WFVWd5c7LZ0Or+mzz108gG37efjB80uhByAcynHi2AcAnP7w0Dq2ZvsIJ4IkemvJzOQqDh4Ag69NYOdsWo7Wr/p99gV8tBytx87ZDL5WGRBH35omM5sj0VtLqH57BvO7obrdOKrbVYKPMabRGHOq9G/MGDN8y+9rus5gjPm9FaZHjTE/MsZcMMacM8b8H3ezAZvNsUuXCourXzKsK4Wj2aupqnl2zmF+KI0V9FHbvraDzk7RGnGvA8/n15bDy1dn13qVtjnklj+Rqe7gnMpaFIpuiPKxvS77li2m3XZVF1+omldX604bHtuFXbqM2JiYAeDq9c6q5a8O7gGgs2N4TZ99faQdgL27h6rm7d1zvWKZnaZubw0AM/3VPb12rsj8YMr9Pu+O3rGc2t0RrICP+cEUdq76MvdMn1t+/b7YfVjr7UF1u3FUt6tc6nIcZwo4BmCM+QMg6TjOv1nnZ/we8K9WmPdvHMd5tRSifmaMed5xnB+vs/zNY6D5Iffseaa/OszcLtLoZsX0TG7Z+ZkZt9ch0hBkbmBt4yu2o57aHH7j4Pc51AeLNIZs5nI+Ls+vnqUjVpGmsE2hyJoHONcE3C9lcplg5WBI2T7igSJRf5FkobqXaauLhN2ByPMLtVXz5krTio6PuYVaGurneOjgRS709XD24kEmpxO0t44Dbjiamq3n1x57m5691b1By5mZqwMgUTdXNS8WTRPw50kuxsgXLAL+tfXQbReRJre9Zqayy85PT+dIAJHGEHNXq3uMy6JNoaXll1Muv7z/8ALV7cZR3d7FGB9jzHHgj4EYMAl8DUgBbwFfcBznojHmBeAVoAeIGGNOAeccx/lquRzHcVLAq6Wfc8aY94Dd97Y5H629J5uoaQkxfWVx2V6c21kh98C70oj5QumOrvJyO1VPbY6wdbN3ZTxtcWo6TG6V8To+HB5tzGAZODcXIu+s7ZJgwLifVVhh+ULpzxHYptW+r/M6F/t6effMQxzs7idcHuNTNPzy3eNLy2Wy7o7K77f58ud/xGt/9xRnLhxm7EbL0jL79/XTs3ft1+SzOXenFgouv/MLBnPkCwGyuSAB/84K8/6QG5JXuhnBzrpBzx++c8OylspZPhgu7RfC2y+U3y3V7cZR3a4/+BjgW8AXHce5YYz5H4E/chzn68aYbwLfN8b8eyDhOM53AIwx33Qc59gdCzWmHvgfgH+//k3YHG3H6+h4IkFqMsflv17bHV3iemnE7foM+YokQjYP1GV5ZleKN29EKsbgVHJ4pDFDY8hmOOWnb2HrXTfeLAe7+/nwci8DQ3v4v//iH9LTNYBl2QwOd7CYjlAbW2AhWYspBcB0JsRf//RZpmfr+NynXlm6rDU43MFrv3ySF/7yC3z5cz9mV8uNzdwsEZENsd5z3BDwEPByqRfn9yn10jiO8zJwBvhT4LfXWqAxxg+8APyJ4zj9KyzzDWPMO8aYd/LO+p4vshF2PVpH96dbSN3IcvaFoTXffm4vJeDlq91f7hHawc/yuVW26GMsHeCXN6IEfG6wWZ7Dow0ZOqIFhlN+3psKs57n7pR7hvxm+TE8/tKfI79Nq93nc/jiZ17i6cffIhLOcP7yfj68vJ9E3Ry/8YX/TjDgXkKNht0el5//6gmGRtt49uNvcLCnn0g4SySc5WBPP88+/Qb5fJBfvHViTZ9d7ukp9/zcLrdKj9B2VljlzNha5cy67OYZ9vKhf2m/sMKZ9U6kut04qtu76/E55zjOU1UzjPEBh3EveyWA6tGOy/s2cNlxnH+30gKO43y7tBxxX+OmjkBte6ye7mebWZzIcu4/D5NPrf2Pmp5yd/6RxPIHiXDC7cVY6ZrpTpW23Wf71AWLBH3FiktepnR5qyNaYGjRz3vT6ws9AIt5H4lgkVigWNWjZHCIWkWKDqQK2/RaF2D5HB4/dprHj52umF4oWMzO1REJp6mLu4MN+wfdQc172karytnd7k4bn2xc0+cm6uZIZyLMzNURCVfe2ZFMRcgXAsRqkjtufA9AetL9noYbQ8vOjzSUxvStMJaiLDWZrVj+duXyy/sPL1DdbhzV7fp7fLJAszHmKQBjTMAY82Bp3u8AHwJfAf7cGFO+FpG/5ecKxpj/HagD/pd1r/km6HgiQfezzSTHM5x9YWhdoQdgbtA9467fVz1a3goa4rsj2LkiCyOb36v1USuP+XFuGYdjcHisFHqu32XoAbhRGgTdEq5+imhjyMbvg+msteLt9tvZxf5u7KLFwZ6bnal2KVimMtV3D6ZL0yzf2rq/9rS7z/q4NlQ9PO/a9T0Vy+w0c9fcgZ+J7uq7Vqygj3hn1P0+D915/N/CUBo7XyTeGcUKVu+Sy+XPXl39OWE7hep246hu1x98isCXgX9tjPkAOAV8zBhzEPfy1j9zHOcXwM9xL4OB21Nz2hjzg1sLMsbsBv5X4AHgvdIt8mu+RPZR2/2xBvZ+sonkaIZzLwxTSK98YDA+iDQECN/2/ILMbJ6Z/kXC9QHajtdVzNvzdCNW0MeNcwsU89vztuo7qfEXV7jU5HCoLkvIcpjO+pYuS/lwONGUpi1aYCAZ4P01hB6/cYj5bUK3HbRHU36ytqE9WqAucDOs+kqfDXAtub3HDGVz1es/MdXAL948QSiU4fGHP1ia3rHLvYvrV+89UvFIgOItg6FvDyvpTIjp2TrSmcqzxAcPXMKyCnxw7gHmFm7uSDPZIG+dehiAo4cv3NvGbVGZmRwzVxYIJ4K0nWiomNd5sgUraDFxerbi+xxpDFbd5VLMF5k4PYsVtOg82VIxr+1EA+FEkJkrC556urDqduOobtdxqctxnD+45ddPLLPI4VuW/ae3/Py7wO8uU94Q2+QFSc0P1dL1iUacovusnbbH6quWyc7lmTjjPjMlWOvn0W/sJTOX590/u1axXP9LNzjymyG6P91CXVe04pUV6akcA69PfhSb9JFrDRc4XJdlOmexWPCRLxpCviKNYZsav0PGNpyavtkDcbQhQ2vEJmsbMrbhYLy6u3Qya1Xc0t4WKfBIY4bBRT+npm8+ULLgGD6YCfFYY4Zfa0kt+8qKkfT2foj5f33xefx+m8bENMFAnunZeq4OduL3F/jiZ14iVnPz7O3jJ95idLyFDy8fYGKyiT2ly1uDw+1MzyaIhNM8/fg7FeWfOvcgv3rvUZ589D2eOv7e0vS6eJKPn3iL1375Mf7Tf/vSsq+s2KlPbQboe3GUo1+P0PN8+9Lj/m999P/AK+MVyx//5gEA3vjDsxXTB342Tl1XDR1PNVHTGq569H/fi9WXJXc61e3G8Xrdbu+9/Uek3HNjfIb2xxPLLjM3mFoKPneSmc3zwfev0/nxRhLdURI9NeSSBUbentnRLym9kbWoWQzQELKJRwoESi8pTRZ8DM0F6L/tJaXR0qWvkOVwsG6Fa8RzwTU/y2csHeDvJgz74znaonks3JeUnp0J7YiXlO7fd5WL/T1cuNJLoeCnpmaRI4cv8PjDp6iNVXZZNzXM8NW//994+4OHGRzu4MyHh8A41NYscuyBczx+7IOKoLSaRx46T7w2ybunj3D+cq/7ktL6WT722Ls7/iWlmZkcp77TR9fJFhK9MRL7Y+QWCgz/anJdL3sspG1Of7efzpPNNByME++KUkjZjL8/s6Vf9riRVLcbx+t1q5eUypKNfkmp123kS0q9brNeUioiW9OdXlK6fW9jEREREVknBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEMBR8RERHxDAUfERER8QwFHxEREfEM4zjOZq/DusRNg/OE9dxmr4bI+hXtzV6DHet3rny42auwY33r2c9s9irsaIVrg5u9CjvSm87PmHemzXLz1OMjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinqHgIyIiIp6h4CMiIiKeoeAjIiIinuHf7BXYLhoP11LXGaVmV5ia1hD+kMXEmTku/XBk3WUFa/10nWymvqeGQMQilywwdTHJ4M9vYGeKG7D2W5vqdmMFa/10fbKV+t7YzTq5MM/g6xPrqhN/2GLPM800HooTjPnJp21mryQZeHWc3EJhA7dg880O7WL8wn7Sc3EK2RDBSJpowwy7HrhErHm6Ylk772f07CFmBjvIJmvw+W1qGqdpe/Ai8baJu/jsNsbOHyA1ncBxDJG6OVoO9tHUM3C/Nm/LatkfoGV/kEi9e46enisycTnHxKX8usqJ1PnYfSxEvNXCChqyySJTVwsMn83i2Bux5lufl/cLCj5rtOfpJmK7whSyNrmFAv6QdVflhBMBjn5tL8GYn6mLC6Qms9S2R+h4ooFETw2nvz9AIe2tb6LqduOEE0GOfr3brZML826ddEToeLKJRG8tp7/Xv6Y68Ucsjn69m2hTiNn+JDfOzhFtCtH6SILE/lo++G4f2dn1HYy2i+vvHWHs3CH8oSz1e4bxh3JkF2LMDnUwM7ibfb/2Fk3dgwAUsgE+/MknyczVuQHlQB92wc/s9Q4u/vQZ9j75Ns37r635s8cv9DD49qP4Q1ka9w1gfEWmB3dz9e9OkJqto/P46Q3a6s3X+/EITd0Bcukik1fzFAsOde1+up+KUNti0fdGZk3lxJosDj8XxfhgeqBAbrFIvM3vBqE2iw9fSuF47JzI6/sFBZ81uvrSONmFPJnpPHVdUY78VtddldPz/C6CMT99fzPG6NszS9P3fbqFjicb6fpkM30vjt2v1d4WVLcbp+dzbW6d/HiE0bdu9kzse24XHU810fWpVvp+tHrPWtevtxJtCjH8y0muvnSzDttONNDzfDu9n2/n3A92Xg9EPh1i7PxB/OEMD/29lwhEskvz5seaufjySUY+eHAp+AyffpDMXB2JziF6Pv4rjM9xyzl2lvMvPsvg249Q1z5OsCa96mdnk1Guv/swVjDLA5/7KaFYCoD2o+c5/+NnGT9/kIbOoaoep50g0emnqTtAZqHI2R8tUsi69Wh8WQ6cjNDcE2R6sMDM4Co9Cga6fy2MFTBcfCXFzPXy8ln2PxOhcW+AtgeCjJzNbewGbTFe3y9ojM8azQ2kyEzfW3INJwIkemJkZnIVB2aAwdcnsXNFWo7U4QuYe/qc7UZ1uzHCiSCJ3lq3Tt6qPDgOvjaBnbNpOVq/ap34Aj5ajtZj52wGX6u8VDP61jSZ2RyJ3lpC9YH7vg2bLZusAccQa5qqCD0A8V038AXy5DOhpWmzgx0AdDx8bin0AAQiWVofuETR9nOjb++aPnvyyj6cokXroStLoQfAH8rT9tCHAExc6rnbTdvSGjrdc/LRc9ml0APgFOH6++7fYdeh4KrlxFstovUW82OFW0KPa/Bdt8eo9eDq5ewk2i8o+Hyk6rpqAJjpX6yaZ+eKzF9PYQV91HZEPupV2/ZUt9Xq9pbrJFk1z84VmR8s1cnu6B3Lqd0dwQr4mB9MYeeqrwnM9Lnl1++L3Ye13lrC8QWMz2ZxqoF8pvIAuTDeRDEfqBi3k8+EAQjFquu8PG1htHVNnz0/1gJAXXt1L2V5WnmZnSYQcQ9N2aRTNS+bdNtgbauFWeUIFm9zA9TscHXPUDbpkJ6zCcV8hGq9c0Kk/cIqwccY02iMOVX6N2aMGb7l9zXFZGPM791h3t8YYz4wxpwzxvwHY8zdDe7YJiKNbpVlppfvVk2XppeXk7VT3VaLNJXqZCq77PybdRJadn5ZtClUsfztyuXvxLr1h/LsfvQM+XSYs3/1Ga798jjX33uIKz9/kos//QTxtjH2PvHuLcu7dZFN1lSVlU26B4D0fO2aPjtTWi4crz5ABaMZfP4C+VQUu7DzdpuFjBt4QrHqQBKKuYctn88s/bySSNydn5lffhBPeXokvvPqcCXaL6wSfBzHmXIc55jjOMeA/wD82/LvjuOs9aLoisEH+MeO4zwMPAQ0A/9ojWVuS/6wW92FFUbM29liaTnvfAnvF9VttfIg8ZXrxB28WK67lVhL5Sw/2LFQqltrh9btrsOX6X3m73AcHzeudDN27jAzA3sI1qRo6rlWcQmsrmMUgOEPHqwYMJvPBBn/cD8Adm5tXf923l3OCix/Gbg8fa3lbSczQ+62tT0QwrrluGkM7D5284DsD925p8YKuvML+eqeIwA7X17uHlZ2m9F+4S4GNxtjjgN/DMSASeBrQAp4C/iC4zgXjTEvAK8APUDEGHMKOOc4zldvLctxnPlb1iMILN86RUQ2yei5gwy9/xCth67QcvAKgUiGzFwtQ+8fof+NJ0lN17Pn+BnAHdszP7KLmcE9nPtRnPiu8dJdXe0Eo2lyizXgnasqd23qWoHmngL1HX4e/lKMmcECRdu9qysY8ZFNFt3eHh0x5C6sd4yPAb4FfNlxnOPA94A/chxnDvgm8H1jzG8ACcdxvuM4zj8H0qUeoq8uW6AxPwEmgAXgL+52Q7aDcsJeKUlboXKvhbduub4fVLfVCqucuVmrnPmV3TwDXP7MzV+qW3sH1u38WDND7x2lfvcInY99QLh2EctvU9M4S+/JvyMQTTH24UEyC+6lrWA0wwOf+yktB69g5/1MXOplbriNhr3X6fnELwEIhNd2G/ZSj05++R6dpR6h4Na7XfieOXDxZykG381QyDg09wZo7g2SmS9y9sVF7FIPTn61tptzl/OvMFDXCpSXu3+rvtVpv7D+Hp8Q7mWpl40xABYwCuA4zsvGmH8E/Cnw8FoLdBznM8aYMPAD4FPAy7cvY4z5BvANgDB3HnC1laWn3G9XuGH5ftVIaXp5OVk71W219GSpTla4Vn+zTpa/1l+WmsxWLH+7cvk7sW5nh9sA9w6u21mlBxPOXt9NarqecK07sD4QydJ14n26Trxfsfz8aDMANY0zVWUtJxxfIHkjRGY+VnXLei4VpljwE4imsPxb78ByPzgOjJzNVd1qbnwQjvvIZ4rLDn6+Vbo0hiccX/4gX56ent+Zdbgc7Rfursfn3C3jfI44jvMcgDHGBxzGveyVWE+hjuNkgL8EvrjC/G87jvOY4ziPBbjzgKutbG7A3TEmuqsHPlpBH/E9UexckYXh1Z/xIZVUt9XmrpXrpPquCivoI95ZqpOhVNX8Wy0MpbHzReKdUaxg9S6jXP7s1epBuNudY5d7Cpff7xSy7nSfb/Un4E327wWgYd/gmj47vsu9W2xuZFfVvPK08jJe0rQvgM8yTF5dvadrftS9m6u+o/ocPxQzROossski2QXvXDPTfmH9wScLNBtjngIwxgSMMQ+W5v0O8CHwFeDPjTHl/tn8LT8vMcbEjDFtpZ/9wOeBC3exDVuO8bkj2cOJys3OzOSZ6UsSTgRpe7wyG3Y+04QV9DFxZo7iCgPxRHW7HpmZHDNXFtw6OdFQMa/zZAtW0GLi9GxFnUQag1V3YRTzRSZOz2IFLTpPVt4+3XaigXAiyMyVhS35hNZ7VdsyCcDE5W5yqXDFvNnhXSQnmjCWTaxlCnB7Kex8ddf/ZH8nU/1dxJonSewZrpiXzwRJz9VW3S7f1HMV47MZv9BLNnmzp7uQDTB69jAALQf67n0jtyhrmSt80YSPzsdCFLIOI2du9iT4LLf3JlhTeUlrftwmNWsT3+Unsacy/HQed/+e4xe3Xo/ERtJ+Yf2XuorAl4E/McbUlf7/vzPGFIDfBk44jrNgjPk58PvAvwC+DZw2xrx32zifGuCvjDEh3AD2Ku6dY1tSw8EYjQfd20uDNW611XZE2P8Ftys8n7K59lP37CtYG+D4P+khM5vjnW9V7pj6fjzG0a/tpeezu6jfV7P0WoX6fTWkprIMvFrdpb7TqW43Tt+Loxz9eoSe59up3xdbejR9+eeBV8Yrlj/+zQMAvPGHZyumD/xsnLquGjqeaqKmNczCSJpoU4jGQ3FyyQJ9L45+ZNv0UUp0DRG/PM78WCtn/uqzJPYMlwY3x5kdagMMux85jT/kHjyLBYtT/+ULxNvGCdUmMQYWbjSyeKOJcN08PZ/4Jea24SYTF3sZOf0g7UfP0fHw+aXpodoUe46fZvDtRzj/4rM0dF1femVFPhWl9YGLO/KpzWWHP11D0XZIzRax8w6ROh/1u/0UC3DxlRT59M0Dc6zJ4oHP1jA/VuD8T27pqXCg/28zHH4uyv5nIkwPFMguFqlr8xNrspgfLzB63lvBB7RfWHPwcRznD2759RPLLHL4lmX/6S0//y7wu8uUNw48vtbP32yx1jCtD9dXTIs0BJeub2Zmc0sH5zvJzOQ59d2rdD3TTKInRqI3Rm6hwPCb0559kabqduNkZnKc+k4fXSdbSPTGSOwv1cmvJtf1MsJC2ub0d/vp9a8GBQAAHBNJREFUPNlMw8E48a4ohZTN+PszW/plhPfKGNj/679g4v9v716D4zrv+47//tgbFneAICnwBhKERFKkKMqkaMsjx7RlybWc2k0iN23UJq2quG807cid1k3GY8tuMpNMJ1Ua5eJKkWwno6RJ3E4ulh2JtSVZ0kimbiREUiQFgAR4AyGCAAEQwC529+mLXYAAcb8c7nKf72cGw8U5Z5/znD8OiN8+59k9x5t16dR69Z5eq0wqpHA0qeq157V6a6uq11z9I2GhjOo2ntbgh/Xqz31QYaxqUGt3vafV2z5Y8Hyc1VtbFSu/oq6jW3SxvVFyptKafq3bdbjob1La0zGqFZsiqm+KqCQkJYecuk+M6tx7CSWH5j9yO3gxrcPPXdG6XTFVrwkpFAkrMZjRmYOJ7E1K/ftvwfv/F8y5G2vov8rq3EdD9+W7G8DCZfyZQHm9Pdr6fr67ULSe+Mxn892FopY6Nb85X1iYn7kfq99dmvbtfNyyAgAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3wvnuwKJk0vnuAYAC8njztnx3oWh9vf1v892Fovatpo/kuwveYcQHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALwRzncHbiTRyrAaP7VaNc0VisRDSg6m1HOsX50vdys9kpl3O+HSkNZ/cqVWbK1StCKs0eG0+loH1fHiBSUHUgEeQeGitsGhtsGivovnnHTug5t1/oNmXemrkZNUXn1Za25u1ZpbTsjs6rajyYjOnbhFg5dqNXCpTsP9VXKuRLvu3a+6NecXtf+Lp9eq88h2DVyqk5ypvKZPa7ccV0Nz+/IcYAHz+bwl+MxTaW1UOx9qUrQirJ5j/Rq6mFDl2rjWfqxetc2VanmmXanh9JzthOMh7XyoSWX1MfW1D+rDw5dVVh/T6jtqVXtzpQ493aZE3+h1OKLCQW2DQ22DRX2X5ugrd+vCySZFSoe1atMphcIpXTrXoONvfEyXu1fq1k+8Nr7tyGCF2t7eLUmKlV1RJJZQciS+6H2feX+LThz4qCKxEd3U1K6Skoy6Oxr1/mt3a7C3Vjff+faSj69Q+X7eEnzmafP9DYpWhNX2o3M6f+DS+PJN992ktXfVq/HTq9X23Lk522m8Z7XK6mM6+/pFnXyha3x5w946bf7cGjV/fo2OPNsRyDEUKmobHGobLOq7eB92rNeFk00qrRjQns//UNHShCQpky7Rey99Ul3tm1W/4bRWNXZKkkrLr2jXfS+osu6SIrGkjr76cXW1NS9q38OD5Wp9a4/CsYT2/PxzildckSRtvL1Fbz13v04f3a5VjR2qXnVxeQ62wPh+3jLHZx5Ka6Oqba7USG9y0kkiSZ0vdSudTGvVzhqVRGyGFrJKIiVatbNG6WRanS91T1p3/sAljfQlVdtcqVhNZNmPoVBR2+BQ22BR36X5sHODJGnD9qPjoUeSSkIZNd1xUJJ05tiW8eWRWFJ1DV2KxJJL3vf5D5qVyYS0buux8dAzto/G2w5Lks6e2DLT029onLcEn3mp3lguSeptH5yyLp3MqL9zSKFoiSrXlc3aTuW6uEKREvV3DimdnHoNtbct237Npopl6PWNgdoGh9oGi/ouTWI4e5kqXjEwZV28InvMly+sVia9/H+mersaJEkr1pydsm7F2uyy3vM3Lft+CwHn7RzBx8xWmNnB3FeXmZ2d8H10Pjsws9+cxzZ/b2aH59vp6y1enz3UkZ7EtOuHL2VfgcRXxGZtp6w+Nmn7a421H18xr9IWBWobHGobLOq7NGOjPMODlVPWDQ9m/1g6VzL+eDkNXa6SJJVVTQ1dsbJhhcKjSgyVK50KLfu+843zdo7g45zrcc7tcs7tkvRtSY+Pfe+cm+9446zBx8x+UdLU6FlAwrHsyZ+aYaZ7OpGdBBYunf2VSWi8neknjaUS2fZDpcX3yzYTahscahss6rs0K9adkSSdPrpNo4mrfxwzGdPJg7vGv08llv8PZ2o0e/klFJ3+z1gokp2Qm0oW3h/tpeK8XcTkZjPbLel/SKqQdFHSv5E0JOmApC84546b2V9K+omkzZLiZnZQ0hHn3IPXtFUh6SuSvizpr5dwHACAG8jqjafU1dakS+fW6md/+0XVbzitklBavecalBiOK1Y+qMSVCmn2qSbAgi304qlJekLSA8653ZKekfTbzrnLkh6R9F0z+xeSap1zTznn/quk4dwI0YPTtPffJP2essGpYKXmSMChORL0mKtJevoEHI5l20/PkKCLEbUNDrUNFvVdGitx2nnPT7T5I28rUjqirtbN6mrdrHhVv3bf/yOFc6Mu0dKRZd/3WNvpGUZ00rkRofAMI0I3Ms7bhY/4xCTtkLTfsp8sFZJ0XpKcc/vN7EuS/kjS7XM1ZGa7JG12zj1qZhvn2PbLyo4KqVSzT7gKwvDF7MlfOsM1z3hd9pdneIZrpmOGLiYmbX+tsfaHe4rvl20m1DY41DZY1HfpSkqcGm87osbbjkxank6XaKi/SpHYiOKVyz8Toqy6X5e7SzXUX6nq0sk/n8RQXOlURLGyKwqFC++P9lJx3i5uxOfIhHk+tznn7pMkMyuRtE3Z0ZvaebR1l6Q9ZnZK0quSbjGzl6bb0Dn3pHNuj3NuT0SzT7gKwuVT2bc71jZNnWQXipaoakOZ0smMBs7MPnA1cGZY6dGMqjaUKRSdWvqx9vtOFvSUp2VFbYNDbYNFfYPTfXKTXCak1ZtOBtJ+7U3ZT3ruObd2yrqes9lltQ1dU9YVA87bhQefhKSVZnaXJJlZxMy259Y9Kul9Sb8i6TtmNvbm/dEJj8c55/7EObfGObdR0t2STjjn9i3iGAI30ptUb+uASmujathbN2ndhn2rFIqG1N3Sp8yoG18eXxGdMps9M5pRd0ufQtGQNuxbNWldw946ldZG1ds6UJCfdBkUahscahss6rt0qeTUz3gZuFSr1rd2KxxNjH+mzmIlR2K6crlKyZHJL5gbmttUUpLWmWNbNTxYPr58NBFVx3s7JElrbzm+pH0XKs7bhV/qykh6QNIfmFl17vm/b2YpSQ9L2uucGzCzn0r6mqRvSHpSUouZvTPDPJ8bQtsPz2vnQ3Ft/twa1WyqGP+I77HHHT+5MGn73Y/cIkl69ZuTf3E7fnxB1Y3lWntXvcpXl2rg3LDK6mNasbVKycGU2n64uHvO3MiobXCobbCo79Ic3P8ZlYTSKq/pUzgyqiuXq9VzZp1Kwint/PSLipUNT9r+gzd3azSRDTGXu7N/bDuPbFdX+yZJ0soNp7Vyw+nx7c8c26pTh27XxtsPqWnXofHl8cpBbd7ztj44sFdv/eDzWrXx1PgtKxJD5Vp/65Gi/dRmifN23sHHOffYhG9/bppNtk3Y9isTHn9V0lfnaPuUsnOHCtZIb1IHn2pT475Vqm2uUO3NFUoOpHT2jYsLuqlbajitlqfbtWHfStVtqVJVY5lSQ2ldeLe3oG/qFiRqGxxqGyzquzQrGzvVfXKjLrQ3KZ0OKVY2pDW3nFDjbYdVWj71UsuHHY0auTL5Es2lc2vGH5dWXJkUfGazftsxxSsG1XnkVnW1bR6/QWrTHe8W/U1KfT9vzTk391YFpMrq3Eftnnx3AwC88PX2d/LdhaL2raaP5LsLReln7sfqd5em/TAEblkBAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBvhfHcAAFC4vtX0kXx3oag9f+5gvrtQlPZ+dmjGdYz4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAb4Xx34EYSrQyr8VOrVdNcoUg8pORgSj3H+tX5crfSI5l5txMuDWn9J1dqxdYqRSvCGh1Oq691UB0vXlByIBXgERQuahscahss6hscaju3o+0b1Hlulbp66nShp0bJ0ah2NJ/UL9zz2ozPOd1Vr1ffuU1nuuuVSoVUVz2gXVvadOeO4yopcdM+50THWr1x6FZ19dQqkzGtrLusPbee0O1b2hfc58XsfzmZc8HvZDlVWZ37qN1z3fdbWhvVzoeaFK0Iq+dYv4YuJlS5Nq6aTRUauphQyzPtSg2n52wnHA9p50NNKquPqa99UAPnhlVWH9OKrVVKDqZ06Ok2JfpGr8MRFQ5qGxxqGyzqGxxfavv8uYNLev6T379fF3rqFI2MqrJ8SD191bMGn+On1ulvXvg5hUNpbd/coXgsqROda9XTV61tTR164N5XpjznzcO36B9f26t46Yi2N3UoFMro/fYN6r9Sro/tPKp773pn3v1dzP4XY+9nT+utQyM23TpGfOZp8/0NilaE1fajczp/4NL48k333aS1d9Wr8dOr1fbcuTnbabxntcrqYzr7+kWdfKFrfHnD3jpt/twaNX9+jY482xHIMRQqahscahss6hscajs/9931tiorhlRXNaCO86v15/9w74zbJpIR/eDlj6nEnH71C/u1ZmW2rvvuPKg//8G9er+9UYdbO7Wj+Wo9+gbKtf+N3YrHEnr4F3+kmsorkqRP7H5PT//fz+mNllu1bVOn1t10cc6+Lmb/QWCOzzyU1kZV21ypkd7kpF9ASep8qVvpZFqrdtaoJDJtuBxXEinRqp01SifT6nype9K68wcuaaQvqdrmSsVqIst+DIWK2gaH2gaL+gaH2s7fxrUXtKJ6QDZ7KSRJ77dv0NBIqbY3nxoPHZIUDme0787syNPbR2+Z9JyDxzYrnQ5pz/bj46FHkuKxpO6+43D2Oe/fPK++Lmb/QZg1+JjZCjM7mPvqMrOzE76PzmcHZvabs6x7ycyOT2hz1UIP4Hqo3lguSeptH5yyLp3MqL9zSKFoiSrXlc3aTuW6uEKREvV3DimdnHp9urct237Npopl6PWNgdoGh9oGi/oGh9oG4+TZmyRJm9efn7KusaFbkXBKZy6sVCp9NRqcOpd9TvP6qaNrm3PLTuXaDWL/QZi1dedcj3Nul3Nul6RvS3p87HvnXHKe+5gx+OQ8OKHN7jm2zYt4fTbjjfQkpl0/fClbiviK2KztlNXHJm1/rbH24yvmlSmLArUNDrUNFvUNDrUNRs/lKknSiur+KetKSpxqKgeVyZSot/9qEOzpyz6nrmbqcyrLhxUJj6r/SrlGR0OB7D8IC45VZrbbzF42s7fN7HkzazCz6tzIzZbcNn9pZr9uZr8jKZ4bzXl22Xt/nYRj2R9oaoZ3EaQT2Ql24dLZyxkab2f6CXmpRLb9UOncJ1CxoLbBobbBor7BobbBSCSzl/Ri0emD4NjyROJqEBzJPac0Ov0E8LHlI8m5w+Ni9h+EhU5uNklPSPqic+5DM/tlSb/tnHvIzB6R9F0z+5+Sap1zT0mSmT2SGzGayXfMLC3p/0j6LXejvc0MAADcMBYafGKSdkjab9mZVCFJ5yXJObffzL4k6Y8k3T7P9h50zp01s0plg8+/lvRn125kZl+W9GVJKtXs13SDkJrj1UVojlcnY66+Spn+1UU4lm0/PcOrk2JEbYNDbYNFfYNDbYMRy43OJGYYnRlbHotdHZEpjY5qaCSkkWREZaVTR2qujgjNPftlMfsPwkIvdZmkIxPm5NzmnLtPksysRNI2SUOSaufTmHPubO7fAUl/IWnvDNs96Zzb45zbE9Hs13SDMHwx+0MoneF6crwu+8ManuF69Jihi4lJ219rrP3hnmB/6IWE2gaH2gaL+gaH2gZjbG7N2FybiTIZU99AhUpKMqqtujqpfEVubs+lvqnPGbgS12gqoqryK4pE5g6Pi9l/EBYafBKSVprZXZJkZhEz255b96ik9yX9irKXr8beHzg64fE4MwubWf1YO5J+XtLhRRxD4C6fyr6Fr7Zp6oSrULREVRvKlE5mNHBmaNZ2Bs4MKz2aUdWGMoWiU0s/1n7fyWB/6IWE2gaH2gaL+gaH2gZj09rs5xi1nW6Ysq7j/CqNpsJat/pDhUNXR9I2rsk+p/X0minPacst27i2a8q65dp/EBYafDKSHpD0u2Z2SNJBSR/PTWp+WNJ/cs69Iumnkr6We86Tklqmmdwck/S8mbXk2jkr6anFHUawRnqT6m0dUGltVA176yat27BvlULRkLpb+pQZvTo9Kb4iOuWdApnRjLpb+hSKhrRh3+R37jfsrVNpbVS9rQNefUIrtQ0OtQ0W9Q0OtQ3GtqZOlZWO6EjrRp378GpdU6kSvfRmdiru7ltPTHrO7VvaFAql9daRLeobKB9fPpyI6tV3d2Sfs+2DSc8ZSUR0sbdKA1fiS95/ELhlxTwt9OPT7/5G9oR49ZuTB7Hm+vj0lmfaNdLrx7DrGGobHGobLOobHF9qu9RbVhw7uU7HT62XJF0ZiqvtzBrVVg1o/U3ZT4cpK01MuqXEsZPr9P39uVtGNHcoHkvoRMe68VtG/NJnXpnyYYgHDm/R86/dOe9bVhw63qS/f+nj2nlLm774qden9Heh+18MblmxDEZ6kzr4VJsa961SbXOFam+uUHIgpbNvXFzQDfNSw2m1PN2uDftWqm5Llaoay5QaSuvCu71FccO8xaC2waG2waK+waG283Ohp04tJzZPWtbbX6ne/kpJUnXF4KRgsnXTGf3aF/br1Xd26Fj7eqXSIdVWD+jeu97S3h3Hpw0de3ccV03FoF5vuVUtHzTJOVN97WXtu/PQgm9Supj9LzdGfAAAyJOljvhgerON+HCvLgAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeMOdcvvuwIGb2oaSOfPdjnuolXcx3J4oY9Q0OtQ0OtQ0OtQ3WjVTfRufcyulW3HDB50ZiZm855/bkux/FivoGh9oGh9oGh9oGq1jqy6UuAADgDYIPAADwBsEnWE/muwNFjvoGh9oGh9oGh9oGqyjqyxwfAADgDUZ8AACANwg+1zCzwXz3QZLMbJOZ/czMWs3sr8wsmu8+LVUB1faRXF2dmdXnuz/LpYDq+6yZHTezw2b2jJlF8t2npSqg2j5tZofMrMXMvm9mFfnu01IVSm3HmNkfFFqfFqtQjsPMvmtmJ83sYO5rVz77Q/ApXL8r6XHnXLOkXkn/Ls/9KSavSfqMbpzPg7rRPCtpq6TbJMUlPZzf7hSVR51ztzvndkrqlPRIvjtUTMxsj6TafPejSP1n59yu3NfBfHaE4DMDM9tnZi+b2d+ZWbuZ/Y6ZPWhmB8zsPTPbnNvun+ZGZt41s/9nZqtzy1ea2X4zO2Jmf2pmHWOjC2b2r3LtHDSz/2VmoWv2bZI+Len7uUXfk/TPrt/RByuftZUk59y7zrlT1/Wgr6MCqO8PXY6kA5LWXc/jD1IB1LY/t60pGyqLZpJmvmubW/bfJf2X63nc10O+a1twnHN8TfiSNJj7d5+kPkkNkmKSzkr6Zm7df5T0+7nHtbo6SfxhSb+Xe/yHkn4j9/ifKPsfVL2kbZL+QVIkt+6PJf3qNX2ol9Q64fv1kg7nuzbFUNtr+nNKUn2+61LE9Y1IekfSJ/Jdm2KqraTvSLog6UVJZfmuTbHUNrePRyf26Ub/KqDaflfScUktkh6XFMtnXcLCbN50zp2XJDNrk/RCbvl7kj6Ve7xO0l+ZWYOkqKSTueV3S/oFSXLO/aOZ9eaW3yNpt6Q3sy/aFJfUHfBxFCJqG6xCqO8fS/qpc+6VZTmiwpHX2jrn/m3uVfUTkn5Z2SBULPJSWzNbI+lLygaEYpXP8/Y3JHXl2nxS0lclfWvZjmyBuNQ1u8SEx5kJ32ek8dD4hKQ/dM7dJunfSyqdo02T9D139VrnFufcY9ds0yOpxszG9rFO2YReTPJVW1/ktb5m9g1JKyV9ZZH9L2R5P3edc2lJ/1vSLy2i/4UsX7W9Q1KzpFYzOyWpzMxaF38YBSlv561z7rzLSigb1Pcu4TiWjOCzdNW6Gkp+bcLy1yT9c0kys/t0dcLcjyU9YGarcuvqzKxxYoMuOzb4oqQHJrT7d4H0vrAte20xSSD1NbOHJX1W0r90zmUC6nuhW/baWlbz2GNJX5B0LLAjKFxB/J/7nHPuJufcRufcRklDLvvGEt8E9X9CQ+5fU3a+6uFAej9PBJ+le0zS35jZ25p819pvSrrPzA4rO4TaJWnAOXdU0tckvWBmLZL2K3vd9VpflfSV3KuOFZKeDu4QCtZjCqC2ZvYfzOyMsiNpLWb2p8EeRsF6TMGcu9+WtFrS67kJj18P8BgK1WNa/tqapO+Z2XvKXp5oUB4vF+TRYwrmvEVwtX12wnlbL+m3gjuEufHJzQExs5iktHMuZWZ3SfoT51xeP7ugWFDbYFHf4FDb4FDb4BRbbZncHJwNkv7azEokJSX9ep77U0yobbCob3CobXCobXCKqraM+AAAAG8wxwcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBv/H8HpVtA8sGUcAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: Spanish\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXAc2WHn+e+rrBNVBVThJG4CIHg0m+yD3Wx1u6Vmy1KPjrHsmZBnHHZYq9F6FLFe/bEex4YnvI4dO2K9sbMxMYcVXjukkKxYr6YV40uekSVLLbkPt0fqVh9sXk02CZAAcRBnFc666+0fhQJYBEAAbKJx5O8TwQggM/Eq8/Fl1i9fvsw01lpERERE3MCz0ysgIiIi8kFR8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER1/Du9ApsVbzWY1va9txq7wk3L0R3ehX2Nz06YvsYs9NrsH+p3coelGaBrM2seWDYcwmipc3Lt77TuNOrsS/95pEzO70K+5rN5Xd6FfYt49tzh7I9w2YyO70KIlv2mv3RuvN0qUtERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFzDu9MrsJtYCzfeO8KN944ym4wDEK1JcvDwFbqOvIsxK8vOTMe5dulBklP1pBbC5HN+AsEUkZoZuo9eoqXzRsXymzF6s4OrF06QnKrHWkN1LEH30Ut09l69j1u5u3iDHuoOR4gfClPV4Mcf8WILlsWJLGPnZxk/N7ul8vxRLx0friXeFcYb8pBdKDD93jyDr05TyBS3aSt2r7pjUWo6qggfCBJuCuANOIyfn+G9b49suSx/1EvnmQZiPWF8IYfsfJ6pK/MMvjJBIe2+ulXb3X7+qJfOZ5uIHYqstLnLswy+PL6lNucNOrQ/00Dd0Wr8ES+5VIHktXkGXhwjO5ffxi3Yvdxctwo+t3njlWe52X+IQHCR9u4+HCfP+EgrZ3/8NNPjTTz2kZeWl01O1TM6eJDahnHqGsfw+rNkUlWMDnbw2osfp6PnasXyG+m79ADvvPYz+ANpOnqu4vEUGb7RxZuvnmE2UcuJ06/d/w3eBeqPRun5RCPZuTwzg4tkZvP4wg51hyP0fqqJeHcVV759a1NlBWM+TvxqG/6wl6n35klNZYm0BGl5PE6sO8z5P71J3mVf0O1P1xM5ECSfKZCdy+MNOPdUTjDu4+TnD+KPeJm6MsfiZIZoS4jWJ2qJ94Q5940B8qnCfV773U1td3sF435OfqG71OYuz5baXGuI1g/VEz8U5dzX+zfV5rwhh5Nf6KaqPkCyf56JCzNU1QdoeiROvDfKO1/rI5PMfQBbtHu4vW4VfJYMDxzkZv8hqiKzPPtz3yYQzABQLHj4yYsfY7Cvl+aOG7QevAFAW3ffmj0xuayPl77z8wz29dJ97CK1DRMbfvbCXITzbzyBP5Dm2Z/7K8LReQCOPvwWL/63X+DqxZO0HLxOXeP4fdve3SKVyHLpz0dIXFuomD7w8hQPfa6d+qNRJo/MM3VlfsOyup9rwB/20v/COKNvzixPP/jRelpPx+l8pp6+7++/Oryb6z8YIzOXIz2do6azihOf67yncno+eQB/xEvf395i9KeJ5eldH2+k9UN1dD7bQN93N/clv1+o7W6vnk81l9rc90YYfX16eXrXcwdofbKezo820fc3G/dcdv5sE1X1AYZ/PMn1H6y00ebTtfR8soVDn27h4jcHtmUbdiu3163G+CwZHTgIQO+D55dDD4DHKfLAI28A0P/u8eXpjrP22ZfPn6OpdQiA+dnqTX32wNUjFAteuo9dXA49AP5AliMnzwJw/fKxzW7KnjIzkFr1xQGQWyhw62zpC6C6I7RhOcGYj3h3mHQyV/HFAXDz1SkK2SINx6N4fFu8/rjHzQwskp5+f2dcwbiPeE+EdCJbEXoABl+epJAt0niixoV1q7a7XYJxP/FD0VKbu+2LGWDwpXEK2QKNJ2Mb1onH56HxZIxCtsDgS5XBcfT1adLJLPFDUQIx333fht1KdavgsyydKh2gwtHV1+XD0TkAJscOUCzcvcryeYeJ0RYAauKJuy5bVl6+HJhu19R2s2IZN7EFW/qhaDdctmbpCyZ5fXHVvELWMjuUwvF7iLYE7+s6ukFNZxiARP/qL/lCtsjszcVS3bZu/CXvFmq770/NwXKbW91bVsgWmR1canNtVXctJ9oWwvF5mB1cpJBdfbKa6CuVH+uK3Ie13htUtxsEH2NMnTHm7NK/W8aY4dt+92/mA4wxv32XeaeMMeeNMdeMMX9gzFaHA98//mAagIW56Kp55WnWelbNn5+t5tLbj3LxrVO89Q9P84O/+OfMJOo4fPJtamqnV5W1lrmZGgAi1TOr5oWqUjjeHKnFCPn8vY3P2JMMNDxY6jFL9K/+QrhTqK7UHFOJ7Jrz04lSr0eodlPNVm5Trtv09Np1m1qaXl7O9dR237dQ/VKbm8qsOX+lzQXuWk5VfaBi+TuVy3dT21XdbhB8rLVT1tqHrbUPA38M/Ify79batbd2tXWDD/BHwL8Eepf+fWKTZd53B9oGAbh28QTZzMp/eLFoePftU8u/Z7OVjWF+tprLZ09x5Z1HufHeMbLpIA8+9hOOP/rGpj87lys1DJ9/7SotT89ld18D2i4Hz9QTbgwwfW1hzTPhOzmBUlNe726E/NJdMeXlZPO8wVKdrTe4tnzHkTfoomB+F2q77195EP76ba408LbcNtfjLJez9kDd5bp1UdtV3d7D4GZjzCng3wMRYBL4PLAIvA58xlp7xRjzPPB3QA8QMsacBS5aa3/ltnKagWpr7U+Wfv9/gV8Avve+tugetXf1M9jXy/hwOy/81Wdpbh/AcQqMj7aSXgwRCs+RWohiTGXX9YG2If7pv/gqxaJhcT7Czf5DXHzrcSbHmvnQsz/Es85YIFlf86kaWp+IsziZ5ep33DVgVvY2tV2R3W+rpxAG+DLwWWvtKeDrwO9ba2eALwHfMMb8EhC31n7VWvuvgdRSD9Gv3FFWK3D7oJahpWk7wngsT33s+xw/9TqBQJrBvl4G+3qJVM9w5tP/FZ+v1N0cWLokdiePxxKpnuPYw2/zwCNvcutmJ9cuHV9z2Tv5fHfv0SlPX69HaD858GgN3R9vZHEiw4XnhzZ9C29h+exi7SbtLZ9Vu/R5KO9H+f9gvTPAck/Eemd+bqG2e//kN+h1cDbotShb6b1Yu9dhuW5d1HZVt1vv8QkADwIvLA3HcYBRAGvtC8aYXwT+EHjofq6kMeaLwBcBmlu3r9vM47EcOfkOR06+UzG9kHeYn63BH0gtD3S+m6a2m1x88zSTt1o4fOL8hstHa2aYGg8xP1tDIFg5Oj61GKKQ9xGqmsfr3X0N6H5qfixG98caWBjPcPFbw+QWN7+9qaml69LxtcNjMF66s2C969GyvnLdBtcZY1Iee1Jezo3Udu+v1ORSm1tnnMlKm1t7nErZ4mSmYvk7lct3U9tV3d5bj8/F28b5nLDWPgdgjPEAxyhd9opvoqxhoO2239uWpq1irf2KtfYxa+1j8doP/jr30PVuikWH9u6+TS2fXiiNmjeezZ2hNTSXnpcwNty2at7YUHvFMvtV6xNxuj/WwPxYmgvPD23piwNgZjAFQKxr9Z0Ijt9Q3RaikC0yN7J2j52sb2agdDdXvDu8ap7j91DdXlWq2+HUB71qu4La7v03c6Pc5lbfEeT4PVR3LLW5obuPoZobSlHIFanuqMLxr/7uKJefvL7xs5b2C9Xt1oNPBmgwxjwJYIzxGWPK13N+A3gX+GXgT4wx5Zv3c7f9vMxaOwrMGmM+tHQ31+eAv76XjbhfctnVzxtITtVy/qdP4POnOXxbT1Bisn7NMjLpIBfefBxYGTC9Mi/AXLKGTLoyaXf2vofHydP/7nEW5lYaYzbj58q5hwHoOvruvW3UHtD2VC0Hn61nfjTNxeeHyafWD4zGA6FaH8E7ng2RTuZI9C8QjPloPlVTMa/96Tocv4eJi3MUcxvfXuxWxlO6A6Pcw1CWTuRI9M0TjPtpfrzynKbjmXocv4fx8zOurFu13e2RTmRJXJsrtbnTtRXzOs404vgdxs8lK+okVOdfdQdRMVdk/FwSx+/QcaaxYl7z6VqCcT+Ja3O78unC20V1u/VLXUXgs8AfGGNqlv7+Pxpj8sCvAaettXPGmFeA3wH+DfAV4Jwx5q01xvn8OvANIERpUPOODGwue/X7n8Lx5qmOJfD6cszNxLh1swPHm+fJj32fUNVKAn7rHz5CNh0g3jBBVXgeYywL8xHGhjooFLw0d9zgYO97FeX3vXucy2dPcfThN3ngkbeWp4ejc5x47HXeee0pXvxv/4S2rr7lV1akFiP0Hj+3L5/aDNDwYJTOj9Rhi6XnlTQ/Flu1TGYmx/j50iVGf9TLo188SHomx5t/dKNiuf4fTHDiVwN0f7yRms6q5cf+x5Z+Hnh58oPYpF2l9kiEuiOlRzD4w6XdPdoaovczzQDkFgvc+GGpbfmjPk79eg/pZJY3vlzZu9n3vVuc/PxBej5xgFhXePmVFbGuMItTGQZe3PgJ5fuN2u726vvuKCe/EKLnky3EuiLLr1Uo/zzwd2MVy5/60mEAXv29CxXTB340Rk1nmNYn6wk3BZkbSVFVH6DuaDXZ+Tx93x39wLZpt3B73W46+Fhrf/e2Xz+yxiLLjxa21v6r237+LeC31inzDUpjhnaF1oPXGbrezc3+QxTyXoJVC3QdeZfDJ9+hKlz58LbeB88xMtBJcqqeseE2ikUPgUCahuYROnqu0trVv6WXlPY8cJGqyBxXL5xk8FovFkM0luSBR9/Y1y8pLZ/9Go+h5fG1r5DODC4uf3ncTTqZ451v3KTjw3XEu6uI94TJzucZ+WnCtS96jDQFaXqo8gs5VOtfvi6fTmaXg8/dpBM5zn7tOp3PNBDviRA/FCE7l2f4tWnXvqRUbXd7pRNZzn61j84zjcQPRYj3LrW5n0xu6UWa+VSBc1/rp+NMA7VHqqnurCK/WGDs7cSufpHmdnJ73Rpr91b36fGTfvut7zRuvKBs2W8eObPTq7Cv2dzuPAjsB8an1w5uF5u5+yBXkd3oNfsjZu30mt0P7nkiloiIiLiego+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGd6dXYKuGLtXwvz7yqZ1ejX0p+AP/Tq/CvpZ+LrnTq7BvOfHYTq/CvpW/NbbTqyByX6nHR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcw7vTK7BXPPL5JoLVa1dXdqHAm1+7temy/BEP7U9UE+sM4g15yC4USPSlufn6LIWMvV+rvKvUjQY4+G71XZexWN766CQAgUWH2ISf6ik/wZSDN+uh4LUs1OQYa08xH89teR3CM16ab1QRnvHhKRrSoQJTLWnG21Jg7mmzdjVv0EPd4QjxQ2GqGvz4I15swbI4kWXs/Czj52a3VJ4/6qXjw7XEu8LL7Xb6vXkGX52mkClu01bsXg2HA/Q8u0GbLlpe++rkpsrzhz20PVZFrN2PN+ght1hk+kaGoTcWKWT353FhI/6ol85nm4gdiuALOWTn80xdnmXw5XEK6c23OW/Qof2ZBuqOVuOPeMmlCiSvzTPw4hjZufw2bsHu5ea6VfDZgnymyOjZ+VXTt3JQCtQ4PPiLDfirHKb7UqQSeSJNfpofiRDrDHDhzyfJb6HR7RWLkTwjBxfWnBeZ8VGd8DNTl12e1tJfRe14kFQ4z0xdlrzPElx0iE36iU0GGOydZ6I9tenPr5nw03OhmqIHEo1p8j5LbNJP+9UIkaSP/hNbCwF7Qf3RKD2faCQ7l2dmcJHMbB5f2KHucITeTzUR767iyrc3F9iDMR8nfrUNf9jL1HvzpKayRFqCtDweJ9Yd5vyf3tyX7fZuFqbyDL2xdpuONvuoafWTvJldc/6dAtUejv98HH+Vh+nrGVLJApFGL80nqoi1+bn410ny+/SkaD3BuJ+TX+jGH/EydXmWxckM0dYQrR+qJ34oyrmv95NPFTYsxxtyOPmFbqrqAyT755m4MENVfYCmR+LEe6O887U+Msmtn0jtZW6vWwWfLchnigy9Nve+yug+E8Nf5XD9pSS3zq0cNDs/XEPLIxHan6zm+ovJ97uqu04qWiAVXVxz3pE3YgBMtqSXp83WZbnVmSIVrTxjiCR89J6toe1amERjhnxg4y9bT97QeTmKBd57JMlidanMka4FDr8dIz4RID4WINGUucet251SiSyX/nyExLXKL+eBl6d46HPt1B+NMnlknqkrq8P8nbqfa8Af9tL/wjijb84sTz/40XpaT8fpfKaevu+P3/dt2M0WpwosTq3dpo//QqlNj7+bXnP+nbqejuKv8nD91TnGLq78TeeTYZpPVtF+Osz1v9/4/2k/6flUM/6Il77vjTD6+vTy9K7nDtD6ZD2dH22i729GNiyn82ebqKoPMPzjSa7/YCXoN5+upeeTLRz6dAsXvzmwLduwW7m9bjXG5wMUqHGIdQZJz+QrQg/AzZ/MUsgWaTgawuPdh9dd1hGcd4jM+sgGCszUr5wdTzVnVoUegPl4jvlYDo81RGY2l9vj4wF8OQ+Jpsxy6AGwDox0l/4fGoaD73NLdp+ZgdSq0AOQWyhw62wpvFR3hDYsJxjzEe8Ok07mKkIPwM1Xp0rt9ngUj8897fZuQrUO0SYfmfkCicGNe3wC1R5i7X7Ss4WK0ANw841FCjlLfW8Qj4tOU4NxP/FDUdKJbMUXM8DgS+MUsgUaT8Y2bHMen4fGkzEK2QKDL1UG89HXp0kns8QPRQnEfPd9G3Yr1e0GwccYU2eMObv075YxZvi23/2b+QBjzG/fZd7vG2NuGmP2xKmMxzHUHwnR+liEAw+FqW7zb2lsSE1bAICZwdU9C8WcZW40i+PzEDmwqardFxpGSl+8k83pTdel9ZS6/O0ml48mSjveTO3qL6G5WI6CxxKZ8WFcdKXGFpYumxQ3vnxSsxSOktdX924UspbZoRSO30O0Zf+Fx3vRdKxUXxNX0rCJq1PVLaX9fWZodfss5ixzt3I4PkOkafd9gWyXmoNhABL9aw0tKDI7uFhqc21Vdy0n2hbC8XmYHVykkF29gyf6SuXHuiL3Ya33BtXtBsHHWjtlrX3YWvsw8MfAfyj/bq3d3MVrWDf4AP8NOL3JcnacP+zQ+49q6Xiqhq5nYhz/pw088rkmqls3F1RCsdIpWyq59oCv9NL0UNwdp3amALW3AlhjKy5z3Y0/5SGa8FPwWOZjm7t2HFx0AMhUrXHN2gPZUAFjDYGUs+l139MMNDxYGpSb6F/7Us3tQnWl9p1KrL3LpxOl/4dQrXsC+3qMA/W9AWzRbvoyVyhWanfpmbXHVJSnh2pc0j6BUH2pLaWn1r78nJoutcVQXeCu5VTVByqWv1O5/HIbdwPV7T2M8THGnAL+PRABJoHPA4vA68BnrLVXjDHPA38H9AAhY8xZ4KK19lduL8ta+5OlMt/PNnwgJi4tMjuSITWVp5CzBKodDjwUoenBKo5+po4LfzbB4uTdR7A7gVLOXCsdA+SXBkk7gd1fH/dDfDyAN+8hWZchF9y4u8UUoetSNZ6iYahnnoJvc4M9nXypPgvetT+j4LUVy+13B8/UE24MMH1tYc1enDstt9t1Bi/nl+7oKi/nZnU9AbwBD4mBDNmFzXUhOv5Su8uvc5NE+XhRXs4NvIFSyFtvwHwhUwqD3uDd25yzXM7aoXK57QbdEypVt1sf42OALwOftdaeAr4O/L61dgb4EvANY8wvAXFr7Vettf8aSC31EP3K+sXufkOvzzE7lCWXKlLMW1LTea6/mGT07XkcX+n2dNma5ctcrZs4M7Zw8FKUyIyP6cY0Yx2bv6NLVjSfqqH1iTiLk1mufmfzj2CQzSlf5hrbZG+PiHzwttrjEwAeBF5Y6qVxgFEAa+0LxphfBP4QeOh+rqQx5ovAFwGCnt11vXDs/AItj0aJtty9WxBYftaJ4187b3qXzuj267N8bhecd4jMLA1qrtvgqqmFrotRaseDTDemuf7A3JbGVq306HiA1Wc5Kz1C+7veDzxaQ/fHG1mcyHDhW8Obvv18ud2ucwboLfcIufBZPrcLxR2iB0qDmpObGNRcVn4chnedHp3y8cJNz/LJb9Dr4GzQa1G20nuxdq/Dcttdp9diP1Ldbj34GEqXrJ5cNcMYD3CM0mWvODD0/levxFr7FeArADXehl219+dSS18Km7ijpTy2pzzW507B8higxO586NP9VD9SGgi74aDmInRdKoWeqaY0N7YYegDSVQXCcz4Ci07FXV3l8v0pB2ssmdDu20Hvl+bHYnR/rIGF8QwXvzVMbnHz25qaWrrmH1/7Wn0wXhp0u961frdoPFZq0xOXNzeouSyVLP1fBNcZw1OenlpnDNB+lJostaXgOuNMyuPJUuuMUylbnMxULH+ncvnlNu4GqtutX+rKAA3GmCcBjDE+Y8zxpXm/AbwL/DLwJ8aY8i0Iudt+3nfKd2ClZzcOKzNDpYZS07G6wXl8hmizn0KuyPyt3ddQ7idTgLpbwQ0HNZsi9FyoLoWeA/cWegDmlp7yXDO9egeNJn04RcN8TQ67T4eotD4Rp/tjDcyPpbnw/NCWQg/AzGDpsmKsa/VdHo7fUN0WopAtMjfi3ss7xoGG3mBpUPPlrdXD7Ehpf69pW90+PT5D9ICPQs4yP7b7HgS3XWZulB7DEO9e3cPv+D1Ud1SV2tzQ3ceozQ2lKOSKVHdUrdnTXi4/eX1P3Fh8X6hutx58isBngX9rjHkHOAs8ZYw5Avwa8JvW2r8HXgF+Z+lvvgKcM8Z8887CjDH/tzFmCKgyxgwZY373HrdjW4Xi3jWfrROIOnSdWXr43uWVRmI8EIx7CdxxBpeZKZAcSBOs8XLgZLhiXvuHqnH8HiYupyjmd1Wn1n1XHtQ8U5tdd1CzKULP+WpikwEmm1PcOLZx6PHkDYEFB2+mslknGjPkfEXiYwGqZld620wBWvpL/w8TmxlntAe1PVXLwWfrmR9Nc/H5YfKp9buvjQdCtT6Cdzx3I53MkehfIBjz0XyqpmJe+9N1pXZ7cY5ibn+327up6w7gDXpI3syuO6jZeCAYcwhUV7bPzGyR5M0swWqHpuOVjwRof6wKx2eYvJqmuP87gpelE1kS1+YIxv00n66tmNdxphHH7zB+LlnR5kJ1/lV3EBVzRcbPJXH8Dh1nGivmNZ+uJRj3k7g2tyufLrxdVLdgrN1bB6sab4N9suaffKCf2fZElJZHIswOZ8nM5SlkLcGYl/jBIB6vIXE9zZW/mcIuHe8CUYdH/8UB0rN53v7GWEVZ672yoqY9QCqR48Kf7dwrK/zf/mBuOzz8ZozojI9rJ2cqHlp4u85LUepvBcn5iky0rj2QeS6eq3hnV/l9YJMH0gw8UPmE7fVeWRFc9JJoyND/4Oy2v68r/dwH+0TuhgejHP7HB7BFy+ibyeW7LG6Xmckxfr5UV4EaL4/9T12kZ3K8+Uc3KpZb75UVsc4qUlNZzu3wKyuceGzHPhvggc/EqG72cflvZ0gOrN2mAxEPj/xKHZm5Am//58oHx633yoqaVj+pZJ6L3965V1bkb41tvNA2WO+1CrGuCIuTmVWvVXj63zwIwKu/d6GinDtfqzA3kqKqPkDd0Wqy83nOfb2f9DqPativ3FC3r9kfMWun1zyqu+OBMe/T7FCGUMxLuMFHtMWPx2tKD3oayTBxeZHJy5u/wygzU+D8tyZo/1CUWGeQ2MEguYUCo2/P7+uXlJYFFxyimxjUHEiXzop9OQ8tN8JrLjPCwqZfVjrTkOXKI0maB6qITQTwFA2ZUIGbh+YZb9+fLykt99wYj6Hl8fiay8wMLi4Hn7tJJ3O8842bdHy4jnh3FfGeMNn5PCM/Tbj2JaVlwZhDdfPWBzXfLjNb5MJfJmh7PEyszUesw09uscjo+UXXvqQ0nchy9qt9dJ5pJH4oQrw3QnYuz/BPJrf0Is18qsC5r/XTcaaB2iPVVHdWkV8sMPZ2Yle/SHM7ub1u1eMjyz6oHh+3+qB7fNxkp3t89rOd6vEReT/u1uOzT4dzioiIiKym4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgI8HFtNoAACAASURBVCIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIiruHd6RXYKlsoUJiZ3enV2JcW/veTO70K+9p/ufZXO70K+9YvtT+106sgInuEenxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDW8O70Ce0XdsSg1HVWEDwQJNwXwBhzGz8/w3rdHtlyWP+ql80wDsZ4wvpBDdj7P1JV5Bl+ZoJAubsPa7w71DUVqaiyRiCUcsXi9MDZmuPLu2s3QcSztHUXqG4oEg1AowNycYWjQQzK59cxeW1ekrb1IJGIxBhYWDKPDHsbG9n7+txYuXTnKpStHmU7EsUA8luT4kcscP/ouxqws+5ff+ceM3Gq5a3nHDl/mZz/yyqY///pgB2+fO8nkVD3WGmrjCR48dpFjh6/e4xbtHf6ol85nm4gdiqzsz5dnGXx5fEv7szfo0P5MA3VHq/FHvORSBZLX5hl4cYzsXH4bt2D3Ut1uHzfXrYLPJrU/XU/kQJB8pkB2Lo834NxTOcG4j5OfP4g/4mXqyhyLkxmiLSFan6gl3hPm3DcGyKcK93ntd4eOzgKRCOTzkM2A9y6tz+u1PPRInnAYFhZgZMSD41jq6iwnHy7w3mW4dWvzgaWltcCh3iK5HIyPeSgWoaGhyJFjBaoilut99/b/uVu88NKzvNfXSyi4SG/PNbzePDeH23jpHz7M6FgTHz/z0vKyxw6/R2vz6JrlnLt0nEwmSGf7zU1/9rmLx3nlxz9DMJDmyKGreJwifde7+NErzzKVqOXpJ157v5u3awXjfk5+obu0P1+eLe3PrSFaP1RP/FCUc1/v39T+7A05nPxCN1X1AZL980xcmKGqPkDTI3HivVHe+VofmWTuA9ii3UN1u33cXrcKPpt0/QdjZOZypKdz1HRWceJznfdUTs8nD+CPeOn721uM/jSxPL3r4420fqiOzmcb6Pvurfu12rtK3zWHTMaQTkFNzPLQw+vvWJ0Hi4TDMDFhePeSA7bUZXHDZ3nkVJ6e3gLTCUM2Y9YtoywQtHT3lELPW296yaRLfzM44OGRU3na24tMThjmZvdmz0/fjYO819dLdXSWX/z5vyIUzABQKHj43g8/zpVrh+nuvEFP1w2gFHzWkkjW8NO3T1EVWqSr88amPnt2LsI/vP4EgUCaf/YLf0l1dB6Axx95kz/763/C2fMP0XPwOs1N4+97O3ejnk81l/bn740w+vr08vSu5w7Q+mQ9nR9tou9vNu4V7vzZJqrqAwz/eJLrP1jZ/5tP19LzyRYOfbqFi98c2JZt2K1Ut9vH7XW7N4/0O2BmYJH09PtLrsG4j3hPhHQiWxF6AAZfnqSQLdJ4ogaPb+Mv871oJukhnTLAxttXV1/qah24vhJ6AHI5w/CQB8eBAwc21x174EARjwdGhj3LoQcgnzcMDpR6elpa9u4lxv4bBwF4+MS55dAD4DhFnnjsDaDUk7ORi5ePAXD08BUcj93UZ7/73hEKBS8nH7i4HHoAgoEspx46C8CFyw9sqqy9Jhj3Ez8ULe3Pt315AAy+NE4hW6DxZGzD/dnj89B4MkYhW2DwpcqAOPr6NOlklvihKIGY775vw26lut0+qtsNgo8xps4Yc3bp3y1jzPBtv/s38wHGmN9eZ3qVMeZvjDGXjTEXjTH/171swF5S0xkGING/sGpeIVtk9uYijt9DtDX0Qa/aruNfal3p9Op5qVRph4zFN/flXF5uenr1jpxYmhaLba6s3WgxVQVATXRu1bya6CwAo7eaKRTW390LBQ+Xr/UCluNHLm/6s4dGWgHoaFt9aayzfRCA4ZG7jyfaq2oOlvfn+VXzCtkis4NL+3Nb1V3LibaFcHweZgcXKWRXB/BEX6n8WFfkPqz13qC63T6q2w2Cj7V2ylr7sLX2YeCPgf9Q/t1am93kZ6wZfJb8O2vtUeAR4GeMMZ/cZJl7Uqiu9G2enl676lJL08vLuVluqXMtGFw9LxQqhZSqqs2FlfLyqcXVwSebNRQKEAiCZ5O9HLtNMFhKh7Nz0VXzZuaqAShaz5rzy/pudJFOh2hvHaamenWAWk9ipgaAWM3MqnnhqhQ+b475hQi5/N4eQ7WWUP3S/jyVWXP+yv4cuGs5VfWBiuXvVC7fTccF1e32Ud3ew6UuY8wpY8zLxpg3jTHfN8Y0G2NqjDFXjDFHlpZ53hjzL5d6cUJLPUTfvL0ca+2itfbFpZ+zwFtA233Ypl3LGyxVd36dEfOFTHFpuf33JbFV01OlkNJ5sACsBBKfz9LatlRPmxyhVl4uv86Qony+crm95uBSz8rZCydIp1cOVoWi4fU3Ty3/ns6sfyArX+Y6fvTdLX12Nls6qAX8ax/8/EvTy8vtJ+UbHNbfn0sNrrzfr8dZLmftBppfOi44LjouqG63j+p264ObDfBl4OettRPGmH8O/L619gvGmC8B3zDG/Ccgbq39KoAx5ktLPUbrF2pMDPg54D9tfRNkPxq44RCvzdPQaKmqypNIenA8lrp6SzYDBEu3cAv0dvdx5Vovg0Pt/Oe/+EW6OgdwnDxDw60spKqIRuaYm49izNoVlpypZni0ZUuDmkVE9qqt9vgEgAeBF4wxZ4HfYamXxlr7AnAe+EPg1zZboDHGCzwP/IG1tn+dZb5ojHnDGPNGjrW75/aCcsJeL0k7gXKP0P68nX0rslnD2296GR724HhLg49r6ywT4x4uXSrl9dwmx5ov9+isc+Kx3CO0Ox85sSGPx/Lp5/6WJx9/jWAwzeWrvVy+epiamlk++3N/jc9Xqqiq0BoDpri3Qc1l5R6dzDo9OuWeHv86PUJ7WX6DM2NngzPrspUz7LUbqHfpuFBw0XFBdbt9VLf31uNz0Vr75KoZxniAY8AiEAeGNlnmV4Cr1tr/uN4C1tqvLC1Htands+f5qanSwT9Yu/aXRGhpenk5t8vlDH1XHfquVu5YsVhph5yb29zdb6mUwe+3hKosc7OVf+P3WxwHMmkoFvfu3XSOx3LqoXc49dA7FdPzeYfkTA3BYIrqNQY/FwoeLl89zFYHNZfFa2YYTYdIztQQClbe2bGwGCKX9xEJz+Pz7r6D3/uVmlzan9cZC7GyP9/9ZG1xMlOx/J3K5bvpuKC63T6q2633+GSABmPMkwDGGJ8xpnyf7G8A7wK/DPyJMaZ8D1vutp8rGGP+D6AG+F+2vOZ70MxA6W6ueHd41TzH76G6vYpCtsjccOqDXrU9pXHpNvbxTT5xOZkoBZraNTJzfGlaMrl3Q8/dXO3voVh0ONzdt+b8/hsHSd3DoOaytpZhAAaH2lfNG7jZAUBry9afbr4XzNwo78+r71px/B6qO5b256HFu5YzN5SikCtS3VGF41/dpsvlJ6+vvgtnv1Ldbh/V7daDTxH4LPBvjTHvAGeBp5YGNf8a8JvW2r8HXqF0GQxKPTXn7hzcbIxpA/434AHgraUB0Ju+RLabGU9pJHswXpn30okcib55gnE/zY/HK+Z1PFOP4/cwfn6GYm7PdmrdRxaPs7oeGpuKNDVZZmYMU5OVYcXrK/XqeH2Vfzd2q/Sk5pbWIoHgyjyv19LRWeqJGBnZ24+0ymZXn1tMTNUtP1zw0aVn6tzp4pXNDWpOpQMkkjWk0pVniccOv4fj5Dl36TizcysH0nTGz5vvlIb2PXj00pa2Za9IJ7Ikrs2V9ufTtRXzOs404vgdxs8lK/bnUJ1/1V0uxVyR8XNJHL9Dx5nGinnNp2sJxv0krs3tyifgbhfV7fZR3W7hUpe19ndv+/Ujayxy7LZl/9VtP/8W8FtrlDfEZp5kt0vUHolQd6R0O7A/XKq2aGuI3s80A5BbLHDjh6Wufn/Ux6lf7yGdzPLGlyvPtPu+d4uTnz9IzycOEOsKL7+yItYVZnEqw8CLEx/gVn2w6uqLyw8mLD+np7racvhoaXBNLmeWXx3hceDJp/IkEoZ0ymAtVNdYamosCwvw7kWHO5tPa2uRzoNFBm54GLixcnksnTb093k41Fvk0VN5JsZXXlkRCMLNm549+9Tmsr/+3qdxnDx1tQl8viyJZJyBwQ4cb55//Nz3iYRXn70lZ6oZGtncoOZzFx/kp2+f4vFH3uSJU28uT6+OzvHU6df4+x//DP/l2/+U3u6+5VdWzC9EePjEO/v2qc0Afd8d5eQXQvR8soVYV2T50f/lnwf+bqxi+VNfOgzAq793oWL6wI/GqOkM0/pkPeGmIHMjKarqA9QdrSY7n6fvu2u/YmQ/U91uH7fX7R69gfeDF2kK0vRQrGJaqNa/fH0zncwuB5+7SSdynP3adTqfaSDeEyF+KEJ2Ls/wa9P7/iWlkYjlwIHK3phQaOU5O+n0yjuzbBEmxg3VNZb40gMIUym43u9heMiz5fE4I8MO6bShrb1IY1MRY2BxwXDj+v54SWlPVz9X+3q4cu0Q+byXSHiB40ff5dTDZ4mEVz8wE0ovNQVzT4Oab/fQ8YtUR+Z4+/xJLl/rLb2kNJbgiVM/3fcvKU0nspz9ah+dZxqJH4oQ713an38yuaWXPeZTBc59rZ+OMw3UHqmmurOK/GKBsbcTu/plj9tJdbt93F63xu6xe4KrTa19wnlup1djXyp++OROr8K+9l/+vz/c6VXYt36p/amdXgUR2UVesz9i1q7xuH70ri4RERFxEQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDQUfERERcQ0FHxEREXENBR8RERFxDe9Or4DsHs5PLu30Kuxrv9T+1E6vwr710fMLO70K+9ZLTzTs9Crsa8XFxZ1eBddRj4+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hnenV2CvqDsWpaajivCBIOGmAN6Aw/j5Gd779siWy/JHvXSeaSDWE8YXcsjO55m6Ms/gKxMU0sVtWPvdyxv0UHc4QvxQmKoGP/6IF1uwLE5kGTs/y/i52S2V54966fhwLfGuMN6Qh+xCgen35hl8dZpCxl11W+aPeul8tonYochKe7s8y+DL41tqb96gQ/szDdQdrcYf8ZJLFUhem2fgxTGyc/lt3IKdVxyNUbh6ADsXgowXQllMbAHn8C08dfPLy9m5AMXhWopjNdj5IKR94C9gaudxem/hadxaewYoTkYoXG7FTkWg4MFE03gOTuA5dAtj7udW7i6dH6klfCBAKO7DG/JQzFsys3mmry1w661Z8ltou/6IQ/vTtcS7QniDDtmFPNNXF7n53xM6LrjwuKDgs0ntT9cTORAknymQncvjDTj3VE4w7uPk5w/ij3iZujLH4mSGaEuI1idqifeEOfeNAfKpwn1e+92r/miUnk80kp3LMzO4SGY2jy/sUHc4Qu+nmoh3V3Hl27c2VVYw5uPEr7bhD3uZem+e1FSWSEuQlsfjxLrDnP/Tm1s6WO4Hwbifk1/oLrW3y7Ol9tYaovVD9cQPRTn39f5NtTdvyOHkF7qpqg+Q7J9n4sIMVfUBmh6JE++N8s7X+sgkcx/AFn3w8ufaKb7XAv4cnpYEBPLY+SB2JE5+uBbn8T6czikAChfbKQ7VYaoX8RxIgr+AnQtiR+PkR+M4D93A6R3b9GcXR+Lkf9wLniKe9inw5ymOxim800lxMoLvyWvbtdk7rvmxGhbGMiQHUuQWCzg+Q7Q5QMfP1NJ0sprz3xwmO7dx2w3EvJz45ZbSceHqAqnpHNEDAVoeqyHWFeLCfx7RccFlxwUFn026/oMxMnM50tM5ajqrOPG5znsqp+eTB/BHvPT97S1Gf5pYnt718UZaP1RH57MN9H13c1/0+0EqkeXSn4+QuLZQMX3g5Ske+lw79UejTB6ZZ+rK/DolrOh+rgF/2Ev/C+OMvjmzPP3gR+tpPR2n85l6+r4/ft+3YTfr+VRzqb19b4TR16eXp3c9d4DWJ+vp/GgTfX+zca9l5882UVUfYPjHk1z/wUr7bD5dS88nWzj06RYufnNgW7ZhJ9m0j+J7zRDI4vv4eUxw5Qy2OF5N/pVjFC61LQcfcyCJ98gInvhiRTnFiSj5V45SON+Bp20aE9r4y8DmHPJvdoGxeJ95F09taR+xx4fIv3wMO1xH4eY0Tvv0BiXtTa/9pxvYgl01vePpOG1Pxml7Ikb/D6c2LKf7Y/Wl48IPJ7n19kqP28Fna2l5LEbHh2vpf2Hyvq77buf244LG+GzSzMAi6en3l1yDcR/xngjpRLYi9AAMvjxJIVuk8UQNHt8+7r++w8xAalXoAcgtFLh1thReqjtCG5YTjPmId4dJJ3MVoQfg5qtTFLJFGo5HXVW3wbif+KFoqb29XvnlOPjSOIVsgcaTsQ3rxOPz0HgyRiFbYPClyuA4+vo06WSW+KEogZjvvm/DTrMLfsBgahcqQg9QumzlLUBmZbudg5OrQg+Ap2EO0zAHRU/pktUmFIdqIePD0z61HHoAjGNxHhwqLdPXdA9btTesFXoAJq+U6iIY37i9BWJe4l1VpJO5itADMPhqonRceCCi48IStxwXFHw+QDWdYQAS/au/6AvZIrM3F3H8HqKtG3/Ru8Hyga+49gHwdjVL4Sh5ffWXTiFrmR1Kleq2JXhf13E3qzlYbm+re8sK2SKzg0vtra3qruVE20I4Pg+zg4sUsqsvCST6SuXHujb3hb6XmGgaPEVsIozNVHaQFyeikHcwjTPr/PUdPEt1t8mjrp2oLq1D0+ryTf0sOAXsVARbcM+XNkBtT6m9Lk5kN1y2pn3puDCQWjWvmLPMDqdL+0Bz4P6u5C6m48IGl7qMMXXAj5Z+PQAUgIml309bazdsecaY37bW/p/rzPtboHlpPf4e+J+ttft2gEuozg9AenrtaktNZ4n3lJabubH6C9xVDDQ8WDrwJ/o3roty3aYSa9dtOlHqrQvV+plZ4yC4H4Xql9rbVGbN+anpLHEgVBdg5vrqMF5WVR9YXn4t5fLL/wf7ifEXcE7cpPBOB7kfnCyN8fHnYSFAcSSOaZzB++j1DcuxC37seA04hVJo2QQ7VwrpJrq6vRoPmHAGO1sFCwGoTm9tw/aQlsdrcHwenICHyAE/1W0hFsYzDL2W3PBvQ7Wl3ob1euvTiRx0QbDWx8zg/q3D2+m4sEHwsdZOAQ8DGGN+F5i31v67LX7GbwNrBh/gn1lrZ40xBvhz4BeBb22x/D3DGyyd6q03kK58d4E3eG8Dp/eTg2fqCTcGmL62sGYvzp2cQKlu17sbIb9Ut+Xl3KA8AH/99lY6xyi3y/U4y+WsfU6yXLf7tN06vbcwVRnyb3RTvN64MiNSurvqzktgd7IFQ/71Q1D04JwYxPg3d25nc6X6NL51ll+abnNe9nOfT8vjNfjDK19Vif5Frn1vgnxq4wHJ5f09v86dW8vH3Hu8WWUv0nHhHgY3G2NOAf8eiACTwOeBReB14DPW2ivGmOeBvwN6gJAx5ixw0Vr7K7eXZa0tn/p4AT+w8TUN2feaT9XQ+kScxcksV7/jnoHesjsVrjRTuNCO59AtnJ4xCOawc0EKF9opvH4Im6zCe/Lmmn9rLRR+2oOdiuJpm8JzePQDXvu9743/ZxAAX5VDtDVA50dqeeh/aOXdv7jFwvjGl7tE7rTV018DfBn4rLX2FPB14PettTPAl4BvGGN+CYhba79qrf3XQMpa+/CdoWe5QGO+D4wDc5R6ffatcsJeL0kvn52sk6Dd4MCjNXR/vJHFiQwXnh/a9G2mheWzi7Xr1lvuEXLRMzvyG5y5ORuc+ZWtnAGufea2XLf7sN0Wx6MUzndgmhN4HxrERDIYbxFPfBHvk1chlKX4XjN2fvUYEWuh8HoPxaE6PG1TOKevbem5O2a5R2edM+blHqHd+ayU+y23WGD66iKX/uwW3qBD76caN/yblR6dDY65mf3Xdtej48LWg08AeBB4YakX53eANgBr7QvAeeAPgV/bbIHW2n9EaZxPAPjoWssYY75ojHnDGPNGjrWvS+4FqanS2Umwdu1rnqGl6eXl3Kb5sRg9zzWyMJ7hwvPD5BY2v8OU6ywUX7tuy3eArHc9ej9KTS61t7q1B26utLe771OLk5mK5e9ULn8/ttviaBxgzQcPGm8RE58HDDZZORDUFg2F1w5RvFmPp30S54lrmC0ebU20NObEzq2+2cEWwS4EwBQhvHePifciM5tncSpLVYMfb+julZpaGtsTrF37zqLyceH93rG7l+i4cG89PheXenAettaesNY+B2CM8QDHKF32im+lUGttGvhr4OfXmf8Va+1j1trHfOzd0fczA6WBYvHu8Kp5jt9DdXsVhWyRuWF3DL69XesTcbo/1sD8WJoLzw+RW9zaWcLMYKnOYl2r70Rw/IbqtlCpbkfcMYARYOZGub2tvqvC8Xuo7lhqb0N3H0M1N5SikCtS3VGF4199yCiXn7y+8bOW9pxiqYvmzju6lpWne1au0tuiIf+TQ6Wens4JnNN99/SEZdNQClt2rGbVPDtZDQUHUzePcdw3QsAfKfUy2A06cGduLh0XOleHR4/PUN0aLO0Do+4JjzoubD34ZIAGY8yTAMYYnzHm+NK83wDeBX4Z+BNjTDli5277eZkxJmKMaV762Qt8Grh8D9uw6xhPaST7nc+ZSCdyJPrmCcb9ND9emQ07nqnH8XsYPz9DMeeuA1nbU7UcfLae+dE0F58fvuugReMp3akRvOPZEOlkjkT/AsGYj+ZTlV8U7U/X4fg9TFycc1XdphNZEtfmSu3tdG3FvI4zjTh+h/FzyYo6CdX5V92FUcwVGT+XxPE7dJypvLzQfLqWYNxP4trcrnxC6/tl6ucAKPY3YlOVba44WoOdioKniFl6bYUtGPL/vRc7Uovn4DjOY/0bhh6bc7CzwVXle9qmwZ+jeLOO4vTKyZItGAoX2krL9Gz+KdB7STDuw/GvXXEdT8fxh73MDqeXL2WVjwuBWGVAzSTzJK4vEoz5OPBI9apyHL+HiUvzOi4scctxYauDm4vAZ4E/MMbULP39fzTG5Cld3jptrZ0zxrxC6TLYvwG+Apwzxrx1xzifMPBfjTEBSgHsReCP39/mbJ/aIxHqjkQBlu8wiLaG6P1MM1C6/nzjh6WHOPmjPk79eg/pZJY3vtxXUU7f925x8vMH6fnEAWJd4eVXVsS6wixOZRh4cQI3aXgwSudH6rDF0rN2mh+LrVomM5Nj/HzpC8gf9fLoFw+Snsnx5h/dqFiu/wcTnPjVAN0fb6Sms2r5lRWxpZ8HXnbX01kB+r47yskvhOj5ZAuxrsjyo+nLPw/8XeUX56kvHQbg1d+7UDF94Edj1HSGaX2ynnBTkLmRFFX1AeqOVpOdz9P33f05aNfTNk3x+gx2vIbc9x/C0zoNgRx2LoQdjQEG58QAJlAaZ1N4qwt7Kw7+HISyFC61ri6zYRZP49zy78XhOIU3evB0TuB9vH95uvEV8J66Tv4nveRfPlbxygrmQpjWqVI42ofi3SE6PlzL3HCa9EyefKqAL+ylpj1IMOYrtbnvrxwr/REvj/yP7aRncrz1lcqB5v0/nOTEL7fQ/bF6ajpDpKayRJuDpZ+nswz+/f6sw7tx+3Fh08HHWvu7t/36kTUWOXbbsv/qtp9/C/itNcobAx7f7OfvtEhTkKaHKr+UQ7X+5eub6WR2OfjcTTqR4+zXrtP5TAPxngjxQxGyc3mGX5t25UtKyz03xmNoeXztK6Qzg4vLwedu0skc73zjJh0friPeXUW8J0x2Ps/ITxOufUlpOpHl7Ff76DzTSPxQhHjvUnv7yeSWXkaYTxU497V+Os40UHukmurOKvKLBcbeTuzqlxG+X8aA9+krFPuaSj0vw7VQ8IA/jzmQxDk0hufAygMG7cLSpfisj+K7beuUOlQRfO7G05rA+8wlCpdblz/bRNJ4Tg7g6d2/LymdGUgxHpujui1IuDGAN+ihkLOkp7PcvDjP6Fszm77xIZPMc+5Ph+n4mVpiXSHi3VXk5vOMvDHj2peUuv24Id6w6QAAIABJREFUYKzdW1181abWPuE8t9OrsS8Zn17dtp1sxj3jCD5oHz2//oPW5P156YmGnV6Ffa246PKH1W6T1+yPmLXTa54auOdpbiIiIuJ6Cj4iIiLiGgo+IiIi4hoKPvL/t3fvwXGd93nHn3fvCywWWBAkCIIACAK8iVeVEmU6sk1FkRzHiZ04cpLabZK6jjvT8bRjd1o3mUwjt8lMMp3UaZxb5chxmjhxYseNk/giKbap28i6WSRESgRFgAR4pwjiDuwudvftH7uLC3EHebjAvt/PDIbAOWfffc+PBwfPec+7uwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcESh1B7B6+OLxUnehrGXffrvUXShbz/zUrlJ3oWz9VedXSt2FsvYLTe8sdRecw4gPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADgjUOoOrBXrdlWpurlClRsjqqwPKxD269rrgzr995eW3VaoKqCWI+tV01apYNSv9EhGfZ0j6n3mbWWTOQ96vzbEG0Nq2BtVbGNQgbBPmWROY30ZXe4Y00BveklthCp9ajoUU01zSIGIT+nRnPrPJnX+lVFlU9bjPVidQlUBtTxQr5r22NTxdmpIvU9fW9bxFoj41fSe9Vq3M65QLKCJ8awGzoyo5/tXlR7OeLgHq9uGbUFt2BZStCZ/HTk+mNO1t9K6dnpiWe1Eq33afCCseL1f/pBRaiSnvrMZXTyRks160fPSs1Z6o3On3ujcqRv9CVlJiZoB7d5xSrt3viljprb9+j/9pC5d2bRge7u2n9KD735myc9/trdZr3Xs0/W+OllrVJvo155dJ7Vr+1sr3KO1w+XzAsFniZrur1NsY0SZVFbp4YwCYf+K2okkgtr3y1sUigXU1zmssespVW2KqvG+WiXaKtXxpR5lxsv0LLeA5sMxNd5dqdRIVv1nU5pIWgWjRpXrg4o3hpYUfMJxv/Z8KKFQhV83upMaH8gqtiGohv2VqmkO68TXbyjjWPiJJELa97Gt+ePt1FD+eGuMqvEddUq0V6nji91LOt4CUb/2fWyrKurCGuge0dsnBlVRF1b93QkltlXp+ONdSg0s7w99OWh/V1R1W4NKj+d0/eyEchmr6k0BbT0cVdUGv7qeSy6pnVidX7serpDxSTd6MkqP5hRvCOSDUINfbz45JluG10RPHX1Ap7u2KRoZ07a2MwoEMjp/cbOOPv8uXb5ar4eOHJ3cdtf202psuDxnOx1v7FYqFVFL0/klP3fHyd165oUfUSSc1I72t+Tz59R1tlXffeYB9fXX6v77XrzV3Vu1XD8vEHyW6OyTV5UanlDyxoSqWyq09xdbVtRO2/s2KhQLqOs7V3T55f7J5a0PbVDjO9ap5YH16vrWldvV7TVhw66oGu+u1LVT4+o+OjTrBG+WeEN267urFKrw6+yzQ7ry+vjk8pZ3xrTpQKWa3hHT2aeHb2PPV7+2n2jIH2/fvqTLL92YXN768EY1Hq5Ty4/Wq+ubi49atjxYr4q6sC6+cF1nn5w6PhsO1artfZvU/v5NOvnlHk/2YbVKNAdUtzWo5HBOJ745OhmqjS+l7UeiWt8W0o3ejPp7F7nqNdLWH4nIHzTq/N6Y+s8Xt09p23uiWrclqIa7Qrp0YmmjnmtF17ktOt21TfGqIX34g/9P0UhKkpTN+vTtf35InWe2a2vLObW1npOUDz5z6R+o1suvHVRFdEytLeeW9NxDwzE9/9J9CoeT+rmf/rriVSOSpHvvflVf/cbP6Njr+9W25awa6q/d8n6uRq6fF5jjs0SDPWNK3ri15BpJBJVoiynZn54ReiSp9+nryqZz2rC3Wr6gmaeF8mN8UvN9MaWGs3OGHklLutINx/2qaQ4rOZSdEXok6fzLo8pO5LR+e1Q+h6J+JBFSor0qf7xNO7lJUu/Ra8qms9qwr2bR480X9GnDvhpl01n1Hp35h+DySzeUHEgr0V6lcE3wtu/DalbbnD+YLp9MzRhJtDnp/Gv5P+Ibd4YWbSde71dFjV9DVzLTQk9e76v5EaP6HYu3s9Z0n9siSTqwt2My9EiS35/Tffe8Iik/krOYk6d2SZJ2bu+U37e0Ed03T+9QNhvQvrtOToYeSYqE0zq4/5gk6cSpu5bU1lrDeYHgc0dVt1RKkvq7R2ety6ZzGjo/Jn/Ip6rG6J3uWslUN4UUrPCprzspa6WalpA23V2hjfuiitUv/RemujH/h2HwfGrWutyE1fDlCfmDRrH68vsDMp/qLcXjbWTWumw6p6HewvG2uWLBdqo2R+UP+jTUO6ZsenYK7e/Kt1/TGrsNvV47gtH86TM1MvuPbWokX6eqev+iI5bxhnyAGrg4e2QoNWI1PphVOOZTuKq8LojGxvPHXXXV7FHY6qohSdLlKw3KZucvYDbr06kz2yRZ7d5xasnPfeFSoySpefPsW2MtTb2SpIuXFp5PtFZxXlgk+Bhj1hljjhW+rhhjLk77eUl/QYwxv7aEbf7BGHNiqZ1eq6Lr8iVL3ph7yHq8sLy4nQtiG/Lhxmal/T9Xq13vT6jlcJVa749r78/WavcHEwpEFj/hR2vyc67GB+a+L50czM7YzgXRusLx1jc7DErTj7fwgu1U1IVnbH+zYvsuHbeSlEnmA084Nvv4DMfyp1afz0x+P59oPL8+OTT30GZxeTReXsduJJIfzRoarpq1bnA4LknKWd+c64u6zrUqmYyqqfGiquNLv43dP1gtSaqpHpy1rrJiXMHAhEZGY5rIlFfNJc4L0iLBx1rbZ609YK09IOlPJH2u+LO1dqk3nBcMPsaYD0maHT3LUCCSL3dmnhnz2VSusF35/bLNp3jVvOlAhaykE1+/oRcfu6bjX+nTQG9K8caQtr+3ZtF2/KH8H59seu6h7kzhisQfLq+r5oUUJ+DPf7zlw2DxuJyPf7KduUNlpnDc+h06biWp/0L+1nfDXWH5p53bjZE2H5j6oxFY5JgrHruZibmP3exEcbtb6OwqtKUwsnLsxF4lk1P1yuaMXnr14OTPydT8f4CLt7l273xzWc+dTueLGQ7N/WcsVFhe3K6ccF5YweRmY8xBSf9LUkzSdUm/LGlM0kuSPmCt7TTG/LWk70lqkxQ1xhyTdNJa+9Gb2opJ+rSkT0j621vYD6xRxZer2pzU+a0BpYbzvyxjNzLq/M6ADnykTtWNIcXqgxq5uvpeHQB39Z3LaH1bRjWNAe3/6Zj6ezPKZfOv6gpFfUqN5PKjPW69kHDJtm3tUueZbeq90KS/+rsPq7WlR35/RhcuNmp0vEJVsWENj1TJmLkLODAY18XLm5Y1qRmQlj/Hx0j6vKRHrLUHJX1R0m9ZawclfVLSl4wxvyApYa39grX2v0oaL4wQfXSO9v6HpN9VPjiVvWLCni9J+8PFESF3Xs5enBQ6en1iMvQU5TKafBl7rH7hjF4c6SlePd8sEMrX1qX38skscuXmX+TKr2jqCnDuK7dA4bjNOnTcSpKs1PndMfW+mlQmabW+Paj17SElh3I68a1RZQsjOBOL1bdw7AbmmUzqDxa3u31dXw18Pqv3P/wdHb73RUUiSZ16a5tOvbVd1dVDeuSnvqFgMH+hUxGd+y0BVjKpuag4opOaZ0SnONITmmdEaC3jvLD8EZ+wpD2SnjL5S3W/pMuSZK19yhjzYUl/KGn/Yg0ZYw5IarPWfsoYs2WRbT+h/KiQIlp4wtVqNt6X/yWK1M79yxYtLC9u54LxgfyEzvneX6d4+8/nX/h2QXFuz3xzeCLVC88BKkfj1wvH2zz36qeOt7nv9ReNXU/N2P5mxfZdOm6LrJUunUjPeqm58UmRuE8Tydyck5+nGy/M4YnE5/5DVFw+PlR+x67fZ3Vw/3Ed3H98xvJMxq+BwWpFIuOKzzH5OZv16dRb27XcSc1FiepBXU5GNTBYrWhk5iuSRseimsgEFascUTBQfjXnvLCyEZ+T0+b57LXWPixJxhifpF3Kj94kltDWYUn3GGPOSXpO0nZjzNG5NrTWPmatvcdae09QC0+4Ws0Ge/Kv5kpsrZy1zh/yKd5UoWw6p+GL47PWl6vBC2lZa1VRO3cGjxaWp4YXPgENXsz/clU3zT4+fEGjqoagshNWI1dX3y+hVwbPFY+32a+q8Id8ijcXjrcLCw+4Dl8YV3Yip3hzhfyh2aeMYvsDZ52Yqrckda1B+fxG188ufnt26HI+/Nc0zv4dCMeMotV+pUZySg27M1r5Vnebcjm/tm/tmnN997ktGl/BpOaizZsuSpJ6LzTNWtdzvlmS1Lhp+e/KvxZwXlh+8ElJWm+MOSxJxpigMab4RgufkvSmpI9I+jNjTPG1yBPTvp9krf1ja+0ma+0WSfdLOm2tPbKCfVh1jC8/kz2SmLnbyf4J9XeNKJIIqeHemdmw+T118od8uvb6oHLzTHIsR+mRnPrPpRSu8qth38zRvOqmkGqaQ8okc5O3vIxPitT4Fb7pFS6poawGelOKxP3auHfm2wE03Vspf9Cnt0+PK7c630HdE8n+tPrPDOePt0O1M9Y1H9kgf8ivax0DM4636LrQrFdh5CZyutYxIH/Ir+YjG2asazhUq0gipP4zw6vyHVq95p/jHRcqEj413xNWJmV16fWpoO3z50dvQpUzRy+HrmY1NpBVfGNAiaaZ4af5YESSdLWzPAN7Oj27gG/3rZt8c8F/UXhPnZud7FzapObxZFj9A9UaT868INq1/bT8/ow63titoeGpAJBMhfTq8QOSpD0731jWvqwVnBeWf6srJ+kRSb9vjKkuPP73jDEZSR+XdMhaO2yMeUbSr0v6DUmPSeowxvxwnnk+a0LtjpjW7ci/rDJUmS9bVWNU2z7QIEmaGMvq3D/nh0xDVUEd/PdtSg6k9crnZ16xdH37ivb98ha1/fhG1bRWTn5kRU1rpcb6Uur5/tt3cK9Wh7PPDKuyLqgt91eppiWksesZheN+1baGZXNS19GhyXkQoUqf7v5InZJDWb32l9dntNP9zLD2fCig1nfFVd0YmvzIiurNIY33Z3T+B6vvysNrXd+6rH0fi6rtfZtU0xqbfGv64vc937s6Y/uDn9wuSXruszPfXaLnu1dV3VKpxsN1qqyPaPjSuCrqwlq3M670SEZd35r7owTK3a6HKpXLWo0N5JSdsIpW+1SzOaBcRur83pgmxqf+eMTq/Lrrxys1dCWjN56YdjVtpe7nk9r1cIW2vSeqGz0ZpUZzqm4IKFbn19DVjC6/UZ7B5xvffr/8/ozW1fYrGEyrfyChnt5m+QMZ/eTDTyhWOXvUYWAwrguXljapuePkHr382kHde/eruu/gq5PL41XDeuehF/XsCz+iv/37D2nb1q7Jj6wYGY3pwN7jZfuuzRLnhSUHH2vto9N+fPccm+yatu2np33/GUmfWaTtc8rPHVq1YvUR1e+f+bLqaG1o8v5mciA9GXwWkuyf0LHHz6rlPeuVaIsp0R5Tejijiy/ecPZDStOjOXV8tU+b74mptjWs+KaQsmmr/nMpXfzhqEauLW2YJjWU1etfu6Gme/MfUlrTEtbEWE6Xj486+yGlyf60jn2hSy1HNijRHlNiW+F4+8H1ZX0YYWY8q47Hu9V8ZL1qd8QVb6lQZiyrq6/1r+oPI/RaX8+E1rUGVbc1KJ9fSo9ZXTs9oUuvp5QeW/rxNnI9qxPfHNXmA2FVb/LLHwwoNZLThWOp/IeUlulpoa21W291tanzTLsymYBilaPavfNNHTxwTLHK2W/0KuU/1FQyK5rUPN3+3ScVjw3rtdf36dSZbfkPKa3p130HXy77Dyl1/bxgrF1bfwziptbe53+41N0oS/51tYtvhBXLvu3eaN6dEtjSXOoulK2/fPYrpe5CWfuFpneWugtl6UX7XQ3ZG3O+KoaPrAAAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDGOtLXUfliVuau195sFSdwMAgFv2xKVjpe5CWTr03vN65XjSzLWOER8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOCNQ6g6sJaGqgFoeqFdNe0zBqF/pkYz6Tg2p9+lryiZzS24nEPGr6T3rtW5nXKFYQBPjWQ2cGVHP968qPZzxcA9WL2rrHWrrLerrHWq7uDe6m9V7aYOu9NXqal+N0hMh7Wk/q5958Pl5H3P+Sp2e++FeXbhWp0zGr9rqYR3Y0aV793TK57NzPuZ0T6N+cPwuXelLKJczWl87qHvuOq39O7qX3eeVPP/tZKz1/klup7iptfeZB+/480YSIe372FaFYgH1nRrS2PWUqhqjqmmNaex6Sh1f7FZmPLtoO4GoX/s+tlUVdWENdI9o+NK4KurCWrczrvRIRscf71JqYOIO7NHqQW29Q229RX2940ptn7h07JYe/9jXfkJX+2oVCk6oqnJMfQPVCwafznOb9dUn362AP6vdbT2KhtM63duovoFq7drao0ceenbWY14+sV3fef6QopGkdm/tkd+f05vdzRoardQ79r2hhw7/cMn9Xcnzr8Sh957XK8eTZq51jPgsUdtPNCgUC6jr25d0+aUbk8tbH96oxsN1avnRenV989Ki7bQ8WK+KurAuvnBdZ5+8Mrm84VCt2t63Se3v36STX+7xZB9WK2rrHWrrLerrHWq7NA8fflVVsTHVxofVc7lef/GPD827bSod1D89/Q75jNUvfuApbVqfr+uRe4/pL/7pIb3Z3aITZ3q1p32qHgPDlXrqBwcVDaf08Q99WzVVo5Kkdx18XY9//X36Qcdd2tXaq80bry/a15U8vxeY47MEkURIifYqJfvTM34BJan36DVl01lt2FcjX3DOcDnJF/Rpw74aZdNZ9R69NmPd5ZduKDmQVqK9SuGa4G3fh9WK2nqH2nqL+nqH2i7dlsarWlc9LLNwKSRJb3Y3aywZ0e72c5OhQ5ICgZyO3JsfeXr1je0zHnPsVJuyWb/u2d05GXokKRpO6/67T+Qf8+a2JfV1Jc/vhQWDjzFmnTHmWOHrijHm4rSfQ0t5AmPMry2w7qgxpnNamxuWuwN3QvWWSklSf/fIrHXZdE5DvWPyh3yq2lyxYDtVm6PyB30a6h1TNj37/nR/V779mtbYbej12kBtvUNtvUV9vUNtvXH24kZJUlvT5VnrWhquKRjI6MLV9cpkp6LBuUv5x7Q3zR5dayssO1do14vn98KCrVtr+6y1B6y1ByT9iaTPFX+21qaX+BzzBp+Cj05r89oi25ZEtC6f8ZJ9qTnXj9/IlyK6LrxgOxV14Rnb36zYfnTdkjJlWaC23qG23qK+3qG23ugbjEuS1lUPzVrn81nVVI0ol/Opf2gqCPYN5B9TWzP7MVWV4woGJjQ0WqmJCb8nz++FZccqY8xBY8zTxphXjTFPGGMajDHVhZGbHYVt/toY8yvGmN+WFC2M5nz5tvf+DgmE8/+hmXleRZBN5SfYBSILl9M/2c7cE/IyqXz7/sjiB1C5oLbeobbeor7eobbeSKXzt/TCobmDYHF5KjUVBJOFx0RCc08ALy5PphcPjyt5fi8sd3KzkfR5SR+01r5tjPl5Sb9lrf2YMeaTkr5kjPnfkhLW2i9IkjHmk4URo/n8mTEmK+nvJP2mXWsvMwMAAGvGcoNPWNIeSU+Z/Ewqv6TLkmStfcoY82FJfyhp/xLb+6i19qIxpkr54POvJf3fmzcyxnxC0ickKaKF7+l6IbPI1YV/kauToqmrlLmvLgLhfPvZea5OyhG19Q619Rb19Q619Ua4MDqTmmd0prg8HJ4akYmEJjSW9CuZDqoiMnukZmpEaPHZLyt5fi8s91aXkXRy2pycvdbahyXJGOOTtEvSmKTEUhqz1l4s/Dss6a8kHZpnu8estfdYa+8JauF7ul4Yv57/T4jMcz85Wpv/zxqf53500dj11Iztb1Zsf7zP2//01YTaeofaeov6eofaeqM4t6Y412a6XM5oYDgmny+nRHxqUvm6wtyeGwOzHzM8GtVEJqh45aiCwcXD40qe3wvLDT4pSeuNMYclyRgTNMbsLqz7lKQ3JX1E+dtXxdcHTkz7fpIxJmCMqSu2I+knJZ1YwT54bvBc/iV8ia2zJ1z5Qz7FmyuUTec0fGFswXaGL4wrO5FTvLlC/tDs0hfbHzjr7X/6akJtvUNtvUV9vUNtvdHamH8fo67zDbPW9VzeoIlMQJvr31bAPzWStmVT/jFnzm+a9ZiuwrItjVdmrbtdz++F5QafnKRHJP2OMea4pGOS3lmY1PxxSf/JWvuspGck/XrhMY9J6phjcnNY0hPGmI5COxclfWFlu+GtZH9a/WeGFUmE1HCodsa65iMb5A/5da1jQLmJqelJ0XWhWa8UyE3kdK1jQP6QX81HZr5yv+FQrSKJkPrPDDv1Dq3U1jvU1lvU1zvU1hu7tvaqIpLUyTNbdOntqbpmMj4dfTk/FffgXadnPGb/ji75/Vm9cnKHBoYrJ5ePp0J67rU9+cfsemvGY5KpoK73xzU8Gr3l5/cCH1mxRMt9+/T7fyN/QDz32ZmDWIu9fXrHF7uV7Hdj2LWI2nqH2nqL+nrHldre6kdWnDq7WZ3nmiRJo2NRdV3YpER8WE0b8+8OUxFJzfhIiVNnN+trTxU+MqK9R9FwSqd7Nk9+ZMTP/tizs94M8aUTO/TE8/cu+SMrjndu1T8cfaf2be/SBx94YVZ/l/v8K8FHVtwGyf60jn2hSy1HNijRHlNiW0zp4Ywu/uD6sj4wLzOeVcfj3Wo+sl61O+KKt1QoM5bV1df6y+ID81aC2nqH2nqL+nqH2i7N1b5adZxum7Gsf6hK/UNVkqTq2MiMYLKz9YJ+6QNP6bkf7tGp7iZlsn4lqof10OFXdGhP55yh49CeTtXERvRCx13qeGurrDWqSwzqyL3Hl/0hpSt5/tuNER8AAErkVkd8MLeFRnz4rC4AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAziD4AAAAZxB8AACAMwg+AADAGQQfAADgDIIPAABwBsEHAAA4g+ADAACcQfABAADOIPgAAABnEHwAAIAzCD4AAMAZBB8AAOAMgg8AAHAGwQcAADiD4AMAAJxB8AEAAM4g+AAAAGcQfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnEHwAQAAzjDW2lL3YVmMMW9L6il1P5aoTtL1UneijFFf71Bb71Bb71Bbb62l+rZYa9fPtWLNBZ+1xBjzirX2nlL3o1xRX+9QW+9QW+9QW2+VS3251QUAAJxB8AEAAM4g+HjrsVJ3oMxRX+9QW+9QW+9QW2+VRX2Z4wMAAJzBiA8AAHAGwecmxpiRUvdBkowxrcaYF40xZ4wxf2OMCZW6T7dqFdX2k4W6WmNMXan7c7usovp+2RjTaYw5YYz5ojEmWOo+3apVVNvHjTHHjTEdxpivGWNipe7TrVottS0yxvz+auvTSq2W/TDGfMkYc9YYc6zwdaCU/SH4rF6/I+lz1tp2Sf2S/m2J+1NOnpf0Y1o77we11nxZ0k5JeyVFJX28tN0pK5+y1u631u6T1Cvpk6XuUDkxxtwjKVHqfpSp/2ytPVD4OlbKjhB85mGMOWKMedoY8w1jTLcx5reNMR81xrxkjHndGNNW2O6nCiMzrxlj/tkYU19Yvt4Y85Qx5qQx5k+NMT3F0QVjzL8qtHPMGPN/jDH+m57bSPpRSV8rLPpzST995/beW6WsrSRZa1+z1p67ozt9B62C+n7LFkh6SdLmO7n/XloFtR0qbGuUD5VlM0mz1LUtLPufkv7LndzvO6HUtV11rLV8TfuSNFL494ikAUkNksKSLkr6bGHdf5T0e4XvE5qaJP5xSb9b+P4PJP1q4fsfV/4EVSdpl6R/lBQsrPsjSb94Ux/qJJ2Z9nOTpBOlrk051Pam/pyTVFfqupRxfYOSfijpXaWuTTnVVtKfSboq6fviiaMfAAACsklEQVSSKkpdm3KpbeE5PjW9T2v9axXV9kuSOiV1SPqcpHAp6xIQFvKytfayJBljuiQ9WVj+uqQHCt9vlvQ3xpgGSSFJZwvL75f0M5Jkrf2OMaa/sPxBSQclvZy/aFNU0jWP92M1orbeWg31/SNJz1hrn70te7R6lLS21tp/U7iq/rykn1c+CJWLktTWGLNJ0oeVDwjlqpTH7a9KulJo8zFJn5H032/bni0Tt7oWlpr2fW7azzlpMjR+XtIfWGv3Svp3kiKLtGkk/bmdute5w1r76E3b9EmqMcYUn2Oz8gm9nJSqtq4oaX2NMb8hab2kT6+w/6tZyY9da21W0lck/ewK+r+alaq2d0tql3TGGHNOUoUx5szKd2NVKtlxa629bPNSygf1Q7ewH7eM4HPrqjUVSn5p2vLnJf2cJBljHtbUhLnvSnrEGLOhsK7WGNMyvUGbHxv8vqRHprX7DU96v7rd9tpiBk/qa4z5uKT3SvqX1tqcR31f7W57bU1ee/F7SR+QdMqzPVi9vDjnftNau9Fau8Vau0XSmM2/sMQ1Xp0TGgr/GuXnq57wpPdLRPC5dY9K+qox5lXN/NTaz0p62BhzQvkh1CuShq21b0j6dUlPGmM6JD2l/H3Xm31G0qcLVx3rJD3u3S6sWo/Kg9oaY/6DMeaC8iNpHcaYP/V2N1atR+XNsfsnkuolvVCY8PjfPNyH1epR3f7aGkl/box5XfnbEw0q4e2CEnpU3hy38K62X5523NZJ+k3vdmFxvHOzR4wxYUlZa23GGHNY0h9ba0v63gXlgtp6i/p6h9p6h9p6p9xqy+Rm7zRL+ltjjE9SWtKvlLg/5YTaeov6eofaeofaeqesasuIDwAAcAZzfAAAgDMIPgAAwBkEHwAA4AyCDwAAcAbBBwAAOIPgAwAAnPH/AXk4UGlTHgk8AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: Greek\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3Ac12Hn+++ZnvcDmMH7DYIgRVJ8SDIpyrIkW/JD8SNx9u46u3ud2qzLN+tblfIfN7t/ZMubuptU3aTubqVyN/HNbsouO65Neb11s9m1N4nlWLJl2Y6tByNRfIikSAAESBAgXjN4zbun7x+DATnEgABIQnj071OlEtjdONN9cLrn16dPdxvHcRARERFxA89Wr4CIiIjIe0XBR0RERFxDwUdERERcQ8FHREREXEPBR0RERFxDwUdERERcw7vVK7BR8QbLae/acau9I4yei271KuxuenTEpjEencNtFqdU2upVENmwLIvknZypNW/HJYj2Li//+a/atno1dqV/c/CZrV6FXc0pFLd6FXYtTzCw1auwa5XS6a1eBZENe835warzdJokIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKuoeAjIiIirqHgIyIiIq6h4CMiIiKu4d3qFdhOHAeuXX6Ia+8eYCEVByBSP0v3/kv0HLiEMbeWnZtuYHykl+mxDtLzMfK5AP5globWm+w9cpb6xukNf/7Na90MnTvC3EwjjmOIxlP0HrxA174rD2oTtx1v0EPjQ1ES+yKEm/34o14c2yE9mefm2TkmzsxtqDx/zEvPMw0k+iJ4Qx7yizYz7y4w8tMZ7Fxpk7Zi+2o8FKO+J0ykLUikNYA3YDFxdpZ3v31jw2X5Y156n20m3h/BF7LILxSZvrTAyI8nsbPuq1uA3g82EGkLEEr48IY8lIoOubkiM1cWGX9zjuIG6sUfteh+uoFEXwhv0CK/WGTmcpprP0u6su3CUpt7rpX4vuitNndxjpFXJjbU5rxBi+4PNdN4sA5/1EshY5O6ssDwyzfJzxc3cQu2LzfXrYLPbd7+yYe4MdiPP5iho28Qy1tk6kYH5199itRkK4888+PlZc/9/AOkplqoa5yitXcYr7fA3EwDY0N7Gb+6h8eefZm23uF1f/bVC4d457Un8QWydPQP4PHYjF/dw5mffpD5ZIJDj7+xGZu85ZoOxuj/eAv5+SKzI2lyc0V8EYvGh6Ls/2Qrib1hLn17fF1lBeM+jv6zLvwRL9PvLpCZzhPtCNLxeIL43ghn//zahr6IdoPup5uItgUp5mzy80W8AeueygkmfBz73B78US/Tl+ZJT+WIdYTofKKBRH+EM98YppixH/Dab3/tJ+pZvJkjNZyhkLaxfIZYe4CepxpoPVbH2W+Okp9fu14CcS9HP9tRbruXF8nMFIi1Beg4UU+8L8S5/3LDdW03mPBz7PN7y23u4ly5zXWG6Hx/E4l9Mc58fXBdbc4bsjj2+b2EmwKkBheYPDdLuClA62MJEvtjvP21AXKpwnuwRduH2+tWwWfJ+HAvNwb7CUXneeoX/yf+YA6Aku3hzZc/zOjAPlp7hpfDTEf/AI988BUidfNV5YwO7OXtnzzL2Z89RUvXNTzW2ger9HyUi288ji+Q5alf/J+EYwsA7H/kNH/3159m6PxR2nqvkmiZfMBbvfUyyTzv/LcbJK8sVk0ffmWaR36tm6aDMaYOLDB9aWHNsvY+34w/4mXwxQnG/n52efqeDzfReTJB74eaGPjbiQe+DdvZ0PdvkpsvkJ0pUN8b5uiv9d5TOf2faMMf9TLwvXHG3kguT+/7WAud72+k97lmBr67voC6m7z2R1dxbGfF9J6nE3Q9maDriTiDL63d+7v3o03ltvvSFONv3erl3PNcAx0n4vQ808Dgi1MPdN23u/5Ptpfb3As3GHt9Znl63/NtdD7ZRO+HWxn4m7V7Lns/0kq4KcDoz6cY+v6tNtp+soH+T3Sw71MdnP/m+k9SdwO3163G+Cy5OVL+Qug7fG459AB4rBIPPfYmAMMXDi1P33PoworQA9DZP0i4bpZCLsh8MrGuz75+ZT+lkpfegxeWQw+AL5Cn/9jbAIxcOrjxjdoBZoczK0IPQGHRZvx0ObzU9YTWLCcY95HYGyGbKlSFHoBrP53GzpdoPhzD4zOrlLA7zQ6nyc7c3xlXMOEj0R8lm8xXhR6AkVemsPMlWo7Wu65ugZqhB2DqUrlNBxO+NcsIxL0k+sJkU4Wq0AMw8tNkue0+HHVV/QYTfhL7YuU2d9sXM8DIjyaw8zYtx+Jr1onH56HlWBw7bzPyo+qTnrHXZ8im8iT2xQjE1/477RaqWwWfZblM+cs1HFsZZkJL02ZutlGy164yj6fcy2M8tQ+Kd5oe6wCgufP6inmVadNj7esqazdZ/lIprV2P9UvhKDWUXjHPzjvMXc9g+T3EOoIPdB3doL43AkBycGVAtfMl5q6ly3XbuXZAdYuG/jAA6cn8msvWdy+13eHMinmlgsPcaLZcv+2BB7uS21j9nkqbW9nTa+dLzI0stbmu8F3LiXWFsHwe5kbS2PmVve/JgXL58b7oA1jrnUF1u0bwMcY0GmNOL/03bowZve3f/vV8gDHmS3eZd9wYc9YYc8UY88fGmC07pfEFsgBkFlb+kTLzMQAcx0N66efVJCeaWUglCIYXicWTd122YnG2DoBI3cqBvMFwBstbIJuOYhfvbXzGjmSg+Ui5XpKDK8PMnUKN5eaYSdb+oskmy70eoYZ1NVu5TaVuszO16zazNL2ynBt1PF5P9wcS7HmukSP/azs9zzSwOJHj+mupNX831FA+I16tZ67SdoMN2+/MebOEmpba3HSu5vxbbe7uYTDcFKha/k6V8t3UdlW3awQfx3GmHcd51HGcR4E/Bf6fyr8dx1n7VKZs1eAD/CfgXwD7l/77+DrLfOBauq4BMHT+CPncrT9UqWR49/Rjy/8u5Ff/I+Zzft7+6QcBOHTytXX3+BQK5TK9/tpVWpl+t8/ebfY820SkJcDMlcWavTh3sgLlprza3QjFpbtiKsvJ+nmD5TpbbXBt5Y4jb9BFwfwOHY/X0/1Ugo4T9dR1hUgOpnnnL8YpZtYe41dpk8VV7txart97HJi+E1W2dfU2Vx54W2mbq7GWy6k9UHf5uOCitqu6vYfBzcaY48AfAlFgCvgckAZeBz7tOM4lY8y3gB8C/UDIGHMaOO84zq/eVk47UOc4zqtL//7PwD8AXrivLbpHHX1DjA7sY+pGFz/+H/+Q1p4RLMtmaqyDXDpMMLJAdjHKan1SxYKXv//BR0nP1bP3yBna91x9T9d/N2k/Xk/nEwnSU3ku/7X7BszKznPqP44A4AtbxDoD9H6wgUf+eScX/nKcxYn1niOKyHtho6e/Bvgy8BnHcY4DXwd+z3GcWeCLwDeMMf8USDiO81XHcf41kFnqIfrVO8rqBG4f1HJ9adqWMB6HEx99kQPH38AfzDJ6ZR/Xr+wjEpvjyU/+NV5fubvZH1x5Hb5Y8HLqpY+RnGij7/A5Dp44taHP9vnKB8biKj06lem+VXqEdpO299Wz92MtpCdznPvW9XXfwmsvn13UbtLeSo+QS5+Hcj8qf4PVzgCXeyxWOfNzk0LaZuZyubfHG7TY/8mWNX/nVo/OGvWbc0/9FtfodbDW6LWouNV7UbvXYfm44KK2q7rdeI9PADgCvLg0HMcCxgAcx3nRGPMrwJ8AjzzIlTTGfAH4AkBb5+Z1m3k8Dv1Hz9J/9GzVdLtokZ6rwx/IVN11BeXQ88ZLz5O82cbeI2c2HHoAIvVz5CdCLM7V4Q9W37KeTYewiz6C4QUs7/ZrQA9S+4k4ez/azOJEjvP/dZRCev3bm5leui6dqB0eK3fXrHY9WlZXqdvgKuOjKuOmKssJ5OaKpKfzRFsDeEOeu17yyszcfQxPpe3e7915O0lmaqnNrTLO5Fabqz1OpSI9lata/k6V8t3UdlW399bjc/62cT5HHcd5HsAY4wEOUb7stZ77uEeBrtv+3bU0bQXHcb7iOM4Jx3FOxBve++uFY0N9lEoW7XsHq6YX8j5e//7HSd5so//Y6XsKPQCN7eXnJUyOdq2YV5nW2D52T2XvFJ1PJNj70WYWbmY5963rGwo9ALMj5Z64eN/KOxEsv6GuK4SdLzF/I/tA1tdNZofLd3Ml9kZWzLP8Huq6w+W6HV3ZG+pm/mj5WOWs0ck4e22p7fauvCvO4zPUdQbL9Tt29y+i3WT2aqXNrbzZxPJ7qOtZanPX7z7+b/56BrtQoq4njOVf+XVXKT81tPZzwnYL1e3Gg08OaDbGPAlgjPEZYw4vzftN4ALwWeDPjDGV05fCbT8vcxxnDJgzxrx/6W6uXwO+cy8b8aAU8ivPuOamG7h46nF8/hz9R8/cWjbn5/W//TipyRb2P/omB9735prl57MBFlL15LPVSbtr32U8niLDFw+Rnr/VGAs5PwNnyp1nPQcu3utmbXtdH2hgz3NNLIxlOf+t0bueHRtP+S6Y4B3PhsimCiQHFwnGfbQfr6+a1/10I5bfw+T5eUqF9Q04dyPjKd+BceezZ7LJAsmBBYIJP+2PV5/T9HyoCcvvYeLsrOvqNpjwYflrD/rreTqBP+JlbjS7fCmr0nYD8eqO9lyqSHIoTTDuo+2xuhXlWH4Pk+8suKp+s8k8ySvz5TZ3sqFqXs+zLVh+i4kzqao6CTX6V9xBVCqUmDiTwvJb9Dxbfdmx/WQDwYSf5JX5bfl04c2iut34pa4S8Bngj40x9Uu//x+MMUXg14GTjuPMG2N+DPw28G+BrwBnjDFv1hjn8xvAN4AQ5UHNWzKwueL1738cyyoSSySxfAUWU3EmrndjeYsc/8hLBMO3zmj//uWPMDvdTDg2h+MY3n3rsRXltfUMU9d46wFRVy88zJW3H2PfI2/x0GNvLU8PxxY4+PgbvPPak/zdX3+a9r6h5VdWZNNR+g6f3ZVPbQZoPhKj94ONOKXys3baT8RXLJObLTBxtvwsJX/My/u+sIfsbIG//09Xq5Yb/P4kR/9ZgL0fa6G+N7z8yor40s/Dr7jrybcADQeiNB4oP4LBHynv7rHOEPs/XX4uVCFtc/Wl8sPH/DEfx3+jn2wqz6kvD1SVM/DCOMc+t4f+j7cR74ssv7Ii3hchPZ1j+OXd2T7vJrE3RM8zDcyPZsnOFilmbHwRL/XdQYJxH/mFIgN/e6te/FEvj/1v3WRnC7z5lWtVZQ2+NMXRz3aw96NN1PeGyEznibUHyz/P5Bn5ycydH7/rDXx3jGOfD9H/iQ7ifdHl1ypUfh7+4c2q5Y9/8SEAfvq756qmD//gJvW9ETqfbCLSGmT+RoZwU4DGg3Xlv9F3d3dvei1ur9t1Bx/HcX7ntn9+sMYiy481dhznX972828Bv7VKmacojxnaFtr3DHFjaC+jA/2UbC+BcJruA5foP/o2oUh1t19mqWcmPV/HlbdXhh6AcHS+KvjczZ5DFwhFFxg6d4TRK/sAiNaneOh9b+7ql5RWem6Mx9DxeO0rpLMj6eXgczfZVIG3v3GNnmcaSewNk+iPkF8ocuONpGtfUhptDdL6SHWYDDX4l6/LZ1P55eBzN9lkgdNfG6L3Q80k+qMk9kXJzxcZfW3GtS8pnR3OMBGfp64rSKQlgDfowS44ZGfyXDu/wNibs+senJ9LFTnz56P0PNVAvC9EYm+YwkKRG6dmXfuS0mwyz+mvDtD7bAuJfVES+5fa3KtTG3qRZjFjc+Zrg/Q820zDgTrqesMU0zY330pu6xdpbia3161xnJ3VfXroWMD5z3/VttWrsSv9m4PPbPUq7GpOYXseBHYDT9A9TzV+r5XSaz9HS2S7ec35AXPOTM1r0Xqam4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGd6tXYKNuXKzn/3zyl7Z6NXal6Ev2Vq/Crrb4C+mtXoVdy/R2bvUq7F4XLm/1Gog8UOrxEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHX8G71CuwEzQ8F6H+u7q7LOCWH1746ta7y/BEPXSfCxLv9eIMeCukSM1dzXD+Vxs47D2KVt53EjRA979TfdRkHhzMfvQmAL+uh5WqU0JwXf9bCKniwfSVyYZuZjgzJtsyGY3s45aN1KEp41oenZMiFi8x0ZJjqToO51y3b/no/2ECkLUAo4cMb8lAqOuTmisxcWWT8zTmK2dK6y/JHLbqfbiDRF8IbtMgvFpm5nObaz5LYufWXs5M0dHmoa/YQiRvCcYPXZ5gctrnyWnHFssGooaHLQ7zVQzBm8AWgWICF6RJj79rMTW58/442Groetog1ePBYkFlwmBgqMX7Fht15uFjmj3npfa6V+L4ovpBFfqHI9MU5Rl6ZwN5Au/UGLbo/1EzjwTr8US+FjE3qygLDL98kP7/y7+gGbq5bBZ91WJwucv3UYs15sXYf9Z1+Utfy6yorUOfh8C8n8Ic9zAzlyKRsoi1e2o+GiXf5Of+dFMXc7juaZWIFxvsWas6LpHzEkgHmm3LL0/xpL4mxIOn6ArPNOWxfCW/BQ2wqQM879STGggw+llx3+KmbCLDnbJySxyHVmsX2OdRNBuh8t45Iys/wsdSD2Mxtqf1EPYs3c6SGMxTSNpbPEGsP0PNUA63H6jj7zVHy8/aa5QTiXo5+tgN/xMv05UUyMwVibQE6TtQT7wtx7r/c2FCI2im6DllEEh7sgkMu4+D1rZ6Su49YNPVYpGdLpMZKFPMOwZihocNDQ6fF0FtFxi+vXdcViQ4PBz7gpWTD9LVyeYkOD32PealrMrz78+35xfIgBBN+jn1+L/6ol+mLc6SncsQ6Q3S+v4nEvhhnvj5IMbN2XXpDFsc+v5dwU4DU4AKT52YJNwVofSxBYn+Mt782QC5VeA+2aPtwe90q+KxDetomPZ2uOe/wP4gDMHEhu66y+p6O4Q97GPrpPDfP3/qd3icjtB8L030ywtBPageEnSwbK5KN1d6ufW80ADDdmVmelo7nOffsxMqemBL0v5UglgxQPxlktnXtevcUDV0X6nCAgeMzZOrKXxbje+fpf7OB+ESQ2fEgqbb1/Q13mtf+6CqOvTJM9zydoOvJBF1PxBl8aXrNcvZ+tAl/xMvgS1OMvzW3PH3Pcw10nIjT80wDgy+ur9dzJ7l6ukg+A9kFh7pmw+Hn/KsumxovMXrRJp2qru+6ZsOhD/roPWYxfc2msI6mZnmh/4QXx4HzPyqwmCyXOXLO5vCzPhq7LRqvl5i+tvvCJkD/J9vxR70MvHCDsddnlqf3Pd9G55NN9H64lYG/ubFmOb0faSXcFGD051MMfX98eXr7yQb6P9HBvk91cP6bw5uyDduV2+tWY3zuQ6jBItbqI7dgkxxZu8cnUOch3u0nO2dXhR6Aa6fS2AWHpv1BPC6Ko8EFL5FZP/mAzdxtPT6Oh9qXnzww21xeLpC21vUZ8ZtBfAWLVFt2OfQAOBaM95fDWOP18D1vw3ZXK/QATF0q92IGE741ywjEvST6wmRTharQAzDy0yR2vkTzw1E8d+kN2anmJh2yC+vrhZ28WloReiplzE06eCxDrHF9h92Gbg++oGHqWmk59AA4JRg5V27Hbf3r2wd2mmDCT2JfjGwyX/XFDDDyownsvE3Lsfia7c3j89ByLI6dtxn50UTVvLHXZ8im8iT2xQjE194HdgvV7RrBxxjTaIw5vfTfuDFm9LZ/r37aU13Gl+4y7/eMMdeMMTuyi6P1UAiAyUvZdV1rr+soV9ns9ZUhqVRwmB8vYPkM0dbt11A2S+P1ch3OdGTWN87GgbqpAADZ6Pq6+aPJcr3PN+ZWzFuI57E9JSKzPszuPHFeVUN/OeylJ9cO7fXd5b9TajizYl6p4DA3msXye4i1Bx7sSu4iTql8kHDWeSW7vqV8eE6NrWyYc5MOdtEh2mQwu/D0tX5PBIDk4MqvBjtfYm4kXW5vXXc/YYl1hbB8HuZG0tj5lfWYHCiXH++LPoC13hlUt2tc6nIcZxp4FMAY8zvAguM4f7DBz/gS8PurzPsr4P8FLm+wzC1nLGjaH8ApOeu+zBWKl8/OsrO1r51mZ23ohlC9xdzo9rsu+qAZG+LjIRzjMNNZ+1KilTc0XSvvqN6Ch9i0n0DGS7Itw1zzyiBTSyBdbua5cI2g5IF8yCa06MOfschF1j/+YqfpeLwey+fBCniItvmp6wqxOJHj+mtrj28KNZTDeHamdrvMJgvQB8EGH7Mju/OS4f3wh6G+1YNddJibXF/CDsXKZwI1e5scyC06hOs9BCOGzPzuGhcYaiqfrGSna+/jmZk8CSDUGGB2qPb4S4BwU2B5+Voq5Yca13Uevyuobu9hjI8x5jjwh0AUmAI+B6SB14FPO45zyRjzLeCHQD8QMsacBs47jvOrt5flOM6rS2XezzZsicb+AN6Ah+Rwjvzi+g5klr+8ncVV7tyqpObKcrtd/GYQb9HDXFOWQrB2HXoLHtqGbp0xODhM9C4y1j+/7s+xiuX6tL216720NN0qeIDdHXz8kVu7fHIwzZUXJilm1m6/VqDcrVBc5c6tyh1d3sDuvPRyP4wH9j/hw2MZht8uYq/znMZa6vi1C7XbbXGpHGv7fa/ct0o7Wm2wvJ0r76fe4N27u6zlcmrv15X2bAXd025VtxsPPgb4MvDLjuNMGmP+CfB7juN83hjzReAbxpg/AhKO43wVwBjzRcdxHn2wq731Kpe5bq6zt0dWahwtd6XePqj5TrmIzdsfHQcHfDkP9RNB2gaiRFI+hh5NYvt215nuZjr1H0cA8IUtYp0Bej/YwCP/vJMLfznO4sT67kqUDTKw7wkvdc0epkZsblzavcFaZKfY6NXhAHAEeHGpF+e3gS4Ax3FeBM4CfwL8+oNcSWPMF4wxp4wxp/Kl1b8k3yuhhEWsrTyoObWOQc0VlWf0eFfp0bH8nqrldrPAKoOaV2WgECwx1ZPm+qE5IrN+2gbWd+240tNT6fm5k6fSI+RzxyCfQtpm5nKad/5iHG/QYv8nW9b8nVs9OrUPGbd6hPTFvszA/ie8NHVbTI3YXK7x3J+7qfQMWasMMvVWeoR2YWYtrtHrYK3Ra1Fxq/eidq9DpT3bq/Ra7Eaq240HH0P5ktWjS/8ddRzneQBjjAc4RPmyV+JBrqTjOF9xHOeE4zgn/J7Qgyz6nrQcCgIweXF9g5orMqlyAwjW124olemZVcYA7SaNoxsc1HybSlCKJNfXx18Z21MZ61OlBP6MhWMc8qHdX++3y80VSU/nCTf78YbufijILI3tCTbUHnhfuTNstTFAbmMM7H+/l6Yei8nhpdCzwfOZyridYLTGDmIgEDGUSg7Zxd13opSZKqe5YGPtwfKhhvK+n1llnEpFeipXtfydKuVnpndhelyF6nbjwScHNBtjngQwxviMMYeX5v0mcAH4LPBnxpjKEbJw2887nrGgeX+wPKj54sYuc83dKDeA+q6VDcXjM8TafNgFh4Wbu/vLw9iQGLv7oOa78WWXmu06A9NColzvsemVO3o05ccqeVisL5RvoXcZf7Qctp01Ortmr5V7WuO9K088PD5DXWcQO19ifmx9A853M+OBhz5Q7umZuLr0hOd7yCazE+U/Srx9ZcOsazZYXsPClLPm324nmr1aHlSb2LuyV9fye6jrCZfb2/W7Hz/mr2ewCyXqesLLPeq3q5SfGtqRNxbfE9XtxoNPCfgM8O+MMW8Dp4EPGGMOUL689a8cx/kJ8GPKl8EAvgKcMcZ8887CjDH/3hhzHQgbY64v3Tm2rTXuDeANekhdy686qNl4IBi3CNRVV29urkTqWp5gnUXr4WDVvO4TYSyfYepyltLufRgrAPGJpUHNjblVBzWH5rw1vyw8RUPnu+XXh9x5icxTNAQWLby56npPtWYp+krEx4PlcpcYm+XLZdNdGw9gO0Ew4Vt1sHzP0wn8ES9zo9nlS1nGU76DKxCv7h3LpYokh9IE4z7aHqtbUY7l9zD5zgKlVQbiuoXxwIEPeGnotLg5aDPw+to7s+Wj/HqL6kMCM9dKFLIOTd0eIolbf0PjgZ4j5b/P+MDu7KXMJvMkr8wTTPhpP9lQNa/n2RYsv8XEmVRVews1+lfcQVQqlJg4k8LyW/Q8W31Jt/1kA8GEn+SV+W35dOHNoroF46z3oRLbRL2/xflA0z/ess9/+NNx6tp9XPzeLKnh2l14gaiHx361kdy8zVv/pfoBUau9sqK+008mVeT8t7fulRWhv3hvDqL9pykHYEgAACAASURBVBqIpvwMPZJc9Zb0PW/HiaT8LNbnKQRtSpaDL2sRmw7gLXpYrM8z+Fhy+Y4suPU+sJn2DNcOz1aVt/KVFSXqJoME015SLVmGj6Y2/X1di7/w3oer9uN19DzTwPxoluxskWLGxhfxUt8dJBj3kV8ocv7/GyMzXT44Beq8HP/fe8jOFnjzK9eqylrxyorpPLH2IPW9ITIzec5+c+teWWF6Ozet7ESHh4bOcpj2Bw3xdg/ZhVu3pRfzDsNvl/ed/se9tPRZFLLOqqFkbqJU9c6u5j0e9p30MTFkM/BGdVC6/ZUVU0uvrGjo8BCq8zB9zX5PXllhX9iap42s9lqFeF+U9FRuxWsVnv63RwD46e+eqyrnztcqzN/IEG4K0HiwjvxCkTNfHySb3H6XYzaTG+r2NecHzDkzNY/qLnpG8P0Lxi3q2jc+qPl2ubkS5/57kq7HI8S7fMR7/BTSJcbOpnf1S0orAosW0dTag5qnOzOULIfwnI9o0o+nZCh6S2TqCqRasuWxQRvor5xryXHl+AytQ1HqJ4Lll5SGiozun2OqZ/e+pHR2OMNEfJ66riCRlnJvpV1wyM7kuXZ+gbE3Z9cdVnKpImf+fJSepxqI94VI7A1TWChy49Tsrn5JaSRhaOmrHpcXjBqCS5cJs4u3gk8gUm5IvqCh+3Dtw+s1isxNru8kI3mjxPmXC3Q+bNHY5cHjKT/X5+rpImMbeOfXTpRN5jn91QF6n20hsS9KYn+U/HyR0VenNvQizWLG5szXBul5tpmGA3XU9YYppm1uvpXc1i/S3Exur1v1+Miy96rHx622osfHLTazx8fttqrHR+R+3K3Hx4XDOUVERMStFHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDUUfERERMQ1FHxERETENRR8RERExDW8W70CG+UUihQnprZ6NXalyX9/fKtXYVf784t/uNWrsGv9i56nt3oVRGSHUI+PiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGgo+IiIi4hoKPiIiIuIaCj4iIiLiGd6tXYKdoPBSjvidMpC1IpDWAN2AxcXaWd799Y8Nl+WNeep9tJt4fwReyyC8Umb60wMiPJ7GzpU1Y+63nsxya4zZN9TbRYImA38FxYCHj4ca0lxvTFmDuWsahnhydTTYAf3c+SCa3sdzeVGfT21ogFi7X8WLWw/VJL2MzO383cBy4fOkQl989SCrZAEB9PMn+hy7y0MF3MLdV7fhYB3/73U+vWtaRY29x/PHXNvT510Z6OH/2UWamG3EcD/HEDAcOnWff/nfvaXt2En/MS+9zrcT3RW/tzxfnGHllYkP7szdo0f2hZhoP1uGPeilkbFJXFhh++Sb5+eImbsH2pbrdPG6u251/xH+PdD/dRLQtSDFnk58v4g1Y91ROMOHj2Of24I96mb40T3oqR6wjROcTDST6I5z5xjDFjP2A137rtSSKHOopkMsbZhY8ZFOGgLcchh7uzdNYZ3F2yM9q4aepvkhnk03RBu89VH1Xc4GD3QXyRRib8eKUoCVhc3hPnmioxOVR//1t4Bb7ySsfYWhgP8Fgmr69V/B6i9y40cmrP/sgExOtPPOhl1f8TmvbDdraVwb3ltaxDX32hXcO8/rPnyEQyLB332U8nhLDV/fydz/+MMmZBh5/4tV73q7tLpjwc+zze8v788W58v7cGaLz/U0k9sU48/XBde3P3pDFsc/vJdwUIDW4wOS5WcJNAVofS5DYH+Ptrw2QSxXegy3aPlS3m8ftdavgs05D379Jbr5AdqZAfW+Yo7/We0/l9H+iDX/Uy8D3xhl7I7k8ve9jLXS+v5He55oZ+O74g1rtbSOd9XB6wM/UbHXPjv+Gw8mDWVoTNjeTNhOplU3S53U41JNnfMYi4HNIxDbWKxb0l9jfWQ49r18Mks2Xe4oGxx1OHsjS21pkImUxu3hvYXarDV/dw9DAfqKxOT716f9OMJgFwLY9/OgHzzN45QA9vVfp3TNU9Xtt7Td49H2n7uuzF+ZjnHr9SQKBLL/4y/+daGwegEceO8XffOcf8c65R+ndM0RL6837+pztqv+T7eX9+YUbjL0+szy97/k2Op9sovfDrQz8zdq9wr0faSXcFGD051MMff/W/t9+soH+T3Sw71MdnP/m8KZsw3alut08bq9bjfFZp9nhNNmZ+0uuwYSPRH+UbDJfFXoARl6Zws6XaDlaj8d390s+O1FywWJq1sudPTr5ouH6ZDnsJKK1A82hnjwAl67dW69MR2MRywPXJ73LoQegaBuu3vQB0Nm0Pbtk12NkuA+Aw0feXg49AJZV4rHjbwBw8Z0jm/LZl989QMn2cvDhc8uhByAQyHP00TcBePfiw5vy2VstmPCT2Bcr78+3fXkAjPxoAjtv03Isvub+7PF5aDkWx87bjPxoomre2OszZFN5EvtiBOK+B74N25XqdvOobtcIPsaYRmPM6aX/xo0xo7f9e13fQsaYL60yPWyM+RtjzEVjzHljzP99Lxuwk9T3RgBIDi6umGfnS8xdS2P5PcQ6Q+/1qm0px6n+/+3aG4q0xG0ujvgp2PcWCBuWeoim51b26JR7oG4tsxNl0mEAorG5FfMq026Ot2Hb1bv7/FwdF945zJnTj3H53QPMzdZv+LPHxzoB6Oi8tmJeZ1d52tjSMrtN/Z7K/rywYp6dLzE3srQ/d4XvWk6sK4Tl8zA3ksbOr2yHyYFy+fG+6ANY651Bdbt5VLdrXOpyHGcaeBTAGPM7wILjOH+wwc/4EvD7q8z7A8dxXl4KUT8wxnzCcZwXNlj+jhFqLGfF7Ey+5vzMTJ5Ef3m52avp93LVtozBob2x3NsydUcwCfpLHOjOMzZtMTl771dlw4HyTpnOrsz5+aKhaEPQ7+AxDiVn5/W2VXp5FubrVsyrTHMci4X5OurjqeV5gwMPMTjwUNXyvXsGePLpVwgEarfRO83OxgGoq0+tmBcOp/F6C6QXoxSLXrzendurVkuoaWl/ns7VnJ+ZyZMAQo0BZodWnuxUhJsCy8vXUim/cvxwA9Xt5lHd3sMYH2PMceAPgSgwBXwOSAOvA592HOeSMeZbwA+BfiBkjDkNnHcc51cr5TiOkwZeXvo5b4x5E+i6v83Z3rzB8hdvcZUR83autLTczhxrci/2dRaIhhymZj3MzN++3Q6He/MUbcOl6/e341QGQxdXGatXtA1ey8FrQX4Hfjd3dY8wNLifd84do6//CoFA+YBTKnk4/eaJ5eVyufKBKhDM8L4Tr9LVPUw0No9te5meaubNUycZvtpPJhPm45/6TtWdYKsp5Mt/G7+/9sHP589TLPrI5/27LvhUbnBYfX8uN7jKfr8aa7mc2g20uHRcsFx0XFDdbh7V7caDjwG+DPyy4ziTxph/Avye4zifN8Z8EfiGMeaPgITjOF8FMMZ80XGcR+9aqDFx4JeAP9r4JshO1d1coLe1yGLWcO5qoGpeT0uRRKzEW1cCFO/xEpdb7Nl7hYEr+7kx2sO3//Kf0NNzFcuyuXGjk0w6TCQyz+JiDGPK1xITiSSJxK0xZj5fkc6uazS3jPNX3/4VJm62c21kDz29V7doi0RENs9GBzcHgCPAi0u9OL/NUi+N4zgvAmeBPwF+fb0FGmO8wLeAP3YcZ3CVZb5gjDlljDlVoHb33E5QSdirJWkrUOkR2n23s9+pq7nAge4CCxnD378brAo34UCJ/o4CN6asmuNyNqrS07PabfBey6labqfxeBw+8vz3eN+JVwkGM1y58hBXrjxEXd0sn/ylb+PzlQflB0OZu5bj9xfo23sZgJvj7ev6bN9ST08+X7tXbq0eoZ2suMaZsbXGmXXFrTPs2g3Uu3RcsF1wXKhQ3W4e1e299ficdxznyRUzjPEAhyhf9koA19dZ5leAy47j/IfVFnAc5ytLy1FnGmoMgd0ZMtPlg3+wofaXRGhpemW53ar79tBzOUihWN2jEwmWsDzQ0WTT0VR7rNNTh8vjWt4e8K85/ied8+D3lQgHSytuWfd7y5e4snmzI8f3VHg8JY4+cpqjj5yumm4XLebm6gkEM8Ruu+tqNZXxQsXi+g4N9fUpJrIh5mbjBIPVt6yn02GKRR/hyMKuu8wFkJla2p8bAzXn39qf736ylp7KVS1/p0r5u/24cDvV7eZR3W68xycHNBtjngQwxviMMYeX5v0mcAH4LPBnxpjKPWyF236uYoz5v4B64P/Y8JrvQLPD5YFiib2RFfMsv4e67jB2vsT86N3PzHey3tZy6JlPl3t67gw9AJm8h9Epq+Z/uaUnCtxMlv+dya/dhGfmy8s01q0882iqt6uW2W2GBvdRKln07b2yruUnJ1sA1hWSANraRwG4Mdq9Yt7o9fK09qVldpvZq5X9eeVdK5bfQ13P0v58/e43Ksxfz2AXStT1hLH8K9thpfzU0Mq7cHYr1e3mUd1uPPiUgM8A/84Y8zZwGviAMeYA5ctb/8pxnJ8AP6Z8GQzKPTVnjDHfvL0gY0wX8G+Ah4E3l26RX/clsu3MeMoj2YOJ6ryXTRZIDiwQTPhpfzxRNa/nQ01Yfg8TZ2cpFXZsp9Zd9bUV2N9ZYG7RU+7pWWXszkLGw4WRQM3/KndmXbnh48JIgIXMrSbssxzCgRI+q7r+bkx7sUvQ1Vwk6L/Vfeu1HPa0lpPU6NTOfpZnPr/y3GJmupFTb7wfvz/L0WNvLU+fmmyuWcbAlf1cHdyHx2Ozp2+gal42G2Q2FSebDVZN3/fQJTxWkYvvHGFhPrY8PZfzc/b0+wB46OA797xd21k2mSd5Zb68P59sqJrX82wLlt9i4kyqan8ONfpX3OVSKpSYOJPC8lv0PNtSNa/9ZAPBhJ/klflt+QTczaK63Tyq2w1c6nIc53du++cHayxy6LZl/+VtP/8W8Fs1yrvOWi9n2kYaDkRpPFA+sPsj5WqLdYbY/+nyWIhC2ubqS+WHOPljPo7/Rj/ZVJ5TX67+Ahl4YZxjn9tD/8fbiPdFll9ZEe+LkJ7OMfzy5Hu4Ve+d9oYi/R0FSg6kFjz0tKzcGTI5z329N6u7pcDe9iKDY14Gx27tpNm8hyujPg50Fzh5MMvN5K1XVgT9DsM3vTv2qc0VL37vF7Esm3hiBp8vz2wqwfVrPXi9Nh/+2AuEI7fO3n70w+fxmBKNTZOEIwvLd3VNTbZijM2TT/246mGEUH4A4ttvneCRx05VPe05FpvnxOOv8vqrT/PX3/mH7Nk7sPzKivRilIePnN61T20GGPjuGMc+H6L/Ex3E+6LLj/6v/Dz8w+ptP/7F8uMDfvq756qmD//gJvW9ETqfbCLSGmT+RoZwU4DGg3XkF4oMfHdjrxHZDVS3m8ftdbuzT3PfQ9HWIK2PxKumhRr8y9c3s6n8cvC5m2yywOmvDdH7oWYS/VES+6Lk54uMvjazq19SGlp6lo7HQE9r7fEeyfn7Cz53c23SRyZv6G0p0t5QxAALWQ8DN3y74iWlvXsGGRrcx+DAfuyil3BkkYcOXuDoI28RiVQ/i+PAwfOM3ehiYqKNXDaIA4TDi/Tvv8jDh8/S0Di9oc8+dLj81ObzZx9h4MpD4Bjq40keO/76rn9JaTaZ5/RXB+h9toXEviiJ/Uv786tTG3rZYzFjc+Zrg/Q820zDgTrqesMU0zY330pu65c9bibV7eZxe90ap9bjcrexOtPgPGE9v9WrsStlP3V8q1dhV/vzP/nDrV6FXetf9Dy91asgItvIa84PmHNmal5V2p0jOkVERERqUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXMI7jbPU6bEidaXCesJ7f6tUQkW3kfzk3vtWrsGv91fOPbvUq7GrF66NbvQq70mvOD5hzZkyteerxEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREddQ8BERERHXUPARERER11DwEREREdfwbvUK7BSNh2LU94SJtAWJtAbwBiwmzs7y7rdvbLgsf8xL77PNxPsj+EIW+YUi05cWGPnxJHa2tAlrv72pbjeP6vbByN1oJPNuF/ZcmFLehyeYx5uYJ3zgGr6mubv+7vzrB8gOdQDQ8MlXsWKZjX/2xW6KqRiOA966NKF9owT7xu95e3aKeLeXtsNBQnELX8CQT5dYnLYZO5dlYcJedzn+sKHreIh4pw9v0FBIl5gZLnD9rSx23tnELdi+/DEvvc+1Et8XvbU/X5xj5JWJDe3P3qBF94eaaTxYhz/qpZCxSV1ZYPjlm+Tni5u4BfdOwWedup9uItoWpJizyc8X8QaseyonmPBx7HN78Ee9TF+aJz2VI9YRovOJBhL9Ec58Y5hiZv079G6gut08qtv7t/D2XjIXezH+PIHOKUyggL0QIn+jifz1ZmJPXCC452bN382NNpId6sB4izjFjR9uM5c7WXjzofJn945jPA65a83Mv36I4myE6KMD97t521bP4yE6jgUpZEskhwsUsg7BOg+JHh8Ne3wMvJJmaiC/ZjmBmIfDvxTDH/IwM5wnkyoRbbZoPxIk3uXj/F/PU8y5K/wEE36OfX5veX++OFfenztDdL6/icS+GGe+Priu/dkbsjj2+b2EmwKkBheYPDdLuClA62MJEvtjvP21AXKpwnuwRRuj4LNOQ9+/SW6+QHamQH1vmKO/1ntP5fR/og1/1MvA98YZeyO5PL3vYy10vr+R3ueaGfju7j+Tu53qdvOobu9PKeMnc6kHE8zR8Atv4AneOojnb8aZ/dFjLJ7rqxl8Slkf86cOEOi+SSnrpzCZ2NBn24tBFk73Y/wFEs//PVYkC0D48FWSLx4nc6mHQNfkmj1OO5EvZGg/EiCfLnHmf8xRzN4KJnXtXh7+ZIyu9wXXFXz6PhDGH/Iw9PM0N9/JLU/vfSJE+5Eg3cdDDP0svSnbsV31f7K9vD+/cIOx12eWp/c930bnk030friVgb9Zu1e49yOthJsCjP58iqHv39r/20820P+JDvZ9qoPz3xzelG24Hxrjs06zw2myM/eXXIMJH4n+KNlkvurLA2DklSnsfImWo/V4fOa+PmenUd1uHtXt/bHTQXAMvoa5qtAD4G9NlXtycr6avzt/6gAA0ePv3tNnZwfboWQR2n99OfQAePxFwofKXyaZgY57Knu7C0Q9GI9hYbJYFXoA5saKFPMOvuDaX1+BmId4l4/svF0VegCuvZnBLjg07fPjcVEXQDDhJ7EvVt6fbws9ACM/msDO27Qci6+5P3t8HlqOxbHzNiM/mqiaN/b6DNlUnsS+GIF47f1jKyn4vIfqeyMAJAcXV8yz8yXmrqWx/B5inaH3etV2PNXt5nFz3VrRNHhKFGfqKN0RcPIT9ThFL77W5Irfyw61kR9tJnbiXTyBexvnkJ+IA+Bvm1kxz99enla4ubFepJ0iM1uiZDtEm714A9VfwLE2L16/YfbG2oG+rr2caGZHV/4NSgWYv1nE8hmize5JPvV7Kvvzwop5dr7E3MjS/twVvms5sa4Qls/D3EgaO79yTFByoFx+vC/6ANb6wbpr8DHGNBpjTi/9N26MGb3t3/71fIAx5kt3mfc9Y8zbxpjzxpg/Ncbc2wCEHSLUWK6y7Ezt7tnM0vTKcrJ+qtvN4+a69QSKRI4NUMr6mXnhJPNvHGDhzF7mfnaY2Vcewdc6Q+zEparfmultilingual_clipDLLy1n0DvOIHOqXv+bHu+/MVjxVZehrFCefAWKWWCOMXdd/5q5x1G3sjgCxke+Ud19D0VpvtEkP3PRTj0C1FSowUG/27ty1Oh+vJXSna29niV7Jy9tNzuq8PVhJqW9ufpXM35t/bnwF3LCTcFqpa/U6X87XhcuGvMdRxnGngUwBjzO8CC4zh/sMHP+BLw+6vM+8eO48wZYwzw34BfAf7rBsvfMbxLXbPFVUbM27nS0nK7Ov9tCtXt5nF73YYPlC81zb9xkOzgrUtLVjRNsG+s6hKY48D8a4cwXpvo+y7f1+c6hfLh2fhqf2l7fDalopdSwYvlXXusy04zfj5HbqFE/zNhWg/e+hLOzNpMvptbcQmsFstf7i0qrnLnVuWOLsvvnuBTucFh9f253N68a1xKtJbLqd0+i0vHBWsbHhc23L9njDkO/CEQBaaAzwFp4HXg047jXDLGfAv4IdAPhIwxp4HzjuP86u1lOY5TGZXnBfyAu4bWi8i2l77Qw+LZPkL7Rwntv44nmKc4F2bxbD/zrx6mmIoRfaR8d1XmUjeFyQR1z7yNx789b+XdKdqPBug5EWL8nRzj7+QopEsE4xY9J0Lsfy5KpDHLyBsbezSACGx8jI8Bvgx8xnGc48DXgd9zHGcW+CLwDWPMPwUSjuN81XGcfw1kHMd59M7Qs1ygMX8LTADzlHt9dq1Kwl4tSVuBypn17rwteDOpbjePm+s2PxFn8Uw//o5poo9dwYpmMd4SvoYF6p86iyeUJXOpG3shSHE+xOLZPoJ9YwQ6Vo7L2SjjKwcnp1D7jLm0NN3j230Bq67NS+/JMMmRAsOvZcjNlyjZkJ62efelBXKLJdqPBAjE7v4VVunR8fprD9St9AjVGqOyWxXX6NGx1ugRqrjVM1S7fXqXjgv2NjwubLTHJwAcAV4sX53CAsYAHMd50RjzK8CfAI+st0DHcX7BGBMEvgl8GHjxzmWMMV8AvgAQ5O4DrrazzHS5OzrYUPuaZ2hpemU5WT/V7eZxc93mbzQC4G9ZOYDZeEt4G+bJjwYpJmNgHChZZIfayQ611yxv5rvvB6DuqbMEuu4+/seKpSnm/NjzYTyB6lvW7Ywfil48oXIQ223iPeWB5LNjNQYl27A4WSSwx0+k0SI3v/r2Z5bG9gTra385B+uspeV2Xx2uJjO1tD+vMobn1v5cewxQRXoqV7X8nSrlb8fjwkaDj6F8yerJFTOM8QCHKF/2SgDX11uo4zhZY8x3gF+mRvBxHOcrwFcA6kzDjr0cNjtcvismsTeyYp7l91DXHcbOl5gfVfftRqluN4+b69axy2etpVztg/vynV6eElY4R7Cv9rNP8mONlLIBAt0TGG+x6vb01fhbUhSn4uTHG1Y8qyc/1gBQ846y3cCz1BnhC9buqfEuTS+t0ZkwtxSc6jtXftV5fBBr9WIXHBYmd1+v2Wpmr1b255V3W1l+D3U9S/vz9bsPHp+/nsEulKjrCWP5PSt6zSrlp4ZW3j221TZ6qSsHNBtjngQwxviMMYeX5v0mcAH4LPBnxpjKvZ+F235eZoyJGmPal372Ap8CLt7DNmw7xlMeyR5MVG92NlkgObBAMOGn/fHq21B7PtSE5fcwcXaWUmHHZrtNp7rdPKrblXzNKQAyg+3Y6erwkxtroDhVD5aNr2kWb2KB2MlLNf+r3JkVOTpI7OQlvIlbXwalnI/iXHjF7fLBvjHw2GQud2EvBm8tn/eSvlB+EGWof+OvHtkJ5m6Wg0jLgQC+cHX4iXd5ibV6KRUdFibKyxkDwXrPiktfufkSqesFgjGL1oerezi63xfC8hmmruQpuSf3kE3mSV6ZL+/PJxuq5vU824Llt5g4k6ran0ON/hV3Z5UKJSbOpLD8Fj3PtlTNaz/ZQDDhJ3llflc8ubkEfAb4Y2NM/dLv/wdjTBH4deCk4zjzxpgfA78N/FvKPTVnjDFv3jHOJwL8T2NMgHIAexn40/vbnM3TcCBK44EYAP5IudpinSH2f7rcpV1I21x9qfwQJ3/Mx/Hf6CebynPqy9WPlB94YZxjn9tD/8fbiPdFlh/9H++LkJ7OMfzy5Hu4VduD6nbzqG7vT6B7kuzgDIWbDSRfeAJ/1ySeYB57LrJ0GcwQOTZ4z8/qgfJrKdLn+wgfHiJy5OrydCuaJfrIAAtvPfT/t3evwXGd933Hf//dxS4W98WFwbhQ0gAAHQpJREFUJHgBSAAiRVGiaJOiTY9s05Yl13Zi17HctHGbtKrivtG0Y3daNRmPLbvJTDKd1GmciytFvjSjpnHci2NbjsTKkm2plmVdSIiUSIoACfAGUgQBAiCAXezi6YtdgABxvxzucp/vZwbDxbk85zl/HHB/e86Dc9T39G7Fmi5OPrJifKRU8W3dRXnXZkm6fHJM/WfHVLOhRHd+qlp9XSmNjTiVVmcfWWFm6np5ePJRE9HykHbdX63kYEavfWd6TU7+v2Ht+NVKbdlXpur1EY30Z1TREFH1+hKN9Gd0+pXiO1O5kI4nz2vnA3G1fmS9arZUTD6yYuJ114+n34l890NbJUnPf/nwtOldz1xQdXO5NuyrV/naUg2eG1FZfUx1t1YpNZRWx5Pnb9g+LcWig49z7pEp375vlkW2T1n281NePyzp4VnauyDprsVuP98q1pZq7Z0106bFa6OT1zdH+1OTbyDzGe0b08HHT6r5/Q1KtFYo0Vah1GBaZ39x2YuHPc6G2gaH2q6MmVT9vnaNvLVBye41Sp1pkMuEZNG0oo29im89o+i64C43xbeeVah8VCPHmpQ8tU7OmSJVV1V+x8mif0jpsaeGtPa2mOpaoko0RxWOSOmkU//pMfW8kZz1poSzSQ6O6/D3BrTxnXHVbCxRzcYSjY2M6/zhUW8fUjral9LBxzrUvH+NEm0VStyS+31+8dKSHlKaHsmo/fFONe1vUO22KlU1lyk9nNGF1/oK+iGl5tzN9UOvslr3rvB9+e4GgALyycPFHQLy6fv37cp3F4pa+szZfHehKP3CPaMBd3nWQWL+3LUJAAB4j+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDci+e7Asoxn8t0DAAXkf9/WkO8uFK0vdn4/310oal9peWe+u+AdzvgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDci+e7AzSRaGVHzB9aqpq1CJfGwUkNp9R4dUPdPLiozOr7odiKlYW16f4Pqbq1StCKisZGM+k8MqevZC0oNpgPcg8JFbYNDbYNFfZfPOencW7fo/FttutpfIyepvPqK1t9yQuu3HpfZtWXHUiU6d3yrhi4nNHi5ViMDVXIupF33HlDt+vPL2v6l0xvUfWSHBi/XSs5UXtOvDduOqbGtc3V2sID5fNwSfBapNBHVzgdaFK2IqPfogIYvJVW5Ia4N765Xoq1S7d/oVHoks2A7kXhYOx9oUVl9TP2dQ3r78BWV1ce09h0JJW6p1KHHO5TsH7sBe1Q4qG1wqG2wqO/KvPGzu3XhZItKSke0ZssphSNpXT7XqGMvvltXLjbotve+MLns6FCFOl7ZLUmKlV1VSSyp1Gh82ds+8+Y2HX/pXSqJjWpdS6dCoXFd7GrWmy/craG+hG6565UV71+h8v24JfgsUutHGxWtiKjjR+d0/qXLk9O33LdOG/bVq/mDa9Xxw3MLttN8z1qV1cd09ueXdPLpnsnpjXtr1fqR9Wr72HodeaIrkH0oVNQ2ONQ2WNR3+d7u2qQLJ1tUWjGoPR97UtHSpCRpPBPS68+9Xz2drapvOq01zd2SpNLyq9p139OqrL2sklhKbzz/HvV0tC1r2yND5Trx8h5FYknt+ZUfKl5xVZK0+c52vfzDj+r0Gzu0prlL1Wsurc7OFhjfj1vG+CxCaSKqRFulRvtS0w4SSep+7qIyqYzW7KxRqMTmaCErVBLSmp01yqQy6n7u4rR551+6rNH+lBJtlYrVlKz6PhQqahscahss6rsyb3c3SZKadrwxGXokKRQeV8s7DkqSzhzdNjm9JJZSbWOPSmKpFW/7/FttGh8Pa+OtRydDz8Q2mu84LEk6e3zbXKvf1DhuCT6LUr25XJLU1zk0Y14mNa6B7mGFoyFVbiybt53KjXGFS0Ia6B5WJjXzGmpfR7b9mi0Vq9DrmwO1DQ61DRb1XZnkSPYyVbxicMa8eEV2n69cWKvxzOq/TfX1NEqS6tafnTGvbkN2Wt/5dau+3ULAcbtA8DGzOjM7mPvqMbOzU76PLmYDZva7i1jm78zs8GI7faPF67O7OtqbnHX+yOXsJ5B4XWzedsrqY9OWv95E+/G6RZW2KFDb4FDbYFHflZk4yzMyVDlj3shQ9s3SudDk69U0fKVKklRWNTN0xcpGFI6MKTlcrkw6vOrbzjeO2wWCj3Ou1zm3yzm3S9LXJX114nvn3GLPN84bfMzs1yTNjJ4FJBLLHvzpOUa6Z5LZQWCR0vk/mYQn25l90Fg6mW0/XFp8v2xzobbBobbBor4rU7fxjCTp9BvbNZa89uY4Pm46eXDX5Pfp5Oq/cabHspdfwtHZ38bCJdkBuelU4b1prxTH7TIGN5vZbkn/WVKFpEuS/rmkYUkvSfq4c+6Ymf21pB9LapUUN7ODko445z5zXVsVkj4v6bOSvrOC/QAA3ETWbj6lno4WXT63Qb/4P59QfdNphcIZ9Z1rVHIkrlj5kJJXK6T5h5oAS7bUi6cm6WuS7nfO7Zb0DUm/75y7IukhSd8ys38sKeGce8w59x8kjeTOEH1mlvb+o6Q/UjY4Faz0Agk4vECCnnAtSc+egCOxbPuZORJ0MaK2waG2waK+K2Mhp533/Fit73xFJaWj6jnRqp4TrYpXDWj3R3+kSO6sS7R0dNW3PdF2Zo4zOpncGaHIHGeEbmYct0s/4xOTdLukA5a9s1RY0nlJcs4dMLNPS/ozSXcu1JCZ7ZLU6pz7nJltXmDZzyp7Vkilmn/AVRBGLmUP/tI5rnnGa7O/PCNzXDOdMHwpOW356020P9JbfL9sc6G2waG2waK+KxcKOTXfcUTNdxyZNj2TCWl4oEolsVHFK1d/JERZ9YCuXCzV8EClqkun/3ySw3Fl0iWKlV1VOFJ4b9orxXG7vDM+R6aM87nDOXefJJlZSNJ2Zc/eJBbR1j5Je8zslKTnJW01s+dmW9A596hzbo9zbk+J5h9wFYQrp7J/7phomTnILhwNqaqpTJnUuAbPzH/iavDMiDJj46pqKlM4OrP0E+33nyzoIU+ritoGh9oGi/oG5+LJLXLjYa3dcjKQ9hPrsnd67j23Yca83rPZaYnGnhnzigHH7dKDT1JSg5ntkyQzKzGzHbl5n5P0pqTfkPRNM5v44/2xKa8nOef+wjm33jm3WdLdko475/YvYx8CN9qXUt+JQZUmomrcWzttXtP+NQpHw7rY3q/xMTc5PV4XnTGafXxsXBfb+xWOhtW0f820eY17a1WaiKrvxGBB3ukyKNQ2ONQ2WNR35dKpmfd4Gbyc0ImXdysSTU7eU2e5UqMxXb1SpdTo9A/MjW0dCoUyOnP0Vo0MlU9OH0tG1fX67ZKkDVuPrWjbhYrjdumXusYl3S/pT8ysOrf+H5tZWtKDkvY65wbN7KeSviDpS5IeldRuZq/OMc7nptDx5HntfCCu1o+sV82WislbfE+87vrxhWnL735oqyTp+S9P/8XteuaCqpvLtWFfvcrXlmrw3IjK6mOqu7VKqaG0Op5c3jNnbmbUNjjUNljUd2UOHviQQuGMymv6FSkZ09Ur1eo9s1GhSFo7P/isYmUj05Z/65e7NZbMhpgrF7Nvtt1Hdqinc4skqaHptBqaTk8uf+borTp16E5tvvOQWnYdmpwerxxS655X9NZLe/XyDz6mNZtPTT6yIjlcrk23HSnauzZLHLeLDj7OuUemfPu+WRbZPmXZz095/bCkhxdo+5SyY4cK1mhfSgcf61Dz/jVKtFUocUuFUoNpnX3x0pIe6pYeyaj98U417W9Q7bYqVTWXKT2c0YXX+gr6oW5BorbBobbBor4r09DcrYsnN+tCZ4symbBiZcNav/W4mu84rNLymZda3u5q1ujV6ZdoLp9bP/m6tOLqtOAzn03bjypeMaTuI7epp6N18gGpLe94regfUur7cWvOuYWXKiBVVuveZffkuxsA4IUvdr6a7y4Uta+0vDPfXShKv3DPaMBdnvVmCDyyAgAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3IvnuAACgcH2l5Z357kJRe+rcwXx3oSjt/fDwnPM44wMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAb0Ty3YGbSbQyouYPrFVNW4VK4mGlhtLqPTqg7p9cVGZ0fNHtRErD2vT+BtXdWqVoRURjIxn1nxhS17MXlBpMB7gHhYvaBofaBov6BofaLuyNziZ1n1ujnt5aXeitUWosqtvbTuqT97ww5zqne+r1/Kt36MzFeqXTYdVWD2rXtg7ddfsxhUJu1nWOd23Qi4duU09vQuPjpobaK9pz23Hdua1zyX1ezvZXkzkX/EZWU5XVunfZPTd8u6WJqHY+0KJoRUS9Rwc0fCmpyg1x1Wyp0PClpNq/0an0SGbBdiLxsHY+0KKy+pj6O4c0eG5EZfUx1d1apdRQWoce71Cyf+wG7FHhoLbBobbBor7B8aW2T507uKL1H/3uR3Wht1bRkjFVlg+rt7963uBz7NRG/e3T71MknNGO1i7FYykd796g3v5qbW/p0v33/mzGOr88vFV//8JexUtHtaOlS+HwuN7sbNLA1XK9e+cbunffq4vu73K2vxx7P3xaLx8atdnmccZnkVo/2qhoRUQdPzqn8y9dnpy+5b512rCvXs0fXKuOH55bsJ3me9aqrD6msz+/pJNP90xOb9xbq9aPrFfbx9bryBNdgexDoaK2waG2waK+waG2i3PfvldUWTGs2qpBdZ1fq7/6/r1zLptMlegHP3m3Qub0mx8/oPUN2bruv+ug/uoH9+rNzmYdPtGt29uu1aN/sFwHXtyteCypB3/tR6qpvCpJeu/u1/X4//qIXmy/Tdu3dGvjuksL9nU52w8CY3wWoTQRVaKtUqN9qWm/gJLU/dxFZVIZrdlZo1DJrOFyUqgkpDU7a5RJZdT93MVp886/dFmj/Skl2ioVqylZ9X0oVNQ2ONQ2WNQ3ONR28TZvuKC66kHZ/KWQJL3Z2aTh0VLtaDs1GTokKRIZ1/67smeeXnlj67R1Dh5tVSYT1p4dxyZDjyTFYynd/Y7D2XXevGVRfV3O9oMwb/AxszozO5j76jGzs1O+jy5mA2b2u/PMe87Mjk1pc81Sd+BGqN5cLknq6xyaMS+TGtdA97DC0ZAqN5bN207lxrjCJSENdA8rk5p5fbqvI9t+zZaKVej1zYHaBofaBov6BofaBuPk2XWSpNZN52fMa268qJJIWmcuNCiduRYNTp3LrtO2aebZtdbctFO5doPYfhDmbd051+uc2+Wc2yXp65K+OvG9cy61yG3MGXxyPjOlzYsLLJsX8fpsxhvtTc46f+RythTxuti87ZTVx6Ytf72J9uN1i8qURYHaBofaBov6BofaBqP3SpUkqa56YMa8UMippnJI4+Mh9Q1cC4K9/dl1amtmrlNZPqKSyJgGrpZrbCwcyPaDsORYZWa7zewnZvaKmT1lZo1mVp07c7Mtt8xfm9lvm9kfSIrnzuY8seq9v0EisewPND3HXxFkktkBdpHS+csZnmxn9gF56WS2/XDpwgdQsaC2waG2waK+waG2wUimspf0YtHZg+DE9GTyWhAcza1TGp19APjE9NHUwuFxOdsPwlIHN5ukr0n6hHPubTP7dUm/75x7wMwekvQtM/svkhLOucckycweyp0xmss3zSwj6X9K+j13s/2ZGQAAuGksNfjEJN0u6YBlR1KFJZ2XJOfcATP7tKQ/k3TnItv7jHPurJlVKht8/pmk/3b9Qmb2WUmflaRSzX9NNwjpBT5dhBf4dDLh2qeU2T9dRGLZ9jNzfDopRtQ2ONQ2WNQ3ONQ2GLHc2ZnkHGdnJqbHYtfOyJRGxzQ8GtZoqkRlpTPP1Fw7I7Tw6JflbD8IS73UZZKOTBmTc4dz7j5JMrOQpO2ShiUlFtOYc+5s7t9BSf9d0t45lnvUObfHObenRPNf0w3CyKXsD6F0juvJ8drsD2tkjuvRE4YvJactf72J9kd6g/2hFxJqGxxqGyzqGxxqG4yJsTUTY22mGh839Q9WKBQaV6Lq2qDyutzYnsv9M9cZvBrXWLpEVeVXVVKycHhczvaDsNTgk5TUYGb7JMnMSsxsR27e5yS9Kek3lL18NfH3gWNTXk8ys4iZ1U+0I+lXJB1exj4E7sqp7J/wJVpmDrgKR0OqaipTJjWuwTPD87YzeGZEmbFxVTWVKRydWfqJ9vtPBvtDLyTUNjjUNljUNzjUNhhbNmTvY9RxunHGvK7zazSWjmjj2rcVCV87k7Z5fXadE6fXz1inIzdt84aeGfNWa/tBWGrwGZd0v6Q/NLNDkg5Kek9uUPODkv6tc+5nkn4q6Qu5dR6V1D7L4OaYpKfMrD3XzllJjy1vN4I12pdS34lBlSaiatxbO21e0/41CkfDutjer/Gxa8OT4nXRGX8pMD42rovt/QpHw2raP/0v9xv31qo0EVXfiUGv7tBKbYNDbYNFfYNDbYOxvaVbZaWjOnJis869fa2u6XRIz/0yOxR3923Hp61z57YOhcMZvXxkm/oHyyenjySjev6127PrbH9r2jqjyRJd6qvS4NX4ircfBB5ZsUhLvX363V/KHhDPf3n6SayFbp/e/o1Ojfb5cdp1ArUNDrUNFvUNji+1XekjK46e3KhjpzZJkq4Ox9VxZr0SVYPatC57d5iy0uS0R0ocPblR3z2Qe2REW5fisaSOd22cfGTEpz70sxk3Q3zp8DY99cJdi35kxaFjLfq7596jnVs79IkP/HxGf5e6/eXgkRWrYLQvpYOPdah5/xol2iqUuKVCqcG0zr54aUkPzEuPZNT+eKea9jeodluVqprLlB7O6MJrfUXxwLzloLbBobbBor7BobaLc6G3Vu3HW6dN6xuoVN9ApSSpumJoWjC5dcsZ/dbHD+j5V2/X0c5NSmfCSlQP6t59L2vv7cdmDR17bz+mmooh/bz9NrW/1SLnTPWJK9p/16ElP6R0OdtfbZzxAQAgT1Z6xgezm++MD8/qAgAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANc87luw9LYmZvS+rKdz8WqV7SpXx3oohR3+BQ2+BQ2+BQ22DdTPVtds41zDbjpgs+NxMze9k5tyff/ShW1Dc41DY41DY41DZYxVJfLnUBAABvEHwAAIA3CD7BejTfHShy1Dc41DY41DY41DZYRVFfxvgAAABvcMYHAAB4g+BzHTMbyncfJMnMtpjZL8zshJn9jZlF892nlSqg2j6Uq6szs/p892e1FFB9nzCzY2Z22My+YWYl+e7TShVQbR83s0Nm1m5m3zWzinz3aaUKpbYTzOxPCq1Py1Uo+2Fm3zKzk2Z2MPe1K5/9IfgUrj+U9FXnXJukPkn/Ms/9KSYvSPqQbp77Qd1snpB0q6Q7JMUlPZjf7hSVzznn7nTO7ZTULemhfHeomJjZHkmJfPejSP0759yu3NfBfHaE4DMHM9tvZj8xs++ZWaeZ/YGZfcbMXjKz182sNbfcr+bOzLxmZv/XzNbmpjeY2QEzO2Jmf2lmXRNnF8zsn+baOWhm/9XMwtdt2yR9UNJ3c5O+Lekf3ri9D1Y+aytJzrnXnHOnbuhO30AFUN8nXY6klyRtvJH7H6QCqO1AbllTNlQWzSDNfNc2N+0/Sfr3N3K/b4R817bgOOf4mvIlaSj3735J/ZIaJcUknZX05dy8fyPpj3OvE7o2SPxBSX+Ue/2nkn4n9/ofKPsfVL2k7ZK+L6kkN+/PJf3mdX2ol3RiyvebJB3Od22KobbX9eeUpPp816WI61si6VVJ7813bYqptpK+KemCpGclleW7NsVS29w2Pje1Tzf7VwHV9luSjklql/RVSbF81iUizOeXzrnzkmRmHZKezk1/XdIHcq83SvobM2uUFJV0Mjf9bkmflCTn3N+bWV9u+j2Sdkv6ZfZDm+KSLga8H4WI2garEOr755J+6pz72arsUeHIa22dc/8i96n6a5J+XdkgVCzyUlszWy/p08oGhGKVz+P2dyT15Np8VNLDkr6yanu2RFzqml9yyuvxKd+PS5Oh8WuS/tQ5d4ekfyWpdIE2TdK33bVrnducc49ct0yvpBozm9jGRmUTejHJV219kdf6mtmXJDVI+vwy+1/I8n7sOucykv6HpE8to/+FLF+1fYekNkknzOyUpDIzO7H83ShIeTtunXPnXVZS2aC+dwX7sWIEn5Wr1rVQ8ltTpr8g6R9Jkpndp2sD5p6RdL+ZrcnNqzWz5qkNuuy5wWcl3T+l3e8F0vvCtuq1xTSB1NfMHpT0YUn/xDk3HlDfC92q19ay2iZeS/q4pKOB7UHhCuL/3B8659Y55zY75zZLGnbZPyzxTVD/JzTm/jVlx6seDqT3i0TwWblHJP2tmb2i6U+t/bKk+8zssLKnUHskDTrn3pD0BUlPm1m7pAPKXne93sOSPp/71FEn6fHgdqFgPaIAamtm/9rMzih7Jq3dzP4y2N0oWI8omGP365LWSvp5bsDjFwPch0L1iFa/tibp22b2urKXJxqVx8sFefSIgjluEVxtn5hy3NZL+r3gdmFh3Lk5IGYWk5RxzqXNbJ+kv3DO5fXeBcWC2gaL+gaH2gaH2gan2GrL4ObgNEn6jpmFJKUk/Xae+1NMqG2wqG9wqG1wqG1wiqq2nPEBAADeYIwPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3/j9Vbz9S9JrubQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Language: Swedish\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAIrCAYAAADvKZOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXAe52Hn+e/z9nsfwPvivkEAPEWRkkxKsmTJkuxYE9kZJzvlZLJOTdalzaRqsv5jk/kjU9lUJanZTO1sTSWTuLJJ2WXHtVmPZybH2tn4lA9JlhNLoiyKh8QLPEACIHHf79nvs380XpAgAAIgCeHo36dKJaC7+bzdD57u99dPP91trLWIiIiI+EFgs1dARERE5P2i4CMiIiK+oeAjIiIivqHgIyIiIr6h4CMiIiK+oeAjIiIivhHc7BVYr3SNY5vatt1qbwsDp5KbvQo7mx4dsWFMQOdwG8WWy5u9CiLrlmOWgs2b5eZtuwTR1BbkC3/fttmrsSP9+wNPbPYq7Gi2WNrsVdixAtHIZq/CjlWem9vsVRBZt9ft91ecp9MkERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxDQUfERER8Q0FHxEREfENBR8RERHxjeBmr8BWYi0MnN/D4PndzE6ksUCiepKWPRdo2XsOY24uWyyEGDi3l5mxDNNjNWSnqrA2wMMfe4malsG7+vyRq630nT7I9FgNWEMiPUHrvrM07754fzZwCwpGA9TuTZLZnSBeHyacDGJdy9xwgRsnpxg6MbWu8sKpIB1P15DpShCMBSjMuoydm6HvtTHcfHmDtmLrqj2QorojTqIpSqIxQjDiMHRyknNfG1h3WeFUkM5n60n3JAjFHAozJUbPztD36jBuzn91C9D54RoSTRFimRDBWIByyZKfKjF2YZbrP52itI56CScd2p+qIdMVIxh1KMyWGDs/x9V/HPdl24X5NvdcI+ndyZtt7swUfa8MravNBaMO7c/UU7u/inAySDHrMnFhhis/vEFhurSBW7B1+bluFXxu8e6PnuLGpW5C0SwNXZdxgiXGBpo5+5MPMjlUzwNP/3hh2dxMkt63jgAQic8SiuQp5GJ3/dnX3tvHuTceJxTJ0dR9kUCgzNCVTt778VPMjGfY8+hb97x9W1Hd/hQ9P9tAYbrEZN8c+akSoYRD7d4kez7eSKY7ztmvXV9TWdF0iEP/qo1wIsjouRmyowWSLVFaHs2Q7k5w8q+uruuLaCdof6qOZFOUUt6lMF0iGHHuqpxoJsThz+winAwyenaauZE8qZYYrY/XkOlJcOLLVyhl3fu89ltf89FqZm/kmbiSpTjn4oQMqeYIHR+qofFwFSe/0k9hevV6iaSDHPp0i9d2z8+SHSuSaorQcrSadFeMU/9lwHdtN5oJc/jFbq/NnZny2lxrjNYP1pHZneLEly6uqc0FYw6HX+wmXhdh4uIMw6cmiddFaHwkQ2ZPine+2Et+ovg+bNHW4fe6VfCZN3ylnRuXuokmpzn6iW8SjuYBKLsBTr78DNcv9lDXcZWGzj4AoolZHn7+u6RqxghFCrz72pNc7919V5+dnUlw4dhRgpE8R3/uG8SSswDseugEx77xca6+e5CGzitUN4zcn43dQrLjBd79mwHGL8wumn7llVEe+tV26vanGNk3w+jZmVXL6n6+nnAiyMWXhhh8a3Jh+q6P1NH6WIbOZ+ro/c7Qfd+GrezSd2+Qny6SGytS3Rnn0K923lU5PS80EU4G6f32dQbfHF+Y3vWxBlo/WEvnc/X0fnNtAXUnef1PLmNdu2R6x1MZ2p7I0PZ4movfG121nO6fqfPa7vdGuP72zV7OXc/V0HI0TcfTNVx8aeft/3fS8/Fmr819a4DBN8YWpnc930TrE3V0fqSR3m+s3nPZ+dFG4nUR+v9phEvfvdlGmx+roeeFFnZ/ooXTX7myIduwVfm9bjXGZ95wXwcAHQffXQg9AAGnTPcjxwG4dmbfwvRQpEBN83VCkcI9f/bg+d2Uyw5t+88shJ7KZ3QeOgVA/7l9K/3zbW3ySnZJ6AEozrpcP+6Fl6qO1XvSoukQme4EuYniotADcPW1UdxCmfqDKQIhs0IJO9PklTlyY/d2xhXNhMj0JMmNFxaFHoC+V0ZwC2UaDlX7rm6BZUMPwMhZr01HM6FVy4ikg2S64uQmiotCD0Dfa+Ne230g6av6jWbCZHanvDZ3yxczQN/LQ7gFl4bD6VXrJBAK0HA4jVtw6Xt58UnP4Btj5CYKZHaniKRX/zvtFKpbBZ8F+az35RpLTi+ZF0t6vQ2TNxopu/e/ysavNwNQ29K/ZF5tqzdtfLDpvn/uVrfwpVJe/svlVtXz4Wji0tySeW7BMnUtixMOkGqJ3td19IPqzgQA4xeXBlS3UGbq6pxXt613f6l3p6npiQMwN7z6iVF1+3zbvZJdMq9ctEz157z6bY7c35Xcwqp3Vdrc0p5et1Bmqm++zbXF71hOqi2GEwow1TeHW1h6qXC81ys/3ZW8D2u9PahuVwk+xphaY8zx+f+uG2P6b/k9vJYPMMb8zh3mHTHGnDTGXDDG/KkxZtNOaSq9PNmZ1JJ52RnvD2dtYOHn+2lusgqAeNXS0BWJZ3GCRfJzCdzS3Y3P2JYM1D/o1cv4xaVh5naxWq85ZseX/6LJjXu9HrGaNTVbuUWlbnNjy9dtdn56ZTk/anm0mvYnM+x6rpYH/8dmOp6uYXYoz7XXJ1b9t7Ea74x4pZ65StuN1my9M+eNEqubb3Oj+WXn32xzdw6D8brIouVvVynfT21XdbtK8LHWjlprH7bWPgz8BfDHld+ttWu9xrNi8AH+HPjXwJ75/352jWXed7Vt1wC4+u4Bivmbf6hy2XDp+MMLv5fy9/+PWCp6BzQnvHyVOiHvwFcqbL0GtFF2PVtHoiHC2IXZZXtxbudEvKa80t0Ipfm7YirLydoFo16drTS4tnLHUTDqo2B+m5ZHq2n/UIaWo9VUtcUYvzjHu399nVJ29QHJlTZZWuHOrYX6vcuB6dtRZVtXbnPewNtK21yJs1DO8gN1F44LPmq7qtu7GNxsjDkC/BGQBEaAzwBzwBvAJ621Z40xXwV+APQAMWPMceC0tfZXbimnGaiy1v5k/vf/G/gF4Fv3tEV3qXHXZa73djM20MrrX/t56jquEnBcxgeayWdjRBIz5GeT4J/L7Jum+Ug1rY9nmBspcP4f/DdgVrafY/+Xd9NDKO6Qao3Q+eEaHvqfWnnvb68zO3Tv4wBF5P5Z7+mvAT4HfMpaewT4EvCH1tpJ4LPAl40xvwxkrLVfsNb+OyA730P0K7eV1Qpcu+X3a/PTNoUJWA5/9Af0fOAtQtEc1y/0cP1CD7GqKY58/FsE53tdwtHcff/sStnuCj067nyPUHCFHqGdpOkD1XR/rIG54TynvnptzbfwugtnF8s36WClR8inz0O5F5W/wUpngAs9Fiuc+flJcc5l7LzX2xOMOuz5eMOq/+Zmj84q9Zv3T/2WVul1cFbptai42XuxfK/DwnHBR21Xdbv+Hp8I8CDw0vxwHAcYBLDWvmSM+UXgz4CH7udKGmN+Hfh1gMaWjbsDPxCwdB46Teeh04umu26AuakqQpEcsdTqt1WvV7x6ismhKHNTKaqji6+75udiuKUQkfgsTnDrNaD7qflomu6fqWd2KM/p/9pPcW7t25sdnb8unVk+PFburlnperSsrFK30RXGR1XGTVWWE8hPlZgbLZBsjBCMBe54ySs7ducxPJW2e693520n2ZH5NrfCOJObbW75cSoVcyP5RcvfrlK+n9qu6vbuenxO3zLO55C19nkAY0wAOIB32SuzhrL6gbZbfm+bn7aEtfbz1tqj1tqj6dr3f4zG0KUubNmhsevShpSfafKe9Dw6sLTDa7Tfm5Zp3tmXfFofz9D9M/XM3Mhx6qvX1hV6ACb7vDti0l1L70Rwwoaqthhuocz0wP3vsdvpJq94d3NluhNL5jnhAFXtca9u+5feleRn4aR3JmxX6WScvDrfdjuX3hUXCBmqWqNe/Q7e+YtoJ5m8XGlzS28mccIBqjrm29y1O4//m76WxS2WqeqI44SXfndUyp+4dP9PaLcq1e36g08eqDfGPAFgjAkZYw7Oz/tN4D3g08BfGmMqpy/FW35eYK0dBKaMMR+cv5vrV4Gv381G3C+lwtIzrumxDBeOHSEYzi88U+duFXIRZierKOQWJ+3m3b0EAi7XzuwnO3Pzy6WYD3Pl5IMAtO49e0+fvZW1PVnDrufqmBnMcfqr/Xc8OzYB7y6Y6G3PhshNFBm/OEs0HaL5SPWiee1P1eKEAwyfnqZcXP3WeL8yAe8OjNufPZMbLzLeO0M0E6b50cXnNB3P1OGEAwydnPRd3UYzIZzw8oP+Op7KEE4EmerPLVzKqrTdSHpxr3V+osT4pTmi6RBNj1QtKccJBxh+d8ZX9ZsbLzB+Ydprc4/VLJrX8WwDTthh6MTEojqJ1YaX3EFULpYZOjGBE3boeHbxZcfmx2qIZsKMX5jekk8X3iiq2/Vf6ioDnwL+1BhTPf/v/7MxpgT8GvCYtXbaGPMq8LvA7wGfB04YY366zDif3wC+DMTwBjVvysDmiuMv/QwBxyWRniAYKjI7Wc3otTYCwRKHP/JDIvHFZ7Tn3zxCMe+FmMkh7w/fd/og1y92AVDfcZX6jqsLy187s5/L7zzErofeofvhdxamx1Iz9Bx9i/NvPMaxf/gEDbsuL7yyIj+XoP2B0zvyqc0A9Q+m6PxwLbbsPWun+Wh6yTL5ySJDJ71b/cOpIB/49V3kJou89eeXFy138bvDHPpXEbo/1kB1Z3zhlRXp+Z+vvLIz6/BOavYlqd3nPaIhnPB291RrjD2f9J4dVZxzufw97+Fj4VSII7/RQ26iwLHP9S4qp/db1zn8mV30/GwT6a7Ewisr0l0J5kbzXPnh8Pu4VVtDpjtGx9M1TPfnyE2WKGVdQokg1e1RoukQhZkSvd+5WS/hZJBH/ud2cpNFfvr5q4vKuvi9EQ59uoXun6mjujNGdrRAqjnq/TxWoO9HY7d//I7X+81BDr8Yo+eFFtJdyYXXKlR+vvKDG4uWP/LZvQC89geLT1CvfP8G1Z0JWp+oI9EYZXogS7wuQu3+Ku9v9M27e7fidub3ul1z8LHW/v4tv354mUUO3LLsb93y828Dv71CmcfwxgxtCfWdfQxd2sWNi924rkMkPkfL3nN0HjpFNLG022/4Sie52cXdhWMDLQs/R5Ozi4LPnbQfOEMsOUPf6Qe43tuz8ILU7kfe3tEvKa303JiAoeXR5a+QTvbNLQSfO8lNFHnny1fpeLqWTHecTE+CwkyJgTfHffuS0mRjlMaHFofJWE144bp8bqKwEHzuJDde5PgXL9H5TD2ZniSZ3UkK0yX6Xx/z7UtKJ69kGUpPU9UWJdEQIRgN4BYtubECV0/PMPjTyTUPzs9PlDjxV/10fKiGdFeMTHec4kyJgWOTvn1JaW68wPEv9NL5bAOZ3Ukye+bb3E9G1vUizVLW5cQXL9LxbD01+6qo6oxTmnO58fb4ln6R5kbye90aa7dX9+n+wxH7hb9vW31BWbd/f+CJzV6FHc0Wt+ZBYCcIRP3zVOP3W3lu9edoiWw1r9vvM2XHlr0Wrae5iYiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8o+IiIiIhvKPiIiIiIbyj4iIiIiG8EN3sF1mvwTDX/4ckXNns1dqSjrw9s9irsaMcej2/2Kuxc3R2bvQY716kzm70GIveVenxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDcUfERERMQ3FHxERETENxR8RERExDeCm70C20H93gg9z1XdcRlbtrz+hZE1lRdOBGg7GifdHiYYDVCcKzN2Oc+1Y3O4BXs/VnnLClxP4fTWY6YiUAhCtEg5ncXdPYytnVuyvBmN45xtJDAWBzeATeYpd47h9oyAWd9nm6kIzpkmAsMJKDnYeIFy2wTu3iFwdl69B6MBavcmyexOEK8PE04Gsa5lbrjAjZNTDJ2YWld54VSQjqdryHQlCMYCFGZdxs7N0PfaGG6+vEFbsflqWw1VdYZE2hCvhmDIMNxX5vybS7c5HIO2fQESGUMkDsEQlAqQm4Why2WG+yx2nU0tVQNtBwIkawwBB3IzXlmDF3Zem71dOBWk87lG0ruThGIOhZkSo2em6HtlCDe39jYXjDq0P1NP7f4qwskgxazLxIUZrvzwBoXp0gZuwdbl57pV8FmD2dES147NLjsv1RyiujXMxNXCmsqKVAU4+PMZwvEAY5fyZCdckg1Bmg/FSbeFOf31CUr5nXlAc041EzzfgA2XKDdPYsMuZjZMYLCKwEA1pSN9lDsmFpYPDFQRfGMXBMqU2yawIZfA9SqCJ1sxowlKj19Z82ebsTih17qhbCi3TmJjRQLDSYJnmggMpSg+1bvjwk/d/hQ9P9tAYbrEZN8c+akSoYRD7d4kez7eSKY7ztmvXV9TWdF0iEP/qo1wIsjouRmyowWSLVFaHs2Q7k5w8q+uUlrHwXI7adsfIJE2uEVLPuuFmZVEE4a6DsPMmGVswAs9wTBkmgy7jzrUd5Q5/VoZ1tjUMs2G/R8MUC7DyFVLqehN63rIIVVb5tzrO7POAaKZMIdf7CacDDJ6Zoq5kTyp1hitH6wjszvFiS9dpJR1Vy0nGHM4/GI38boIExdnGD41SbwuQuMjGTJ7UrzzxV7yE8X3YYu2Dr/XrYLPGsyNusyNLu2NADj4C2kAht7LramsrqdShOMBLr02zY3TN/9N5xMJmg/HaX8swaUfzdz7Sm81uSDO+XpspEjho+cgcvNMwAwnCL+2m+B7TRQqwacYIPh2GxhL8elebCYLgPvAdUKv9eAMpClfm6TcNrHcpy1mIfjTdozrUPzgJcrNXk+HayH4RifOQBrnQj3uvqH7vtmbKTte4N2/GWD8wuLQfuWVUR761Xbq9qcY2TfD6NnV21v38/WEE0EuvjTE4FuTC9N3faSO1scydD5TR+93dlb9VVw6UaaQteRmoKrO8OAzzorLTo9a3vj7pV8YxsADTwWobghQ22IZ7V89+ThB2P2BANbCqVdcZuebet9pOPhhh7q2AKP9ltFrOyuwV/R8vJlwMkjvtwYYfGNsYXrX8020PlFH50ca6f3GwKrldH60kXhdhP5/GuHSd28G/ebHauh5oYXdn2jh9FfWfhK1E/i9bjXG5x7EahxSjSHyMy7jfav3+ESqAqTbw+Sm3EWhB+DqsTncoqVuT5TADoyjZi6MwVDOzC0KPQC2fhYbdL1LX/MC/WlMIUS5dWIh9ADgWEoPeDuYc7F2bZ89kiQwHaVcO7MQerwZUHpw0Cvrcu2az8K3i8kr2SWhB6A463L9uBdeqjpiq5YTTYfIdCfITRQXhR6Aq6+N4hbK1B9MEQit89rjNjE17IWetVjpMpa1MDbozYwm11ZWbashFDWMXLMLoQfAlqHvtNfT09S9Mw/h0UyYzO4UufHCoi9mgL6Xh3ALLg2H06u2uUAoQMPhNG7Bpe/lxcF88I0xchMFMrtTRNJ36MbbYVS3qwQfY0ytMeb4/H/XjTH9t/weXssHGGN+5w7z/tAYc9UYsy27OBoPeF8aw2dza/rSrGrxqmzy2tKQVC5apq8XcUKGZOPWayj3yibz2ECZwHgc8ovPmM1IAlNyKNffbAaBEe/bodw4vbSs2hms42LGEuCu/mUbGF65LBIFyskcZi4Ms2tq0juCdecbbHn1hls9H44mLi3t9XQLlqlrWZxwgFRL9L6u406TbvLa6twah1ZVN3jLT1xf+jeaGrG4JUuqFswOzD7VuxIAjF9c+tXgFspM9c15ba4tfsdyUm0xnFCAqb453MLSy4LjvV756a41ptEdQHW7SvCx1o5aax+21j4M/AXwx5XfrbVrG9QCKwYf4P8DHltjOVuKcaBuTwRbtmu+zBVLe1/4ucnlr51WpseqV+5K37bCLu7BQcgHCX9vH8G323BONxF8o5PQj7spN0xTeuTawuJmOgJ4gWmJANh4AWMNZg1h5Y5lATbhNeXATGS9W7U9Gah/0BusP35x+Uu4t4rVenWcHV9+l8+Ne9fwYzX+CY6rCYah/UCA9gMBuh8O8Mg/c8g0BhjuKzM+uLauxVjSCz7ZmWWWt5CfhUDAEE3czzXfGmJ1XlvKjS6/z2bHvLYYq73zPhuviyxa/naV8itt3A9Ut3cxxscYcwT4IyAJjACfAeaAN4BPWmvPGmO+CvwA6AFixpjjwGlr7a/cWpa19ifzZd7LNmyK2p4IwUiA8St5CrNrG2DohL3tLK1w51YlNVeW22nc3SPYeIHgT9u9S0vzyok8bsfY4ktgRS/82dAKA+xC5UXL3YkprVaWu+aydoJdz9aRaIgwdmF22V6c2zkR7/xopTs9SvN3dFWWEwhFoP2Bm/VhraX/XJm+U2sfjOzMd/y6K4wNLRUXL7eTBCPevrjSgHk37+2zweid25yzUM7y+/5C2436Y98H1S2sP/gY4HPAz1trh40x/xL4Q2vti8aYzwJfNsb8CZCx1n4BwBjz2fkeox2lcpnrxhp7ewScc/U47zbjdo94t6NHipiZKMHTzYSOdVKajOHOj7mRjdF8pJrWxzPMjRQ4/w9ru6NL1i87Df/4t16QD8e88TrtDwSoqnV478fuQmgRkfffek/RIsCDwEvzvTi/C7QBWGtfAk4Cfwb82v1cSWPMrxtjjhljjhXK2dX/wQaLZRxSTd6g5ok1DGquqDyjJ7hCj44TDixabicxwwmCp1soN03iHh6ARAGCFpvOUnz8EjZawDlff3OczXwvjFmpF6YYWLTcndjgamU5ay5rO2v6QDXdH2tgbjjPqa9eW/Pt5+7Cmdvyh4tgpUdoBz/L514UsjB4wdL70zKpWkP7wbUddt1VenSCq/QIbWelVXodnFV6LSpu9l4sv+8vtN0Vei12ItXt+oOPwbtkVRnnc8ha+zyAMSYAHMC77JW5nytprf28tfaotfZoOLD6XSgbreGAN4hz+MzaBjVXZCe8BhBdYQxPZXp2hTFA21ngujempFy/zPOQgpZyZg6DITDh/X1tyrs+bJYbd1P27hKzxi6Mz7mTO5YFC+OEyiuMAdoJmo+m6Xm+gdmhPKe+2k9xdu1tLDs6f80/s/y1+mjG+wZe6Vq/eCqDlKvr1nYpuzK2pzLWZxEDkQSUy5bc8o8Y29ayI15biq4wzqQyniy7wjiVirmR/KLlb1cpv9LG/UB1u/7gkwfqjTFPABhjQsaYg/PzfhN4D/g08JfGmMp5SvGWn7c940D9nqg3qPnM+i5zTQ14DaC6bWlDCYQMqaYQbtEyc2PnncKZstfUTH750Gcqt7IHvIN9uc67IyBwI7V02dEkxnWwNbNreuhg5W6x5cpiNkxgJoqNF7xeqB2o9fEM3T9Tz8yNHKe+eo3i3PqC9WSf18ua7lp6l4cTNlS1xXALZaYHdNn3TsLz52xrfXLz5JC3YOVusFtV1RmcoGF61Lu9faeZvOyluUz30juCnHCAqo641+au3XmM2vS1LG6xTFVHfKFH/VaV8icubcsbi++K6nb9wacMfAr4j8aYd4DjwJPGmH14l7f+rbX2R8CreJfBAD4PnDDGfOX2wowx/6cx5hoQN8ZcM8b8/l1ux/umtjtCMBpg4mphxUHNJgDRtEOkanH15qfKTFwtEK1yaDy4+Nbf9qNxnJBh5HyO8tZ8yvc9Kdd6jd+5XAvZxUPLAtdTmNEENlCmXOPtlOXWCWy45D3PZ/yWXj7XEHy3yfuxe3Txh5SMdwfX3OKcbetmKKdyBEaTBAZvefWIheCpZq+sXaPrfgXGdtD2ZA27nqtjZjDH6a/2U8qu/C1pAhCrCRG97bkbuYki4xdniaZDNB+pXjSv/alanHCA4dPTlIs77xLteiXSy08POND1kHc8GL/t9nQnCLEUhG57GsBov6WYt9S1mUXlmgB0zF8uu35xB6YeIDdeYPzCNNFMmObHahbN63i2ASfsMHRiYlGbi9WGl9xBVC6WGToxgRN26Hi2YdG85sdqiGbCjF+Y3pJPF94oqlswdr0vjtlk1eEG+2TdL23a5z/wyTRVzSHOfHuSiSvL9xBEkgEe+ZVa8tMub/+XxQ+IWumVFdWtYbITJU5/bfNeWfHIt1d/UuddsxD6cTeB4RQ26HqvrIiWMNMRAterMBhKh/pxd99839mSV1aEXe/1FjNR3JYJSo9dWRRWKk+ALtfNUHy6d9HHr/TKisBEnHLN7Pvyyopjj9/5uRj3W/2DKfb+XBO2bBPIGVQAACAASURBVBl8a2LhLotb5SeLDJ30nm8UqQ5y9N90kZss8tafX1603EqvrEh3xsmOFjixya+sMHu6NqzsmhZDTbPX0EJRyDQFyM1Ypka89lIswJWT3rbveyJAVa1hetSSn4Oy6/X0ZJoMwbBhasTy7msu5Vs63eo7DXuOOgxdLnPhrfKSz973+C2vrChApsUQTxlGrr0/r6wonzqz4Z+xnJVeq5DuSjI3kl/yWoWnfu9BAF77g1OLyrn9tQrTA1nidRFq91dRmClx4ksXya3wqIadyg91+7r9PlN2bNnT2R34jOCNE007VDWvf1DzrfJTZU793ThtjyZIt4VId4QpzpUZPDm3s19SaqD45EWci3UErqUJDFaDG4BQiXLjNG7PMLZxcZdouWWK4tMXvJeUDlQvvKS0dKh/3S8ptTVzFJ89j/Oe924uSgFsrEhp//Ud+5LSSs+NCRhaHl1+2N1k39xC8LmT3ESRd758lY6na8l0x8n0JCjMlBh4c3zHv6Q0UW1o2LW49zaaNETnx97kZi1XTnrThy5ZyiVIZgxV9V5Pj1uAmQnL6LUyNy7bdY0LHBuwnHrVpW1/gNpWg5l/Semld9wd/5LS3HiB41/opfPZBjK7k2T2JClMl+j/yci6XqRZyrqc+OJFOp6tp2ZfFVWdcUpzLjfeHt/SL9LcSH6vW/X4yIIN7fGR973Hx082ssfH7zarx0fkXtypx0dPHBMRERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd8IbvYKrJctligNjWz2auxIb/ybD2z2Kuxo/+3Cn2/2KuxYv9ye3+xVEJFtQj0+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbwc1ege2i9kCK6o44iaYoicYIwYjD0MlJzn1tYN1lhVNBOp+tJ92TIBRzKMyUGD07Q9+rw7i58gas/eara7RUZyyJlCWRgmAQhgYMZ08tzd57D5ZpbLV3LG9iFE6+5az581PVlo7uMqk0BAKQm4Pr/YaBPgOY9W7OlmMtvHt2P++e3c/YeAYLZNITHNx3hoP738Pcsol/9w8/x8D1ljuWd2DvGT764VfX/PmX+jp4+8RhRkbrsNZQkxnnwQOnObD3/F1u0fYRTgXpfK6R9O7kzf35zBR9rwyta38ORh3an6mndn8V4WSQYtZl4sIMV354g8J0aQO3YOtS3W4cP9etgs8atT9VR7IpSinvUpguEYys/Uv3VtFMiMOf2UU4GWT07DRzI3lSLTFaH68h05PgxJevUMq693ntN197V5lkFZRKUMhBMLnysqNDhlxu+XkNzZZYHMZG1h5WauotDzxUplyG4euGUsmb1rPfUpW2nDlxd3/LreSll5/jXO8eYtE59vRcIBgscbW/jZd//DSDNxr52LMvLyx7YO85WpsHly3nxLsHyeejdLZfXfNnnzh9kFf/6UNEIzn27T5PwCnTe6mL77/6HKPjNTz1+Ov3unlbVjQT5vCL3d7+fGbK259bY7R+sI7M7hQnvnRxTftzMOZw+MVu4nURJi7OMHxqknhdhMZHMmT2pHjni73kJ4rvwxZtHarbjeP3ulXwWaNL371BfrpIbqxIdWecQ7/aeVfl9LzQRDgZpPfb1xl8c3xhetfHGmj9YC2dz9XT+83r92u1t4yLZwPk815PS3UGDj+68hnF6LBhdHhpsHGClrZdlnIZbgysLfg4jmXPwTIWOHEswMyU9+8uX7AcPlqmvglGh8oMX9++V317L+/iXO8eqlJT/OLP/7/EonkAXDfAt773Mc5e2Et352V6ui4DXvBZzvhENW++fYR4bI6uzstr+uyp6SQ/fuNxIpEcv/QLf0dVagaARx95i7/++v/A8ZMP0bPrEs2NQ/e8nVtRz8ebvf35WwMMvjG2ML3r+SZan6ij8yON9H5j9V7hzo82Eq+L0P9PI1z67s39v/mxGnpeaGH3J1o4/ZUrG7INW5XqduP4vW6379H+fTZ5ZY7c2L0l12gmRKYnSW68sCj0APS9MoJbKNNwqJpAaPtfernd5LghN3dvl5Uamy2OAyM3DKXi2sqpa7SEw15PTyX0ANiy4fIFr/k3t935stpWd/HyLgAePnRiIfQAOE6Zx48eA7yenNWcPnMAgP17z+IE1lYn753bh+sGOfzA6YXQAxCNFDjy0HEATp15YE1lbTfRTJjM7pS3P9/y5QHQ9/IQbsGl4XB61f05EArQcDiNW3Dpe3lxQBx8Y4zcRIHM7hSRdOi+b8NWpbrdOKrbVYKPMabWGHN8/r/rxpj+W34Pr+UDjDG/s8L0uDHmG8aYM8aY08aY/+NuNmA7qe5MADB+cXbJPLdQZurqHE44QKo19n6v2rbQNB9Qrl9be3hK13j/Hx9ZOm9yHFwXUmkwZvuGn7lsHIDq1PSSedWpKQAGrzfjuivv7q4b4MyFPYDl4L4za/7sawOtAHS0Lb001tneB0D/wJ3HE21X1bsq+/PMknluocxU3/z+3Ba/YzmpthhOKMBU3xxuYWlP6HivV3666w7Xh3cY1e3GUd2uEnystaPW2oettQ8DfwH8ceV3a21hjZ+xbPCZ95+stfuBR4APGWNeWGOZ21Ks1suKubHlqy47P72ynNyUqvYGRc/Ner1HaxVLeIEmO7vMv7GGXNYb7By98z6+pUWj3oCoqenUknmT01UAlG1g2fkVvZe7yOVitLf2U121NECtZHyyGoB09eSSeYl4llCwyMxskmJp+4+jul2sbn5/Hs0vO//m/hy5Yznxusii5W9XKd9PxwXV7cZR3d7FpS5jzBFjzCvGmLeMMd8xxjQbY6qNMWeNMfvml/mqMeZfz/fixOZ7iL5yaznW2jlr7Q/nfy4APwXa7sM2bVnBqFfdpRVGzLv58vxyO+9L4l7dTW8PgDM/iq20ws0Fpfmrl8FtPNpt13zPyvFTh8jlbh6s3LLhjbeOLPyey698IKtc5jq4/711fXah4B3UIuHlD37h+emV5XaSyg0OK+/P3uDQyn6/EmehnOUHk5bmjwuOj44LqtuNo7pd/+BmA3wO+Hlr7bAx5l8Cf2itfdEY81ngy8aYPwEy1tovABhjPjvfY7RyocakgX8O/Mn6N0F2OidoqW9a36BmP9nT3cvZC3vou9bOf/nbX6Sr8wqOU+Jafyuz2Tip5DTTM6kVL+dNTFbRP9iyrkHNIiLb1Xp7fCLAg8BLxpjjwO8y30tjrX0JOAn8GfBray3QGBMEvgr8qbX24grL/Lox5pgx5liR5bvntoNKwl4pSTuRSo/Qzrud/V403MWg5gp3vqdnpR6d4Py4u5V6hLaDQMDyiee/zROPvk40muPM+T2cOb+X6uopPvXPv04o5HVrxWPLPyPgbgY1V1R6dPIr9OhUenrCK/QIbWelVc6MnVXOrCtunmEvf2YcnD8uuD46LqhuN47q9u56fE5ba59YMsOYAHAAmAMywLU1lvl54Ly19j+vtIC19vPzy1FlarbtKNTsqHfwj9Ys/yURm59eWU48Ta13d5kLvLE9qWpLLGGZmb7t3xtLNAblsneb/XbmBCxHHnqHIw+9s2h6qeQwMVlNNJqlapnBz64b4Mz5vax3UHNFpnqSwVyMiclqYtHFd3bMzsUolkIkEzOEglvv4HevsiPz+/MKYyFu7s93PlmbG8kvWv52lfL9dFxQ3W4c1e36e3zyQL0x5gkAY0zIGFO5T/Y3gfeATwN/aYyp3MNWvOXnRYwx/ztQDfyv617zbWjyinc3V6Y7sWSeEw5Q1R7HLZSZ7s++36u2ZaWqLcmq9Q9qrpiYv1szU7d0XnUGHAemJ8DanXkJ7fzFHsplh73dvcvOv3h5F9m7GNRc0dbSD0DftfYl865c7QCgtWX9TzffDiYvV/bnpXetOOEAVR3z+/O1O6fq6WtZ3GKZqo44TnjpIblS/sSlpXfh7FSq242jul1/8CkDnwL+ozHmHeA48OT8oOZfA/6ttfZHwKt4l8HA66k5cfvgZmNMG/C/AQ8AP50fAL3mS2RbmQl4I9mjmcV5LzdeZLx3hmgmTPOjmUXzOp6pwwkHGDo5Sbm4bTu17ru19vY4QUssbgmFF9fdyA1DsQD1TZZk1c15JmDZtdvryh28i56kraZQWHpuMTxau/BwwQ/MP1PndqfPrm1QczYXYXyimmxu8Vnigb3ncJwSJ949yNT0zQNpLh/mrXe8oX0P7n93XduyXeTGC4xfmPb258dqFs3reLYBJ+wwdGJi0f4cqw0vuculXCwzdGICJ+zQ8WzDonnNj9UQzYQZvzC9JZ+Au1FUtxtHdbuOS13W2t+/5dcPL7PIgVuW/a1bfv5t4LeXKe8a2+glSTX7ktTu824HDie8aku1xtjzyWYAinMul7/ndfWHUyGO/EYPuYkCxz63+Ey791vXOfyZXfT8bBPprsTCKyvSXQnmRvNc+eHw+7hV75/aekttg7cjhSLe/1Npy96DXvgoFuHSucU53HHmBzW7qw9qrm2w7HvQcqPfcO70zWVd13D+dIADD5U5fLTM8HVDsegtH0/A8HXv4Ybb3de/9Qkcp0RtzTihUIHxiQxX+jpwgiV+7vnvkEwsPXubmKzi2sDaBjWfOP0gb759hEcfeYvHj7y1ML0qNc2Tj73Oj/7pQ/z3r/0L9nT3LryyYmY2ycOH3tmxT20G6P3mIIdfjNHzQgvpruTCo/8rP1/5wY1Fyx/57F4AXvuDU4umX/n+Dao7E7Q+UUeiMcr0QJZ4XYTa/VUUZkr0fnP5V4zsZKrbjeP3ut3GN/G+v5KNURofSi+aFqsJL1zfzE0UFoLPneTGixz/4iU6n6kn05MksztJYbpE/+tjO/olpYkqu+TFo7E4xOLetFwWLt32JoWGZosThKHB9Q9qvtXosOHEsQDtXWVqG+3CS0p7z+ycl5T2dF3kfG8PZy/splQKkkzMcnD/exx5+DjJxNIHZoL3UlMwdzWo+VYPHTxNVXKat08e5syFPd5LStPjPH7kzR3/ktLceIHjX+il89kGMruTZPbM788/GVnXyx5LWZcTX7xIx7P11OyroqozTmnO5cbb41v6ZY8bSXW7cfxet8ba7XVZpcrU2Med5zd7NXYk+/iDm70KO9p/++9/vtmrsGP9cvuTm70KIrKFvG6/z5QdW/asVu/qEhEREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd9Q8BERERHfUPARERER31DwEREREd8IbvYKyNZhXj+12auwo/1y+5ObvQo71gunJzZ7FXas7z67Z7NXYUdzh4c3exV8Rz0+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hsKPiIiIuIbCj4iIiLiGwo+IiIi4hvBzV6B7aL2QIrqjjiJpiiJxgjBiMPQyUnOfW1g3WWFU0E6n60n3ZMgFHMozJQYPTtD36vDuLnyBqz91qa63VjhVJDO5xpJ707erJMzU/S9MrSuOglGHdqfqad2fxXhZJBi1mXiwgxXfniDwnRpA7dg85UGMhTOt1CeimMLQUy0iJOZIby3H6duemG58lyYwnvtuONJ7FzEWzZcJJDMEeq6QbBzGBOw6/psdyRF/t123LEUuIGFskK7BzA+OHWtag3TfChGsilEMBKglCszN1pi8MQcE32FNZURTgRofyxJuiNMMBqgMFtm/FKOq8dmcfPr+3vsFH4+Lij4rFH7U3Ukm6KU8i6F6RLBiHNX5UQzIQ5/ZhfhZJDRs9PMjeRJtcRofbyGTE+CE1++Qinr3ue139pUtxsnmglz+MVur07OTHl10hqj9YN1ZHanOPGli2uqk2DM4fCL3cTrIkxcnGH41CTxugiNj2TI7Enxzhd7yU8U34ctev/l39lF4WwbJlwk2DqKiRQpz8QoDdRQulZL9PFzhDqHASjPxCj21ePUTOO0zGDCJWwhSOl6htybe3GuNBD78Kk1B5Zifw25fzwATplQ+zCES7gDNeSPd+OOVBF78swGbvnm63giSesjCfIzLuOX8hRzllDMkKgPUdUaXlPwiVQ5PPgvMoTjDmMXc2QnXJINIZofSpDuiHDq78Yo+Sz8+P24oOCzRpe+e4P8dJHcWJHqzjiHfrXzrsrpeaGJcDJI77evM/jm+ML0ro810PrBWjqfq6f3m9fv12pvC6rbjdPz8WavTr41wOAbYwvTu55vovWJOjo/0kjvN1bvWev8aCPxugj9/zTCpe/erMPmx2roeaGF3Z9o4fRXrmzINmymcjZE4VwrJlog/vzbBKI3D+KloWqyLx8if6pzIfg4tVMkf+EnGLO4HFs2ZF85iDuUptRfR6h9ZNXPtkWH/LHdYCzxZ0/i1Mx40x+8wtzLhyhdq6PYV0eoY/WytqOGAzFaH0kwdCbLxZensLd1Qqw1PHZ/OEU47nDpR1NcP5ldmN75ZJKWhxO0fzDJpVem71DCzuP344IPOkrvj8krc+TG7i25RjMhMj1JcuOFRV/MAH2vjOAWyjQcqiYQMiuUsDOpbjdGNBMmszvl1cktBzeAvpeHcAsuDYfTq9ZJIBSg4XAat+DS9/LQonmDb4yRmyiQ2Z0ikg7d923YbHYuAtbg1EwvCj0AwYZJCJaw+Zvnj8axS0IPgAlYgq3e36A8HV3TZ5eu1mHzYYLtwwuhp/IZkQe9L5Nib/N6N2lbMAHoeDxJftpdNvQAy067XaTKId0RITflLgo9AFffnMUtlqnfGyPgoy4AHRcUfN5X1Z0JAMYvzi6Z5xbKTF2dwwkHSLXG3u9V2/ZUt0tV76rUycySeW6hzFTffJ20xe9YTqothhMKMNU3h1tY+m0z3uuVn+5K3oe13loCyRwEyrhjKcr5xd+OpeEqKAUJNk6uWo4tQ2kwA4CTnlvTZ5eGqgEINo8vmefUT4Lj4o6ksO7OC/PV7WFC8QCjF3NYC+nOMC2PxGk6HCPZuPYv0urWMACTV/NL5pWLlunBIk7IkGwM37d13+p0XFjlUpcxphb4/vyvTYALDM///pi1dtULrMaY37HW/ocV5n0baJ5fjx8B/4u1dscOwojVejtXbmz5asuOFcj0eMtNXl7bwVE8qtulYnXzdTK69KAP83UCxGojTF5aGhgr4nWRheWXUym/8jfYSUykROTwZfLHu5j79gcIto5hwkXKM1FKA7U4jeNEjlxY8u/K+SDF8y0A2HyI0o00diZGsGOIYMvYkuWXU572QnogmV0yzwQgkMhRnkpQno3iVC1dZjtLNnjhxrrw0C/VEK9dHHam+guc/c4Epdydx+bE0t54wezE8l8ruUl3Ybmp/ntd6+1Bx4VVgo+1dhR4GMAY8/vAjLX2P63zM34HWDb4AL9krZ0yxhjgb4BfBP7rOsvfNoJRr4OttMKIeTdfnl/u7gb3+pnqdqnKIPGV68Q76FfqbiXOQjnLf3mU5uvW2aF1G947gEnkyL25h+LFpoXpJpkltGtoySUw8MJO4d2OW6cQ2neNyKG1j3ewRe/wbEIrnAtWphd23nWaUMxrky0Px5kbL3Hq78aYHSkRrXLofDJJuiPC3n+W5t2vL+0Nu5UT9nrD3MLyAak031PhRHZer9lKdFy4i8HNxpgjwB8BSWAE+AwwB7wBfNJae9YY81XgB0APEDPGHAdOW2t/5dayrLVTt6xHGPDX0HoR2fLyZ1opnNxFaM8A4d0DmGiR8nSM/Ild5F7fhzuRIPrQ5UX/xqnKkvql17BlsNkIpf5a8qc7cEeqiD/1LiayNW/z3Soq46RsGc5+c4L8tPclOjdW4uy3J3j403VUt4ZJNoaYubH17hqSrW29Y3wM8DngU9baI8CXgD+01k4CnwW+bIz5ZSBjrf2CtfbfAVlr7cO3h56FAo35DjAETOP1+uxYlYS9UpJ2IpVeix17tW/DqG6XKq1y5uascuZXcfMMcPkzt+B83bo7sG5LQ9UUTnQRbBkl+vAlAsk8JljGycwS+9B7mFie4rlWyjORZf+9d0kqT3jvANEjFyiPVpE/3bHsskv+bcgLR7a4whlzZXp454Woyu3lsyPFhdBTUS6xcBt7svHO5+6Vnp5Kz8/tguH5tuuj29l1XFh/8IkADwIvzffi/C7QBmCtfQk4CfwZ8GtrLdBa+8/wxvlEgI8st4wx5teNMceMMceKLH9dcjvIjno7a7Rm+WuesfnpleVk7VS3S2VH5uukdvkv5Zt1cud9am4kv2j521XK34l1WxqYH5DcsHQAswmWcWqmwRrcidUHcAabvMsy7vyg5dUEUt64nfLM0gH5tgzl2SiYMoFEbk3lbSfZCS/MrfR8ncql64Bz50tUlbE9lbE+t4tW33kM0E6k48Ld9ficnu/Bedhae8ha+zyAMSYAHMC77JVZT6HW2hzwdeDnV5j/eWvtUWvt0RDL/7G2g8kr3kCxTHdiyTwnHKCqPY5bKDPdv7MGKr4fVLdLTV6u1MnSL2UnHKCqY75Ort15sPf0tSxusUxVRxwnvPSQUSl/4tLSu0S2vbK3vTa//J1ElelreRpzOTv/BbHGJzcH58NW5W6wW7nD1eA6OHXTGGfn9VZMXitgrSVes3yPTmx+en76zoFlst/70q1uX/q9EQgZUs0h3KJl5sbW+3LeKDourD/45IF6Y8wTAMaYkDHm4Py83wTeAz4N/KUxpnKkKN7y8wJjTNIY0zz/cxD4BLAjHkNqAt5I9mhm8WbnxouM984QzYRpfnTxwazjmTqccIChk5OUizvvQHa/qG7XLjdeYPzCtFcnj9UsmtfxbANO2GHoxMSiOonVhpfchVEulhk6MYETduh4tmHRvObHaohmwoxfmN6ST2i9V069NwyxeLGJ8tzieikNZnBHqsBxcWq95dzxxPLPnCkGyB/vBpbenm4LDu5UjHJ2cZsOto9gIkVKV+txx25+SVnXkD/lPeQz1DN4bxu4RRVmyoxfzhNJOTQfXnxbdXV7mHRHmFKuvHDJywQgmnaIVC3u2clPuUz05YlWOTQdWtxz1v5oAicUYPhclvLOu1q4Ih0X1j+4uQx8CvhTY0z1/L//z8aYEt7lrcestdPGmFfxLoP9HvB54IQx5qe3jfNJAH9vjIngBbAfAn9xb5uzcWr2JandlwIgnPCqLdUaY88nvQeIFedcLn/Pe4hTOBXiyG/0kJsocOxzvYvK6f3WdQ5/Zhc9P9tEuiux8FqFdFeCudE8V344jN+objdO7zcHOfxijJ4XWkh3JRceTV/5+coPbixa/shn9wLw2h+cWjT9yvdvUN2ZoPWJOhKNUaYHssTrItTur6IwU6L3mzvzCzjYNoLTOI57I8Pstz9AsHWUQLSIOx3DHagBDJFDVxYGKxdOd+COVuHUTmHieYxTppwNUxqsgWKQQO0U4f1XF31Gqb+W3Jt7Ce66Qeyx8wvTTcglcvQ8uX88wNzLhxa9sqI8HSfYNkJwDU+A3q4uvTpNoi7ErqdSpDvDzI2UiFQ51HRFsGXofXlqYQxPOBHgkU/XkZtyefv/WVwnF1+d5sF/EaTr6SqqW8MLr6yobguTHS9x9Sdbr0dio/n9uLDm4GOt/f1bfv3wMoscuGXZ37rl598GfnuZ8m4Aj6718zdbsjFK40PpRdNiNeGF65u5icLCl/Od5MaLHP/iJTqfqSfTkySzO0lhukT/62O+fZGm6nbj5MYLHP9CL53PNpDZnSSzZ75OfjKyrpcRlrIuJ754kY5n66nZV0VVZ5zSnMuNt8e39MsI75UxEHv6XYoXmin21VHqrwXXwYSLOM3jhPcMEGyaWFg+1H0dgi7uWAo7XA2lACZcwsnMEGwfJtR1Y10vFg21jmGeO0Hh3XaK1+qgbAgkc0Qeukhoz8CyT4neKQqzZU789ShtR5PUaYQMlAAAG+5JREFUdEWoagnjFizjl/P0/3SWmaG1tbn8lMvJvxmj/VHvJaXpzgjFuTKD78z69iWlfj8uGGu31x+9ytTYx53/v707jY7rvO87/vvPDGYAEDtAUuACkAS4iRQpWRQl2rJNSZZc2YncxFLSRm2Sqor6Rm6P3NO6yfGp5TY5Jzk9qdMoiytFstwcZbPqxk5sS2JtUbJUrRZBmBQXASABcRdAgACIZTAzT1/MAASIfbmcAZ7v5xwcDu7y3Of+eUn88Nxn5t6T7W4As5fyZwLltXbv4a7pN8KcvLR3Y7a7sKQlP/JvJPpaeMv9WN3u4oS/GvDICgAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeiGS7A3OSSma7BwByyI+2lWW7C0vWE61/n+0uLGlfqv1EtrvgHUZ8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbkWx3YDGJFkdUe8dKldUXKa8grHhvQh1Hu9X2ygUlB1IzbieSH9baTy9X5ZYSRYsiGupPqqupV60vn1e8JxHgGeQuahscahss6js/zkktx7eo5dgWdXdVyEkqKe3Shs1HVLf5iMym3veVFz+v82fWSJIe+M0nFQq5WR3/xAeb1HRkm7q7ymWWUlllh7ZsP6hVNW3zOKvc5/N1a87N7iLJthKrcLfaXdf8uPnlUe14aIOiRRF1HO1WX/ugilcXqGx9kfraB9X4TIsS/clp24kUhLXjoQ0qrIqpq6VXPWf6VVgVU+WWEsV7Ezr4dLMGu4auwRnlDmobHGobLB/q+0Tr64G2/8b+O9XWslGx/D6trmlVOJLQ+TNr1N1Vrtq647rt0y9Puu/x97ep4a2PKxRKKZmMzDr4NLx9m44d2qmCZb1au65FqWRYbSfqFB/M18due00brz+8EKc4pS/VfiLwY1zNh+v2LfdjdbuLE8ZmRnxmqO5z1YoWRdT8ozM6+/bFkeXr77lOq/dUqfbOlWr+wZlp26m9a6UKq2I6/Ua7Trx0bmR59e4K1d27SvWfX6XDz7UGcg65itoGh9oGi/rOz6mT69TWslHLirp1933/R7H8AUlSMhnS//vJPWpt3qQ1tSe1Zt2Jcft2XypV4zu3avP2g2o7Ua++3uJZHbv9/EodO7RTRcWXdPd931U0FpckbbmhQS99/4tqeOc2rVrbqmXFvfM/0Rzj+3XLHJ8ZyC+Pqry+WAOd8TEXiSS17b+gZDypFTvKFMqbYkxWUigvpBU7ypSMJ9W2/8KYdWffvqiBrrjK64sVK8tb8HPIVdQ2ONQ2WNR3/k61rpckbd7eOBJ6JCkcTmn7x96RJH1wZNu4/VIp01uv3KllxT3a/rF353TspqPXS5K27jwwEnokaVlxr+q3HlYqGdGJD7bMqe1cxnVL8JmR0nXLJEmdLeOTfzKeUndbn8LRkIrXFE7ZTvGaAoXzQupu61MyPv4eamdzuv2y9UUL0OvFgdoGh9oGi/rO30B/gSSpqLh73LrhZR+du07J5NgfVe83fEydHZW69VMvKxye+XyU0S6cXSVJql7z4bh1w8vOZ7ZZSrhupwk+ZlZpZg2Zr3NmdnrU99GZHMDMfmcG23zfzA7NtNPXWkFV+lQHOgYnXN9/Mf3bQkFlbMp2CqtiY7a/2nD7BZUzKu2SQG2DQ22DRX3nb3iUp3eC21S9PSWSJOfCupx5LUkdHy3X+wdv0tYdDaqoap/TcRNDEfX3FSkSiaugsG/c+uKSS5Kknkulc2o/l3HdThN8nHMdzrkbnXM3SvqmpG8Mf++cm/hsx5sy+JjZL0vK6ZuokVhYkpSYZKZ7cjA9CSySP/UAWniknYknjSUG0+2H88Nz6udiRG2DQ22DRX3nr3pt+p1Txw/t0ODglR+0qVRIhw7sGvk+Hk+vSyTCeuvVO1Ra3qltN7035+MODaV/GOdFJ/4xNrx8KD71D//FiOt2DpObzexmSf9dUpGkdkm/KalP0tuS7nPOHTOzv5b0E0l1kgrMrEHSYefcg1e1VSTpy5IekfR38zgPAMAiU7O+Wa1Nm3Tu9Fq98N1f0aqakwqHkzp/ZrUG+gpVuKxHfZeLZUq/U+vgO7fpck+JPvOL31UoNLdbXMBs5/iYpCck3e+cu1nSM5J+zzl3SdKjkp41s38mqdw595Rz7j9J6s+MED04QXv/VdIfKh2cclZimgQcniZBD7uSpCdOwJFYuv3kJAl6KaK2waG2waK+8xcKOX3y7he0Y9ebiuX362TTJp1s2qTikku66xe+p0he+q3QsYJ+XThbraYj23T9zvdUXnlxmpanlpc3PKIz8W2Y4eV50YlvBy1mXLezH/GJSdouaZ+lP1UqLOmsJDnn9pnZA5L+VNLO6Roysxsl1TnnHjOzddNs+4jSo0LK19QTroLQ357+R5I/yT3Pgor0P5L+Se6ZDutrHxyz/dWG2+/vmOldxMWP2gaH2gaL+i6MUCilrTsOauuOg2OWJxNh9XaXKpbfr6LiHp1uWyfJdOjALTp04JYJ2/rOs49Iku75wvMqr+yY9JiRvIQKCnvV31ek/r7CcfN8errTc3uKSy/N/cRyFNft7IOPKX3Las+4FWYhSVuVHr0pl3Rqmrb2SNplZicz/VhhZvudc3uv3tA596SkJ6X0BxjOss/zdunkZUlS+Ybxs9PD0ZBKagqVjKfUc2rqgaueU/1KDqVUUlOocDQ0bib8cPtdJ3J6ytOCorbBobbBor7BajtRp1QqrJoNTZKk0rKLWr/pyITbfthSp0QiqvUbj0rmFIsNTLjdaCuqz6i1eZPOnlqrDZuOjVl39tRaSdLK6uk/y2ax4bqd/a2uQUnLzWyPJJlZnpkNf8jCY5KOSPo1Sd8ys+E37w+Nej3COffnzrlVzrl1km6XdHyi0JMLBjrj6mzqUX55VNW7K8asq9m7QuFoWBcau5QaupLJCiqj42azp4ZSutDYpXA0rJq9K8asq95dofzyqDqberz6BFxqGxxqGyzquzCG4uM/56Wzo1IH37lN0eiAtu5okCRdt/q0dt/+6oRf0fz06MOuT6S/Lyy6PNJWf1+hurvKFL/qtlb9lvclSUcO3qT44JV1l3uK1HRkm0LhRDpILTFct7Mf8UlJul/SH5tZaWb/PzKzhKSHJe12zvWY2auSvirpa0qP1DSa2XuTzPNZFJp/eFY7HipQ3b2rRj7We/RHfLf+5PyY7W9+dJMk6bWvj32XfuuPz6u0dplW76nSspX54z7iu/mHZ6/ZOeUKahscahss6jt/+1/4vMKRpErLLyovb0jdXWU682GNwpGkPvmZFyZ8u/lsNL67WyebNmv3J1/W+o3HR5ZXrTyvTdsO6vjhnXrh7x8Y9ciKDSOPrFiKn9oscd3OOPg45x4f9e2nJthk66htvzzq9VckfWWatk8qPXcoZw10xtXwVLNq965QeX2RyjcWKd6T0Ok322f1ULdEf1KNT7eoZu9yVWwuUUltoRJ9SZ0/0JnTD3ULErUNDrUNFvWdv7XrT6itpU6tzRuVTERUUHhZdZuPauvOAypcdnn6BubhplvfVFnFRX1wZJuaj22Vyam8ql1btu9f0g8p9f265SGlAIBJBf2QUt9l4yGlPpjqIaU8sgIAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANyLZ7gAAIHd9qfYT2e7CkvbimYZsd2FJ2v3ZvknXMeIDAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG9Est2BxSRaHFHtHStVVl+kvIKw4r0JdRztVtsrF5QcSM24nUh+WGs/vVyVW0oULYpoqD+prqZetb58XvGeRIBnkLuobXCobbCob3Co7fTeb6lR25kVOtdRofMdZYoPRbW9/oR+6a7XJ93nw3NVeu29G3TqQpUSibAqSnt04+Zm3bL9mEIhN+E+x1tX682D1+tcR7lSKdPyikvadf1x7dzcMus+z+X4C8mcC/4gC6nEKtytdtc1P25+eVQ7HtqgaFFEHUe71dc+qOLVBSpbX6S+9kE1PtOiRH9y2nYiBWHteGiDCqti6mrpVc+ZfhVWxVS5pUTx3oQOPt2swa6ha3BGuYPaBofaBov6BseX2r54pmFe+z/5/Od0vqNC0bwhFS/rU0dX6ZTB59jJNfrOS59SJJzUtrpWFcTiOt62Wh1dpdq6oVX33/3Tcfu8c2iTXnh9twryB7RtQ6vC4ZSOtNSo+/Iy3bbjfd29570Z93cux5+L3Z/9UO8eHLCJ1jHiM0N1n6tWtCii5h+d0dm3L44sX3/PdVq9p0q1d65U8w/OTNtO7V0rVVgV0+k32nXipXMjy6t3V6ju3lWq//wqHX6uNZBzyFXUNjjUNljUNzjUdmbu2fMzFRf1qaKkR61nV+ov/+HuSbcdjOfpH1+5TSFz+vX79mnV8nRd997SoL/8x7t1pKVWh5ratL3+Sj26epZp35s3qyA2qId/+UcqK74sSfrkzT/X09+9V282Xq+t69u05rr2afs6l+MHgTk+M5BfHlV5fbEGOuNj/gFKUtv+C0rGk1qxo0yhvAnD5YhQXkgrdpQpGU+qbf+FMevOvn1RA11xldcXK1aWt+DnkKuobXCobbCob3Co7cytW31elaU9sqlLIUk60lKjvoF8bas/ORI6JCkSSWnvLemRp5+9v2nMPg1H65RMhrVr27GR0CNJBbG4br/pUHqfIxtn1Ne5HD8IUwYfM6s0s4bM1zkzOz3q++hMDmBmvzPFuv1mdmxUmytmewLXQum6ZZKkzpbeceuS8ZS62/oUjoZUvKZwynaK1xQonBdSd1ufkvHx96c7m9Ptl60vWoBeLw7UNjjUNljUNzjUNhgnTl8nSapbe3bcutrqC8qLJHTq/HIlkleiwckz6X3q144fXavLLDuZaTeI4wdhytadcx3OuRudczdK+qakbwx/75yLz/AYkwafjAdHtXlhmm2zoqAqnfEGOgYnXN9/MV2KgsrYlO0UVsXGbH+14fYLKmeUKZcEahscahss6hscahuMjkslkqTK0u5x60Ihp7LiXqVSIXV2XwmCHV3pfSrKxu9TvKxfeZEhdV9epqGhcCDHD8KsY5WZ3Wxmr5jZz8zsRTOrNrPSzMjN5sw2f21mv2Vmvy+pIDOa89yC9/4aicTSf6GJSd5FkBxMT7CL5E9dzvBIOxNPyEsMptsP509/AS0V1DY41DZY1Dc41DYYg/H0Lb1YdOIgOLx8cPBKEBzI7JMfnXgC+PDygfj04XEuxw/CbCc3m6QnJH3BOfeRmf2qpN9zzj1kZo9KetbM/oekcufcU5JkZo9mRowm8y0zS0r635J+1y22t5kBAIBFY7bBJyZpu6R9lp5JFZZ0VpKcc/vM7AFJfypp5wzbe9A5d9rMipUOPv9S0v+6eiMze0TSI5KUr6nv6QYhMc1vF+FpfjsZduW3lIl/u4jE0u0nJ/ntZCmitsGhtsGivsGhtsGIZUZnBicZnRleHotdGZHJjw6pbyCsgXieCvPHj9RcGRGafvbLXI4fhNne6jJJh0fNybnBOXePJJlZSNJWSX2SymfSmHPudObPHkl/JWn3JNs96Zzb5Zzblaep7+kGob89/ZeQP8n95IKK9F9W/yT3o4f1tQ+O2f5qw+33dwT7l55LqG1wqG2wqG9wqG0whufWDM+1GS2VMnX1FCkUSqm85Mqk8srM3J6LXeP36blcoKFEnkqWXVZe3vThcS7HD8Jsg8+gpOVmtkeSzCzPzLZl1j0m6YikX1P69tXw+wOHRr0eYWYRM6sabkfSL0g6NIdzCNylk+m38JVvGD/hKhwNqaSmUMl4Sj2n+qZsp+dUv5JDKZXUFCocHV/64fa7TgT7l55LqG1wqG2wqG9wqG0w1q9Of45R84fV49a1nl2hoUREa1Z+pEj4ykjaulXpfZo+XDVun+bMsnWrz41bt1DHD8Jsg09K0v2S/sDMDkpqkPTxzKTmhyX9e+fcTyW9KumrmX2elNQ4weTmmKQXzawx085pSU/N7TSCNdAZV2dTj/LLo6reXTFmXc3eFQpHw7rQ2KXU0JXpSQWV0XHvFEgNpXShsUvhaFg1e8e+c796d4Xyy6PqbOrx6hNaqW1wqG2wqG9wqG0wtm5oU2H+gA43rdOZj67UNZEIaf876am4N19/fMw+Ozc3KxxO6t3Dm9XVs2xkef9gVK8d2J7eZ+sHY/YZGMxTe2eJei4XzPv4QeCRFTM0249Pv/1r6Qvita+PHcSa7uPTG59p0UCnH8Ouw6htcKhtsKhvcHyp7XwfWXH0xBodO7lWknS5r0DNp1apvKRHa69LfzpMYf7gmEdKHD2xRs/vyzwyor5VBbFBHW9dM/LIiC9+5qfjPgzx7UOb9eLrt8z4kRUHj23Q9/d/XDs2NesLd7wxrr+zPf5c8MiKBTDQGVfDU82q3btC5fVFKt9YpHhPQqffbJ/VA/MS/Uk1Pt2imr3LVbG5RCW1hUr0JXX+QOeSeGDeXFDb4FDbYFHf4FDbmTnfUaHG43VjlnV2F6uzu1iSVFrUOyaYbFl/Sr9x3z699t52HW1Zq0QyrPLSHt29513t3n5swtCxe/sxlRX16o3G69X4wQY5Z6oqv6S9txyc9UNK53L8hcaIDwAAWTLfER9MbKoRH57VBQAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAbBB8AAOANgg8AAPAGwQcAAHiD4AMAALxB8AEAAN4g+AAAAG8QfAAAgDcIPgAAwBsEHwAA4A2CDwAA8AbBBwAAeIPgAwAAvEHwAQAA3iD4AAAAbxB8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC8QfABAADeIPgAAABvEHwAAIA3CD4AAMAb5pzLdh9mxcw+ktSa7X7MUJWk9mx3YgmjvsGhtsGhtsGhtsFaTPWtdc4tn2jFogs+i4mZveuc25XtfixV1Dc41DY41DY41DZYS6W+3OoCAADeIPgAAABvEHyC9WS2O7DEUd/gUNvgUNvgUNtgLYn6MscHAAB4gxEfAADgDYLPVcysN9t9kCQzW29mb5lZk5n9rZlFs92n+cqh2j6aqaszs6ps92eh5FB9nzOzY2Z2yMyeMbO8bPdpvnKotk+b2UEzazSz582sKNt9mq9cqe0wM/vjXOvTXOXKeZjZs2Z2wswaMl83ZrM/BJ/c9QeSvuGcq5fUKelfZ7k/S8nrkj6jxfN5UIvNc5K2SLpBUoGkh7PbnSXlMefcTufcDkltkh7NdoeWEjPbJak82/1Yov6Dc+7GzFdDNjtC8JmEme01s1fM7Htm1mJmv29mD5rZ22b2czOry2z3i5mRmQNm9n/NbGVm+XIz22dmh83sL8ysdXh0wcz+RaadBjP7n2YWvurYJulOSc9nFn1b0j+9dmcfrGzWVpKccweccyev6UlfQzlQ3x+6DElvS1pzLc8/SDlQ2+7MtqZ0qFwykzSzXdvMsv8m6T9ey/O+FrJd25zjnONr1Jek3syfeyV1SaqWFJN0WtLXM+v+naQ/yrwu15VJ4g9L+sPM6z+R9NuZ1/9E6f+gqiRtlfQPkvIy6/5M0q9f1YcqSU2jvl8r6VC2a7MUantVf05Kqsp2XZZwffMkvSfpk9muzVKqraRvSTov6WVJhdmuzVKpbeYYj43u02L/yqHaPivpmKRGSd+QFMtmXSLCVN5xzp2VJDNrlvRSZvnPJd2Reb1G0t+aWbWkqKQTmeW3S/olSXLOvWBmnZnld0m6WdI76V/aVCDpQsDnkYuobbByob5/JulV59xPF+SMckdWa+uc+1eZ36qfkPSrSgehpSIrtTWzVZIeUDogLFXZvG5/W9K5TJtPSvqKpP+yYGc2S9zqmtrgqNepUd+npJHQ+ISkP3HO3SDp30jKn6ZNk/Rtd+Ve52bn3ONXbdMhqczMho+xRumEvpRkq7a+yGp9zexrkpZL+vIc+5/Lsn7tOueSkv5G0hfn0P9clq3a3iSpXlKTmZ2UVGhmTXM/jZyUtevWOXfWpQ0qHdR3z+M85o3gM3+luhJKfmPU8tcl/Yokmdk9ujJh7seS7jezFZl1FWZWO7pBlx4bfFnS/aPa/V4gvc9tC15bjBFIfc3sYUmflfTPnXOpgPqe6xa8tpZWP/xa0n2SjgZ2BrkriP9zf+Ccu845t845t05Sn0u/scQ3Qf2fUJ3505Ser3ookN7PEMFn/h6X9B0z+5nGPrX265LuMbNDSg+hnpPU45x7X9JXJb1kZo2S9il93/VqX5H05cxvHZWSng7uFHLW4wqgtmb2b83slNIjaY1m9hfBnkbOelzBXLvflLRS0huZCY//OcBzyFWPa+Fra5K+bWY/V/r2RLWyeLsgix5XMNctgqvtc6Ou2ypJvxvcKUyPT24OiJnFJCWdcwkz2yPpz51zWf3sgqWC2gaL+gaH2gaH2gZnqdWWyc3BqZH0d2YWkhSX9FtZ7s9SQm2DRX2DQ22DQ22Ds6Rqy4gPAADwBnN8AACANwg+AADAGwQfAADgDYIPAADwBsEHAAB4g+ADAAC88f8BqJ5vtRHWw8kAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": [],
+ "needs_background": "light"
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "w3yGhGEvFh7v"
+ },
+ "source": [
+ "## Conclusion\n",
+ "Although the diagonal is not completely maxed out, all languages managed to correctly classify all images. Interestingly, all languages had an easier time classifying the purple apple which was photoshopped than the red apple."
+ ]
+ }
+ ]
+}
diff --git a/Multilingual_CLIP/README.md b/Multilingual_CLIP/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b906dd3fe17d029f55f0bae2c73035d9415f8089
--- /dev/null
+++ b/Multilingual_CLIP/README.md
@@ -0,0 +1,236 @@
+
+
+
Multilingual-CLIP
+ OpenAI CLIP text encoders for any language
+
+
+ Live Demo
+ ·
+ Pre-trained Models
+ ·
+ Report Bug
+
+
+
+[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/FreddeFrallan/Multilingual-CLIP/blob/master/Multilingual_CLIP.ipynb)
+[![pypi](https://img.shields.io/pypi/v/multilingual-clip.svg)](https://pypi.python.org/pypi/multilingual-clip)
+
+
+
+## Overview
+![Alt text](Images/Multilingual-CLIP.png?raw=true "Title")
+
+[OpenAI](https://openai.com/) recently released the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) in which they present the CLIP (Contrastive Language–Image Pre-training) model. This model is trained to connect text and images, by matching their corresponding vector representations using a contrastive learning objective.
+CLIP consists of two separate models, a visual encoder and a text encoder. These were trained on a wooping 400 Million images and corresponding captions.
+OpenAI has since released a set of their smaller CLIP models, which can be found on the [official CLIP Github](https://github.com/openai/CLIP).
+
+## Demo
+A live demonstration of multilingual Text-Image retrieval using M-CLIP can be found [here!](https://rom1504.github.io/clip-retrieval/?back=https%3A%2F%2Fknn5.laion.ai&index=laion_400m&useMclip=true) This demo was created by [Rom1504](https://github.com/rom1504), and it allows you to search the LAION-400M dataset in various languages using M-CLIP.
+
+#### This repository contains
+* Pre-trained CLIP-Text encoders for multiple languages
+* Pytorch & Tensorflow inference code
+* Tensorflow training code
+
+### Requirements
+While it is possible that other versions works equally fine, we have worked with the following:
+
+* Python = 3.6.9
+* Transformers = 4.8.1
+
+## Install
+
+`pip install multilingual-clip torch`
+
+You can also choose to `pip install tensorflow` instead of torch.
+
+
+## Inference Usage
+
+Inference code for Tensorflow is also available in [inference_example.py](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/inference_example.py)
+
+```python
+from multilingual_clip import pt_multilingual_clip
+import transformers
+
+texts = [
+ 'Three blind horses listening to Mozart.',
+ 'Älgen är skogens konung!',
+ 'Wie leben Eisbären in der Antarktis?',
+ 'Вы знали, что все белые медведи левши?'
+]
+model_name = 'M-CLIP/XLM-Roberta-Large-Vit-L-14'
+
+# Load Model & Tokenizer
+model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
+tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
+
+embeddings = model.forward(texts, tokenizer)
+print(embeddings.shape)
+```
+
+## Install for development
+
+Setup a virtualenv:
+
+```
+python3 -m venv .env
+source .env/bin/activate
+pip install -e .
+```
+
+## Pre-trained Models
+Every text encoder is a [Huggingface](https://huggingface.co/) available transformer, with an additional linear layer on top. For more information of a specific model, click the Model Name to see its model card.
+
+
+
+| Name |Model Base|Vision Model | Vision Dimensions | Pre-trained Languages | #Parameters|
+| ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |
+| [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| [LaBSE](https://huggingface.co/sentence-transformers/LaBSE)| [OpenAI ViT-L/14](https://github.com/openai/CLIP) | 768 | [109 Languages](https://arxiv.org/pdf/2007.01852.pdf) | 110 M|
+| [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [OpenAI ViT-B/32](https://github.com/openai/CLIP) | 512 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction) | 344 M|
+| [XLM-R Large Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [OpenAI ViT-L/14](https://github.com/openai/CLIP) | 768 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction)| 344 M|
+| [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| [XLM-Roberta-Large](https://huggingface.co/xlm-roberta-large)| [Open CLIP ViT-B-16-plus-240](https://github.com/mlfoundations/open_clip) | 640 | [100 Languages](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#Introduction)| 344 M|
+
+### Validation & Training Curves
+Following is a table of the Txt2Img @10-Recal for the humanly tanslated [MS-COCO testset](https://arxiv.org/abs/2109.07622).
+
+| Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
+| ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
+| [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
+| [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
+| [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
+| [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
+| [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
+| [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
+| [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| 95.0 | 93.0 | 93.6 | 93.1 | 94.0 | 93.1 | 94.4 | 89.0 | 90.0 | 93.0 | 84.2 |
+
+The training curves for these models are available at this [Weights and Biases Report](https://wandb.ai/freddefrallan/M-CLIP/reports/M-CLIP-2-6-2022--VmlldzoyMTE1MjU1/edit?firstReport&runsetFilter), the results for other non-succesfull and ongoing experiments can be found in the [Weights and Biases Project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
+
+## Legacy Usage and Models
+Older versions of M-CLIP had the linear weights stored separately from Huggingface. Whilst the new models have them directly incorporated in the Huggingface repository. More information about these older models can be found in this section.
+
+
+ Click for more information
+
+##### Download CLIP Model
+```bash
+$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
+$ pip install ftfy regex tqdm
+$ pip install git+https://github.com/openai/CLIP.git
+```
+Replace `cudatoolkit=11.0` above with the appropriate CUDA version on your machine or `cpuonly` when installing on a machine without a GPU.
+For more information please see the official [CLIP repostitory](https://github.com/openai/CLIP).
+##### Download Linear Weights
+```bash
+# Linear Model Weights
+$ bash legacy_get-weights.sh
+```
+
+### Inference
+```python
+from multilingual_clip import multilingual_clip
+
+print(multilingual_clip.AVAILABLE_MODELS.keys())
+
+model = multilingual_clip.load_model('M-BERT-Distil-40')
+
+embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
+print(embeddings.shape)
+# Yields: torch.Size([3, 640])
+```
+
+
+
+For a more elaborate example, comparing the textual embeddings to the CLIP image embeddings see this [colab notebook](https://colab.research.google.com/github/FreddeFrallan/Multilingual-CLIP/blob/master/Multilingual_CLIP.ipynb).
+
+
+## Legacy Pre-trained Models
+Every text encoder is a [Huggingface](https://huggingface.co/) available transformer, with an additional linear layer on top. Neither of the models have been extensively tested, but for more information and qualitative test results for a specific model, click the Model Name to see its model card.
+
+
+*** Make sure to update to the most recent version of the repostitory when downloading a new model, and re-run the shell script to download the Linear Weights. ***
+
+
+| Name |Model Base|Vision Model | Pre-trained Languages | Target Languages | #Parameters|
+| ----------------------------------|:-----: |:-----: |:-----: |:-----: |:-----: |
+|**Multilingual** ||
+| [M-BERT Distil 40](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040) | [M-BERT Distil](https://huggingface.co/bert-base-multilingual-uncased)| RN50x4 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | [40 Languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Distil%2040/Fine-Tune-Languages.md) | 66 M|
+| [M-BERT Base 69](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%2069) | [M-BERT Base](https://huggingface.co/bert-base-multilingual-uncased)|RN50x4 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | 68 Languages | 110 M|
+| [M-BERT Base ViT-B](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%20ViT-B) | [M-BERT Base](https://huggingface.co/bert-base-multilingual-uncased)|ViT-B/32 | [101 Languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) | 68 Languages | 110 M|
+|**Monolingual** ||
+|[Swe-CLIP 500k](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%20500k)| [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased)| RN50x4 | Swedish | Swedish | 110 M|
+|[Swe-CLIP 2M](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/Swe-CLIP%202M)| [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased)| RN50x4 | Swedish | Swedish | 110 M|
+
+
+
+## Training a new model
+[This folder](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/multilingual_clip/TeacherLearning) contains the code used for training the above models. If you wsh to train your own model you must do the following things:
+
+* Prepare a set of translated sentence pairs from English -> Your Language(s)
+* Compute regular CLIP-Text embeddings for the English sentences.
+* Edit [Training.py](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/multilingual_clip/TeacherLearning/Training.py) to load your data.
+* Train a new CLIP-Text encoder via Teacher Learning
+
+### Pre-computed CLIP Embeddings & Translaton Data
+[This Google Drive folder](https://drive.google.com/drive/folders/1I9a7naSZubUATWzLFv61DQMWyFlF7wR5?usp=sharing) contains both pre-computed CLIP-Text Embeddings for a large porton of the the image captions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/).
+
+The Google Drive folder also contains the translation data used to train the currently available models.
+Good Luck
+
+## Contribution
+If you have trained a CLIP Text encoder specific to your language, or another model covering a language not supported here, Please feel free to contact us and we will either upload your model and credit you, or simply link to your already uploaded model.
+
+
+## Contact
+If you have questions regarding the code or otherwise related to this Github page, please open an [issue](https://github.com/FreddeFrallan/Contrastive-Tension/issues).
+
+For other purposes, feel free to contact me directly at: Fredrik.Carlsson@ri.se
+
+
+## Acknowledgements
+* [Stability.ai](https://stability.ai/) for providing much appreciated compute during training.
+* [CLIP](https://openai.com/blog/clip/)
+* [OpenAI](https://openai.com/)
+* [Huggingface](https://huggingface.co/)
+* [Best Readme Template](https://github.com/othneildrew/Best-README-Template)
+* ["Two Cats" Image by pl1602](https://search.creativecommons.org/photos/8dfd802b-58e5-4cc5-889d-96abba540de1)
+
+
+## License
+Distributed under the MIT License. See `LICENSE` for more information.
+
+
+## Citing
+If you found this repository useful, please consider citing:
+
+```bibtex
+@InProceedings{carlsson-EtAl:2022:LREC,
+ author = {Carlsson, Fredrik and Eisen, Philipp and Rekathati, Faton and Sahlgren, Magnus},
+ title = {Cross-lingual and Multilingual CLIP},
+ booktitle = {Proceedings of the Language Resources and Evaluation Conference},
+ month = {June},
+ year = {2022},
+ address = {Marseille, France},
+ publisher = {European Language Resources Association},
+ pages = {6848--6854},
+ abstract = {The long-standing endeavor of relating the textual and the visual domain recently underwent a pivotal breakthrough, as OpenAI released CLIP. This model distinguishes how well an English text corresponds with a given image with unprecedented accuracy. Trained via a contrastive learning objective over a huge dataset of 400M of images and captions, it is a work that is not easily replicated, especially for low resource languages. Capitalizing on the modularization of the CLIP architecture, we propose to use cross-lingual teacher learning to re-train the textual encoder for various non-English languages. Our method requires no image data and relies entirely on machine translation which removes the need for data in the target language. We find that our method can efficiently train a new textual encoder with relatively low computational cost, whilst still outperforming previous baselines on multilingual image-text retrieval.},
+ url = {https://aclanthology.org/2022.lrec-1.739}
+}
+```
+
+
+
+
+[contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
+[contributors-url]: https://github.com/othneildrew/Best-README-Template/graphs/contributors
+[forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
+[forks-url]: https://github.com/othneildrew/Best-README-Template/network/members
+[stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
+[stars-url]: https://github.com/othneildrew/Best-README-Template/stargazers
+[issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
+[issues-url]: https://github.com/othneildrew/Best-README-Template/issues
+[license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge
+[license-url]: https://github.com/othneildrew/Best-README-Template/blob/master/LICENSE.txt
+[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
+[linkedin-url]: https://linkedin.com/in/othneildrew
+[product-screenshot]: images/screenshot.png
diff --git a/Multilingual_CLIP/inference_example.py b/Multilingual_CLIP/inference_example.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b2b86382eac29abcf66145e2385f927762d0a9c
--- /dev/null
+++ b/Multilingual_CLIP/inference_example.py
@@ -0,0 +1,34 @@
+import transformers
+
+
+def tf_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
+ from multilingual_clip import tf_multilingual_clip
+
+ model = tf_multilingual_clip.MultiLingualCLIP.from_pretrained(model_name)
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
+
+ inData = tokenizer.batch_encode_plus(texts, return_tensors='tf', padding=True)
+ embeddings = model(inData)
+ print(embeddings.shape)
+
+
+def pt_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'):
+ from multilingual_clip import pt_multilingual_clip
+
+ model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
+
+ embeddings = model.forward(texts, tokenizer)
+ print(embeddings.shape)
+
+
+if __name__ == '__main__':
+ exampleTexts = [
+ 'Three blind horses listening to Mozart.',
+ 'Älgen är skogens konung!',
+ 'Wie leben Eisbären in der Antarktis?',
+ 'Вы знали, что все белые медведи левши?'
+ ]
+
+ # tf_example(exampleTexts)
+ pt_example(exampleTexts)
diff --git a/Multilingual_CLIP/larger_mclip.md b/Multilingual_CLIP/larger_mclip.md
new file mode 100644
index 0000000000000000000000000000000000000000..8e9ee0f7e44fd7fb443a5c13e4a0abbfcd287838
--- /dev/null
+++ b/Multilingual_CLIP/larger_mclip.md
@@ -0,0 +1,60 @@
+# Multilingual CLIP 2/6-2022
+
+## Overview
+Recently, OpenAI released some of their [bigger CLIP models](https://github.com/openai/CLIP/blob/main/model-card.md). Additionally, [OpenCLIP](https://github.com/mlfoundations/open_clip) is continuing to provide their large models, which have proven to match or even outperform the OpenAI models.
+
+Thanks to the compute provided by [Stability.ai](https://stability.ai/) and [laion.ai](https://laion.ai/), we are now happy to announce that we provide multilingual text encoders for these models!
+Along with:
+ - Updated Inference & Training Code
+ - The Corresponding Machine Translated Image Caption Dataset
+ - PyPi package installer
+
+
+
+None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results:
+| Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
+| ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
+| [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
+| [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
+| [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
+| [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
+| [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
+| [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
+| [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| 95.0 | 93.0 | 93.6 | 93.1 | 94.0 | 93.1 | 94.4 | 89.0 | 90.0 | 93.0 | 84.2 |
+
+To our surprise, using M-CLIP with XLM-RoBerta Large outperforms the original English models for English. Exactly why this is the case reamins to be determined, and we plan to followup up with more extensive testing.
+
+The ViT-L/14 model is integrated into clip retrieval, you can test the retrieval capabilities of this multilingual encoder [there](https://rom1504.github.io/clip-retrieval/?useMclip=true&query=%E9%BB%84%E8%89%B2%E3%81%84%E7%8C%AB). This is a search over 5 billion of clip embeddings of laion5B dataset implemented with an efficient knn index.
+
+The training curves for these models can be found at the [Weights and Biases report](https://wandb.ai/freddefrallan/M-CLIP/reports/M-CLIP-2-6-2022--VmlldzoyMTE1MjU1/edit?firstReport&runsetFilter)
+
+## Training Data & Machine Translation
+English image captions were taken from the Vit-L filtered captions of the datasets: [CC3M+CC12M+SBU](https://github.com/salesforce/BLIP#pre-training-datasets-download), which are provided by the BLIP repository.
+
+From these 14 million captions we sampled 7 million captions, divided them into 48 equally sized buckets, and translated each bucket into one of the [48 target languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/translation/data/fine_tune_languages.csv). This means that after translation we still end up with a total of 7 million captions. Where 7M/48 = 145,833 of them are in for example Dutch.
+The machine-translated captions are available at [Huggingface](https://huggingface.co/datasets/M-CLIP/ImageCaptions-7M-Translations).
+
+Each translation was performed with the corresponding Opus model. For more information see the [machine translation instructions](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/translation).
+
+It should be noted that only translated captions were used during training. Meaning that none of the original English captions were included. This entails that all the English (and other languages not included in the 49 target languages) results are due to transfer learning.
+
+## Training Details
+All released models used in essence the same hyperparameters. These detail are available at [Weights and Biases project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
+
+Following is a short list of some of the shared hyperparameters:
+ - Batch size of 2048 samples.
+ - Adam Optimizer with a target learning rate of 10^-5, with a linear warmup schedule for 1k update steps.
+ - 5000 randomly sampled validation samples
+
+All models were allowed to train until the validation MSE loss had converged. For most models this took about 24 hours, using 8 Nvidia A-100 GPUs. No early stopping was performed in regard to the Image-Text retrieval tasks.
+
+## Additional Experiments
+In addition to the released models, we also performed some experiments that yielded negative or unsubstantial results. The training curves and specific settings for most of these additional experiments can be found at the [Weights and Biases project](https://wandb.ai/freddefrallan/M-CLIP?workspace=user-freddefrallan).
+
+Following is a summary of things we tried:
+
+- Optimizing the Cosine-Similarity instead of minimizing the mean-squared error: **No noticeable performance difference**.
+ - MBERT-BASE as encoder: **Worse performance than LaBSE**
+ - USE-CML: **Worse performance than LaBSE**
+ - Adding additional TanH layer to the XLM-R Large: **No substantial performance difference, although it achieved slightly faster learning at the start.**
+ - Using first *([CLS]?)* token as sentence embedding, instead of mean-pooling for XLM-R Large: **Significantly worse performance. *(Perhaps due to the lack of Next-Sentence Prediction task in the RoBerta pre-training?)***
diff --git a/Multilingual_CLIP/legacy_get-weights.sh b/Multilingual_CLIP/legacy_get-weights.sh
new file mode 100644
index 0000000000000000000000000000000000000000..ac6bb104eb079981774189dbe8f6e6bec29b1ff6
--- /dev/null
+++ b/Multilingual_CLIP/legacy_get-weights.sh
@@ -0,0 +1,20 @@
+#
+
+OUTPATH=$PWD/data/weights
+
+mkdir -p $OUTPATH
+
+URLSWECLIP=https://www.dropbox.com/s/s77xw5308jeljlp/Swedish-500k%20Linear%20Weights.pkl
+wget -c "${URLSWECLIP}" -P $OUTPATH
+
+URLSWECLIP2M=https://www.dropbox.com/s/82c54rsvlry3kwh/Swedish-2M%20Linear%20Weights.pkl
+wget -c "${URLSWECLIP2M}" -P $OUTPATH
+
+URLMCLIP=https://www.dropbox.com/s/oihqzctnty5e9kk/M-BERT%20Distil%2040%20Linear%20Weights.pkl
+wget -c "${URLMCLIP}" -P $OUTPATH
+
+URLMCLIPBASE=https://www.dropbox.com/s/y4pycinv0eapeb3/M-BERT-Base-69%20Linear%20Weights.pkl
+wget -c "${URLMCLIPBASE}" -P $OUTPATH
+
+URLMCLIPBASEVIT=https://www.dropbox.com/s/2oxu7hw0y9fwdqs/M-BERT-Base-69-ViT%20Linear%20Weights.pkl
+wget -c "${URLMCLIPBASEVIT}" -P $OUTPATH
diff --git a/Multilingual_CLIP/legacy_inference.py b/Multilingual_CLIP/legacy_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..3735b44bf1203ef9d1f83fe2d7845c2cdd3500b0
--- /dev/null
+++ b/Multilingual_CLIP/legacy_inference.py
@@ -0,0 +1,13 @@
+from multilingual_clip.legacy_multilingual_clip import MultilingualClip
+
+model_path = 'M-CLIP/Swedish-500k'
+tok_path = 'M-CLIP/Swedish-500k'
+head_weight_path = 'data/weights/Swe-CLIP Linear Weights.pkl'
+
+sweclip_args = {'model_name': model_path,
+ 'tokenizer_name': tok_path,
+ 'head_path': head_weight_path}
+
+sweclip = MultilingualClip(**sweclip_args)
+
+print(sweclip('test'))
\ No newline at end of file
diff --git a/Multilingual_CLIP/multilingual_clip/Config_MCLIP.py b/Multilingual_CLIP/multilingual_clip/Config_MCLIP.py
new file mode 100644
index 0000000000000000000000000000000000000000..88807e2db5809de257a1eaa17cef3f801f8e0fd5
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/Config_MCLIP.py
@@ -0,0 +1,11 @@
+import transformers
+
+
+class MCLIPConfig(transformers.PretrainedConfig):
+ model_type = "M-CLIP"
+
+ def __init__(self, modelBase='xlm-roberta-large', transformerDimSize=1024, imageDimSize=768, **kwargs):
+ self.transformerDimensions = transformerDimSize
+ self.numDims = imageDimSize
+ self.modelBase = modelBase
+ super().__init__(**kwargs)
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/ConvertTrainingModelToPT.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/ConvertTrainingModelToPT.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5f77ceddc09f82118476819b3c4000e79b1fe17
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/TeacherLearning/ConvertTrainingModelToPT.py
@@ -0,0 +1,39 @@
+import TrainingModel
+import transformers
+import pickle
+
+
+def convertTFTransformerToPT(saveNameBase):
+ ptFormer = transformers.AutoModel.from_pretrained(saveNameBase + '-Transformer', from_tf=True)
+ ptFormer.save_pretrained(saveNameBase + '-Transformer' + "-PT")
+
+ with open('{}-Linear-Weights.pkl'.format(saveNameBase), 'rb') as fp:
+ weights = pickle.load(fp)
+ # TODO Add code for converting the linear weights into a torch linear layer
+
+
+def splitAndStoreTFModelToDisk(transformerBase, weightsPath, visualDimensionSpace, saveNameBase):
+ # Splits the Sentence Transformer and its linear layer
+ # The Transformer can then be loaded into PT, and the linear weights can be added as a linear layer
+
+ tokenizer = transformers.AutoTokenizer.from_pretrained(transformerBase)
+ model = TrainingModel.SentenceModelWithLinearTransformation(transformerBase, visualDimensionSpace)
+ model.load_weights(weightsPath).expect_partial()
+
+ tokenizer.save_pretrained(saveNameBase + '-Tokenizer')
+ model.transformer.save_pretrained(saveNameBase + '-Transformer')
+ linearWeights = model.postTransformation.get_weights()
+ print("Saving Linear Weights into pickle file.", linearWeights.shape)
+
+ with open('{}-Linear-Weights.pkl'.format(saveNameBase), 'wb') as fp:
+ pickle.dump(linearWeights, fp)
+
+
+if __name__ == '__main__':
+ weightsPath = 'XLM-Large-Sentence-VitB-16Plus-1652563598.5977607-135.weights'
+ transformerBase = 'xlm-roberta-large'
+ modelSaveBase = 'XLM-Large-VitB-16+'
+ visualDimensionSpace = 640
+
+ splitAndStoreTFModelToDisk(transformerBase, weightsPath, visualDimensionSpace, modelSaveBase)
+ # convertTFTransformerToPT(modelSaveBase + "-Transformer")
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/Dataset.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..87d8e7e3913b016f0224daeb45bebacf3cecd6c0
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Dataset.py
@@ -0,0 +1,59 @@
+import tensorflow as tf
+
+
+def createDataset(targetCaptions, embeddings, batchSize, tokenizer, maxSeqLen=32, loopForever=True,
+ shuffleSize=None, encoderDims=(1, 768)):
+ def generatorFunc():
+ while True:
+ embeddings.shuffle()
+ for d in embeddings:
+ key, textEmb = d['id'], d['embedding']
+ try:
+ caption = targetCaptions[key]['caption_multi']
+ if (caption is None):
+ continue
+
+ textIds = tokenizer.encode(caption)
+ seqLen = len(textIds)
+ if (seqLen > maxSeqLen):
+ continue
+
+ padSize = maxSeqLen - len(textIds)
+ textIds = textIds + [0] * padSize
+ attMask = [1] * seqLen + [0] * padSize
+ yield textIds, attMask, textEmb
+ except:
+ pass
+
+ if (loopForever == False):
+ break
+
+ f = lambda x, y=tf.float32: tf.convert_to_tensor(x, y)
+
+ def _parse_function(textIds, attMask, textEmb):
+ textIDs, att = f(textIds, tf.int32), f(attMask)
+ tEmb = f(textEmb)
+ return (textIDs, att), tEmb[0]
+
+ dataset = tf.data.Dataset.from_generator(generatorFunc,
+ output_types=(
+ tf.int32, tf.float32, tf.float32),
+ output_shapes=(
+ (maxSeqLen,), (maxSeqLen,), encoderDims),
+ )
+
+ if (shuffleSize is not None):
+ dataset = dataset.shuffle(shuffleSize)
+ dataset = dataset.map(_parse_function).batch(batchSize)
+
+ return dataset
+
+
+def createTrainingAndValidationDataset(trainEmbeddings, valEmbeddings, batchSize, tokenizer, targetCaptions,
+ maxSeqLen=32, encoderDims=(1, 768)):
+ valDataset = createDataset(targetCaptions, valEmbeddings, batchSize, tokenizer,
+ loopForever=False, maxSeqLen=maxSeqLen, encoderDims=encoderDims)
+ trainDataset = createDataset(targetCaptions, trainEmbeddings, batchSize, tokenizer,
+ loopForever=True, maxSeqLen=maxSeqLen, encoderDims=encoderDims)
+
+ return trainDataset, valDataset
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/Training.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Training.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b68876327fdd94122d402a6f713d2a2144bc36f
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Training.py
@@ -0,0 +1,70 @@
+import Dataset, TrainingModel
+import tensorflow as tf
+import transformers
+import datasets
+import Utils
+
+
+def loadTextTranslations():
+ return datasets.load_dataset('M-CLIP/ImageCaptions-7M-Translations')['train']
+
+
+def loadTargetEmbeddings(imageBase="Vit-B-32", validationSize=5000):
+ trainSamples = datasets.load_dataset('M-CLIP/ImageCaptions-7M-Embeddings', imageBase,
+ split='train[{}:]'.format(validationSize))
+ valSamples = datasets.load_dataset('M-CLIP/ImageCaptions-7M-Embeddings', imageBase,
+ split='train[:{}]'.format(validationSize))
+
+ embeddingShape = tf.convert_to_tensor(trainSamples[0]['embedding']).shape
+ return trainSamples, valSamples, embeddingShape
+
+
+def singleGPUTraining():
+ numValidationSamples = 5000
+ stepsPerEpoch, lr = 1000, 0.00001
+ gradAccumSteps, batchSize = 1, 256
+ numTrainSteps, numWarmupSteps = 99999999, 1000
+
+ modelBase = 'xlm-roberta-large'
+ tokenizerBase = 'xlm-roberta-large'
+ imageBase = "Vit-B-32"
+ modelName = '{}-{}'.format(modelBase, imageBase)
+
+ startWeights = None
+ targetCaptions = loadTextTranslations()
+ trainEmbeddings, valEmbeddings, imageEncoderDimensions = loadTargetEmbeddings(validationSize=numValidationSamples)
+
+ def createOptimizerFunc():
+ optimizer, schedule = transformers.optimization_tf.create_optimizer(lr, numTrainSteps, numWarmupSteps)
+ if (gradAccumSteps <= 1):
+ return optimizer
+ else:
+ return Utils.GradientAccumulator(optimizer, gradAccumSteps)
+
+ tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizerBase)
+ model = TrainingModel.SentenceModelWithLinearTransformation(modelBase, imageEncoderDimensions[-1])
+
+ if (startWeights is not None):
+ model.load_weights(startWeights)
+ model.compile(createOptimizerFunc(), 'mse', metrics=['mae', 'cosine_similarity'])
+
+ trainDataset, valDataset = Dataset.createTrainingAndValidationDataset(trainEmbeddings, valEmbeddings, batchSize,
+ tokenizer,
+ targetCaptions=targetCaptions,
+ encoderDims=imageEncoderDimensions)
+
+ if (gradAccumSteps > 1): # In order to make fair logging on Wandb
+ stepsPerEpoch *= gradAccumSteps
+
+ model.fit(trainDataset, epochs=1000, steps_per_epoch=stepsPerEpoch,
+ validation_data=valDataset,
+ callbacks=[
+ Utils.CustomSaveCallBack(modelName, saveInterval=5, firstSavePoint=5),
+ ]
+ )
+
+
+if __name__ == '__main__':
+ strategy = tf.distribute.MirroredStrategy()
+ with strategy.scope():
+ singleGPUTraining()
\ No newline at end of file
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/TrainingModel.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/TrainingModel.py
new file mode 100644
index 0000000000000000000000000000000000000000..400788cfd45c7776f20f9b38601fdf435c819c0b
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/TeacherLearning/TrainingModel.py
@@ -0,0 +1,66 @@
+import tensorflow as tf
+import transformers
+
+
+class SentenceModel(tf.keras.Model):
+
+ def __init__(self, modelBase, from_pt=True, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.transformer = transformers.TFAutoModel.from_pretrained(modelBase, from_pt=from_pt)
+
+ @tf.function
+ def generateSingleEmbedding(self, input, training=False):
+ inds, att = input
+ embs = self.transformer({'input_ids': inds, 'attention_mask': att}, training=training)[0]
+ outAtt = tf.cast(att, tf.float32)
+ sampleLength = tf.reduce_sum(outAtt, axis=-1, keepdims=True)
+ maskedEmbs = embs * tf.expand_dims(outAtt, axis=-1)
+ return tf.reduce_sum(maskedEmbs, axis=1) / tf.cast(sampleLength, tf.float32)
+
+ @tf.function
+ def generateMultipleEmbeddings(self, input, training=False):
+ inds, att = input
+ embs = self.transformer({'input_ids': inds, 'attention_mask': att}, training=training)['last_hidden_state']
+ print("Embs:", embs.shape)
+
+ outAtt = tf.cast(att, tf.float32)
+ sampleLength = tf.reduce_sum(outAtt, axis=-1, keepdims=True)
+ print("Att mask:", tf.expand_dims(outAtt, axis=-1).shape)
+ maskedEmbs = embs * tf.expand_dims(outAtt, axis=-1)
+ return tf.reduce_sum(maskedEmbs, axis=1) / tf.cast(sampleLength, tf.float32)
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ return self.generateSingleEmbedding(inputs, training)
+
+ def save_pretrained(self, saveName):
+ self.transformer.save_pretrained(saveName)
+
+ def from_pretrained(self, saveName):
+ self.transformer = transformers.TFAutoModel.from_pretrained(saveName)
+
+
+class SentenceModelWithLinearTransformation(SentenceModel):
+
+ def __init__(self, modelBase, embeddingSize=640, *args, **kwargs):
+ super().__init__(modelBase, *args, **kwargs)
+ self.postTransformation = tf.keras.layers.Dense(embeddingSize, activation='linear')
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ return self.postTransformation(self.generateMultipleEmbeddings(inputs, training))
+
+
+class SentenceModelWithTanHTransformation(SentenceModel):
+
+ def __init__(self, modelBase, embeddingSize=640, *args, **kwargs):
+ super().__init__(modelBase, *args, **kwargs)
+
+ self.postTransformation = tf.keras.layers.Dense(embeddingSize, activation='tanh')
+ self.postTransformation2 = tf.keras.layers.Dense(embeddingSize, activation='linear')
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ meanEmbedding = self.generateSingleEmbedding(inputs, training)
+ d1 = self.postTransformation(meanEmbedding)
+ return self.postTransformation2(d1)
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/Utils.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..434c3ea0a91693ddaa4ac412de0ca86095255c93
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/TeacherLearning/Utils.py
@@ -0,0 +1,278 @@
+from tensorflow_addons.utils import types
+from typeguard import typechecked
+import tensorflow as tf
+import numpy as np
+import pickle
+
+def splitListIntoChunks(data, numChunks):
+ chunkSize = int(len(data) / numChunks)
+ chunks = []
+ for i in range(numChunks - 1):
+ start, end = i * chunkSize, (i + 1) * chunkSize
+ chunks.append(data[start:end])
+
+ chunks.append(data[end:])
+ return chunks
+
+
+def splitIntoValueChunks(data, numChunks, getValueFunc):
+ values = [getValueFunc(d) for d in data]
+ minValue, maxValue = np.min(values), np.max(values)
+ chunkSize = (maxValue - minValue) / float(numChunks)
+
+ data.sort(key=lambda x: getValueFunc(x))
+ sizeCeil = minValue + chunkSize
+ chunks, currentChunkIndex = [[]], 0
+ for d in data:
+ v = getValueFunc(d)
+ while (v > sizeCeil):
+ chunks.append([])
+ sizeCeil += chunkSize
+ currentChunkIndex += 1
+ chunks[currentChunkIndex].append(d)
+
+ return chunks
+
+
+def startGraphLogging():
+ from datetime import datetime
+ stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
+ logdir = 'logs/func/%s' % stamp
+ writer = tf.summary.create_file_writer(logdir)
+ tf.summary.trace_on(graph=True, profiler=True)
+ return writer, logdir
+
+
+def finishGraphLogging(writer, logdir):
+ with writer.as_default():
+ tf.summary.trace_export(
+ name="my_func_trace",
+ step=0,
+ profiler_outdir=logdir)
+
+
+class CustomSaveCallBack(tf.keras.callbacks.Callback):
+
+ def __init__(self, saveName, saveInterval=10, firstSavePoint=-1):
+ super().__init__()
+ self.saveName = saveName
+ self.saveInterval = saveInterval
+ self.firstSavePoint = saveInterval if firstSavePoint < 0 else firstSavePoint
+ self.saveCounter = 0
+
+ def on_epoch_end(self, epoch, logs=None):
+ if (epoch + 1 >= self.firstSavePoint):
+ if (self.saveCounter % self.saveInterval == 0):
+ print("Saving model!")
+ self.model.save_weights(self.saveName.format(epoch + 1))
+
+ self.saveCounter += 1
+
+
+def saveTokenizer(base='gpt2', dumpPath='GPT2-Tokenizer.pkl'):
+ import transformers
+ tokenizer = transformers.AutoTokenizer.from_pretrained(base)
+ with open(dumpPath, 'wb') as fp:
+ pickle.dump(tokenizer, fp)
+
+
+def loadTokenizer(dumpPath='GPT2-Tokenizer.pkl'):
+ with open(dumpPath, 'rb') as fp:
+ return pickle.load(fp)
+
+
+class GradientAccumulator(tf.keras.optimizers.Optimizer):
+ """Optimizer wrapper for gradient accumulation."""
+
+ @typechecked
+ def __init__(
+ self,
+ inner_optimizer: types.Optimizer,
+ accum_steps: types.TensorLike = 4,
+ name: str = "GradientAccumulator",
+ **kwargs,
+ ):
+ r"""Construct a new GradientAccumulator optimizer.
+ Args:
+ inner_optimizer: str or `tf.keras.optimizers.Optimizer` that will be
+ used to compute and apply gradients.
+ accum_steps: int > 0. Update gradient in every accumulation steps.
+ name: Optional name for the operations created when applying
+ gradients. Defaults to "GradientAccumulator".
+ **kwargs: keyword arguments. Allowed to be {`clipnorm`,
+ `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
+ norm; `clipvalue` is clip gradients by value, `decay` is
+ included for backward compatibility to allow time inverse
+ decay of learning rate. `lr` is included for backward
+ compatibility, recommended to use `learning_rate` instead.
+ """
+ super().__init__(name, **kwargs)
+ self._optimizer = tf.keras.optimizers.get(inner_optimizer)
+ self._gradients = []
+ self._accum_steps = accum_steps
+ self._step = None
+ self._iterations = self._optimizer.iterations
+
+ def _create_slots(self, var_list):
+ self._optimizer._create_slots(var_list=var_list)
+ for var in var_list:
+ self.add_slot(var, "ga")
+
+ self._gradients = [self.get_slot(var, "ga") for var in var_list]
+
+ @property
+ def step(self):
+ """Variable. The number of training steps this Optimizer has run."""
+ if self._step is None:
+ with self._distribution_strategy_scope():
+ self._step = self.add_weight(
+ "iter",
+ shape=[],
+ initializer="ones",
+ dtype=tf.int64,
+ trainable=False,
+ aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
+ )
+ self._weights.append(self._step)
+ return self._step
+
+ @step.setter
+ def step(self, variable):
+ if self._step is not None:
+ raise RuntimeError(
+ "Cannot set `step` to a new Variable after "
+ "the Optimizer weights have been created"
+ )
+ self._step = variable
+ self._weights.append(self._step)
+
+ @property
+ def gradients(self):
+ """The accumulated gradients on the current replica."""
+ if not self._gradients:
+ raise ValueError(
+ "The accumulator should be called first to initialize the gradients"
+ )
+ return list(
+ gradient.read_value() if gradient is not None else gradient
+ for gradient in self._gradients
+ )
+
+ def apply_gradients(self, grads_and_vars, name=None, **kwargs):
+ train_op = super().apply_gradients(grads_and_vars, name, **kwargs)
+ with tf.control_dependencies([train_op]):
+ with tf.control_dependencies(
+ [
+ self._optimizer.iterations.assign_add(
+ tf.cast(
+ tf.where(self.step % self._accum_steps == 0, 1, 0), tf.int64
+ ),
+ read_value=False,
+ )
+ ]
+ ):
+ return self.step.assign_add(1, read_value=False)
+
+ def _resource_apply_dense(self, grad, var, apply_state=None):
+ accum_gradient = self.get_slot(var, "ga")
+ if accum_gradient is not None and grad is not None:
+ accum_gradient.assign_add(
+ grad, use_locking=self._use_locking, read_value=False
+ )
+
+ return self._apply_grad(accum_gradient, var, apply_state)
+
+ def _resource_apply_sparse(self, grad: types.TensorLike, var, indices, apply_state):
+ accum_gradient = self.get_slot(var, "ga")
+ if accum_gradient is not None and grad is not None:
+ self._resource_scatter_add(accum_gradient, indices, grad)
+
+ return self._apply_grad(accum_gradient, var, apply_state)
+
+ def _apply_grad(self, accum_gradient, var, apply_state):
+ grad = tf.where(
+ self.step % self._accum_steps == 0,
+ accum_gradient,
+ tf.zeros_like(var),
+ )
+ if "apply_state" in self._optimizer._dense_apply_args:
+ train_op = self._optimizer._resource_apply_dense(
+ grad,
+ var,
+ apply_state=apply_state,
+ )
+ else:
+ train_op = self._optimizer._resource_apply_dense(grad, var)
+ reset_val = tf.where(
+ grad == accum_gradient, tf.zeros_like(accum_gradient), accum_gradient
+ )
+ reset_op = accum_gradient.assign(
+ reset_val,
+ use_locking=self._use_locking,
+ read_value=False,
+ )
+
+ return tf.group(train_op, reset_op)
+
+ def reset(self):
+ """Resets the accumulated gradients on the current replica."""
+ assign_ops = []
+ if not self._gradients:
+ return assign_ops
+
+ for gradient in self._gradients:
+ if gradient is not None:
+ assign_ops.append(
+ gradient.assign(
+ tf.zeros_like(gradient),
+ use_locking=self._use_locking,
+ read_value=False,
+ )
+ )
+
+ return tf.group(assign_ops)
+
+ @property
+ def inner_optimizer(self):
+ """The optimizer that this LossScaleOptimizer is wrapping."""
+ return self._optimizer
+
+ @property
+ def iterations(self):
+ return self._optimizer.iterations
+
+ @iterations.setter
+ def iterations(self, variable):
+ self._optimizer.iterations = variable
+
+ @property
+ def lr(self):
+ return self._optimizer._get_hyper("learning_rate")
+
+ @lr.setter
+ def lr(self, lr):
+ self._optimizer._set_hyper("learning_rate", lr) #
+
+ @property
+ def learning_rate(self):
+ return self._optimizer._get_hyper("learning_rate")
+
+ @learning_rate.setter
+ def learning_rate(self, learning_rate):
+ self._optimizer._set_hyper("learning_rate", learning_rate)
+
+ def get_config(self):
+ config = {
+ "accum_steps": self._accum_steps,
+ "optimizer": tf.keras.optimizers.serialize(self._optimizer),
+ }
+ base_config = super().get_config()
+ return {**base_config, **config}
+
+ @classmethod
+ def from_config(cls, config, custom_objects=None):
+ optimizer = tf.keras.optimizers.deserialize(
+ config.pop("optimizer"), custom_objects=custom_objects
+ )
+ return cls(optimizer, **config)
+
diff --git a/Multilingual_CLIP/multilingual_clip/TeacherLearning/__init__.py b/Multilingual_CLIP/multilingual_clip/TeacherLearning/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Multilingual_CLIP/multilingual_clip/__init__.py b/Multilingual_CLIP/multilingual_clip/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Multilingual_CLIP/multilingual_clip/legacy_multilingual_clip.py b/Multilingual_CLIP/multilingual_clip/legacy_multilingual_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2900b61834e245f611ca8ad38e37491d283b98e
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/legacy_multilingual_clip.py
@@ -0,0 +1,68 @@
+import pickle
+
+import torch
+import transformers
+
+
+class MultilingualClip(torch.nn.Module):
+ def __init__(self, model_name, tokenizer_name, head_name, weights_dir='data/weights/', cache_dir=None):
+ super().__init__()
+ self.model_name = model_name
+ self.tokenizer_name = tokenizer_name
+ self.head_path = weights_dir + head_name
+
+ self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name, cache_dir=cache_dir)
+ self.transformer = transformers.AutoModel.from_pretrained(model_name, cache_dir=cache_dir)
+ self.clip_head = torch.nn.Linear(in_features=768, out_features=640)
+ self._load_head()
+
+ def forward(self, txt):
+ txt_tok = self.tokenizer(txt, padding=True, return_tensors='pt')
+ embs = self.transformer(**txt_tok)[0]
+ att = txt_tok['attention_mask']
+ embs = (embs * att.unsqueeze(2)).sum(dim=1) / att.sum(dim=1)[:, None]
+ return self.clip_head(embs)
+
+ def _load_head(self):
+ with open(self.head_path, 'rb') as f:
+ lin_weights = pickle.loads(f.read())
+ self.clip_head.weight = torch.nn.Parameter(torch.tensor(lin_weights[0]).float().t())
+ self.clip_head.bias = torch.nn.Parameter(torch.tensor(lin_weights[1]).float())
+
+
+AVAILABLE_MODELS = {
+ 'M-BERT-Distil-40': {
+ 'model_name': 'M-CLIP/M-BERT-Distil-40',
+ 'tokenizer_name': 'M-CLIP/M-BERT-Distil-40',
+ 'head_name': 'M-BERT Distil 40 Linear Weights.pkl'
+ },
+
+ 'M-BERT-Base-69': {
+ 'model_name': 'M-CLIP/M-BERT-Base-69',
+ 'tokenizer_name': 'M-CLIP/M-BERT-Base-69',
+ 'head_name': 'M-BERT-Base-69 Linear Weights.pkl'
+ },
+
+ 'Swe-CLIP-500k': {
+ 'model_name': 'M-CLIP/Swedish-500k',
+ 'tokenizer_name': 'M-CLIP/Swedish-500k',
+ 'head_name': 'Swedish-500k Linear Weights.pkl'
+ },
+
+ 'Swe-CLIP-2M': {
+ 'model_name': 'M-CLIP/Swedish-2M',
+ 'tokenizer_name': 'M-CLIP/Swedish-2M',
+ 'head_name': 'Swedish-2M Linear Weights.pkl'
+ },
+
+ 'M-BERT-Base-ViT-B': {
+ 'model_name': 'M-CLIP/M-BERT-Base-ViT-B',
+ 'tokenizer_name': 'M-CLIP/M-BERT-Base-ViT-B',
+ 'head_name': 'M-BERT-Base-69-ViT Linear Weights.pkl'
+ },
+}
+
+
+def load_model(name, cache_dir=None):
+ config = AVAILABLE_MODELS[name]
+ return MultilingualClip(**config, cache_dir=cache_dir)
diff --git a/Multilingual_CLIP/multilingual_clip/pt_multilingual_clip.py b/Multilingual_CLIP/multilingual_clip/pt_multilingual_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..cac2a7eb7f34d08e1d93d1ede6f7f91607aaad02
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/pt_multilingual_clip.py
@@ -0,0 +1,27 @@
+from Multilingual_CLIP.multilingual_clip import Config_MCLIP
+import transformers
+import torch
+
+
+class MultilingualCLIP(transformers.PreTrainedModel):
+ config_class = Config_MCLIP.MCLIPConfig
+
+ def __init__(self, config, *args, **kwargs):
+ super().__init__(config, *args, **kwargs)
+ self.transformer = transformers.AutoModel.from_pretrained(config.modelBase)
+ self.LinearTransformation = torch.nn.Linear(in_features=config.transformerDimensions,
+ out_features=config.numDims)
+
+ def forward(self, txt, tokenizer, device):
+ txt_tok = tokenizer(txt, padding='max_length', max_length=77, truncation=True, return_tensors='pt').to(device)
+ embs = self.transformer(**txt_tok)
+ print(embs.keys())
+ embs = embs[0]
+ att = txt_tok['attention_mask']
+ embs = (embs * att.unsqueeze(2)) / att.sum(dim=1)[:, None].unsqueeze(2)
+ return self.LinearTransformation(embs)
+
+ @classmethod
+ def _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path, _fast_init=True):
+ model.load_state_dict(state_dict)
+ return model, [], [], []
diff --git a/Multilingual_CLIP/multilingual_clip/tf_multilingual_clip.py b/Multilingual_CLIP/multilingual_clip/tf_multilingual_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..94b5e5fedc3ec3bf527333d567cc21ac01ee98c7
--- /dev/null
+++ b/Multilingual_CLIP/multilingual_clip/tf_multilingual_clip.py
@@ -0,0 +1,64 @@
+from multilingual_clip import Config_MCLIP
+import tensorflow as tf
+import transformers
+
+
+class SentenceModel(tf.keras.Model):
+
+ def __init__(self, modelBase, from_pt=True, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.transformer = transformers.TFAutoModel.from_pretrained(modelBase, from_pt=from_pt)
+
+ @tf.function
+ def generateMeanPooledSentenceEmbs(self, input, training=False):
+ output = self.transformer(input, training=training)
+ hiddenStates = output['last_hidden_state']
+
+ outAtt = tf.cast(input['attention_mask'], tf.float32)
+ sampleLength = tf.reduce_sum(outAtt, axis=-1, keepdims=True)
+ maskedEmbs = hiddenStates * tf.expand_dims(outAtt, axis=-1)
+ return tf.reduce_sum(maskedEmbs, axis=1) / tf.cast(sampleLength, tf.float32)
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ return self.generateMeanPooledSentenceEmbs(inputs, training)
+
+
+class SentenceModelWithLinearTransformation(SentenceModel):
+
+ def __init__(self, modelBase, embeddingSize=640, *args, **kwargs):
+ super().__init__(modelBase, *args, **kwargs)
+ self.postTransformation = tf.keras.layers.Dense(embeddingSize, activation='linear', name='LinearTransformation')
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ return self.postTransformation(self.generateMeanPooledSentenceEmbs(inputs, training))
+
+
+class MultiLingualCLIP(transformers.TFPreTrainedModel):
+ config_class = Config_MCLIP.MCLIPConfig
+
+ @property
+ def dummy_inputs(self):
+ return {'input_ids': tf.ones((4, 12), tf.int32),
+ 'attention_mask': tf.ones((4, 12), tf.int32)}
+
+ @tf.function(
+ input_signature=[
+ tf.TensorSpec((None, None), tf.int32), tf.TensorSpec((None, None), tf.int32)
+ ]
+ )
+ def serving(self, ids, att):
+ output = self.call((ids, att))
+ return self.serving_output(output)
+
+ def serving_output(self, outputs):
+ return outputs
+
+ def __init__(self, config, *args, **kwargs):
+ super().__init__(config, *args, **kwargs)
+ self.sentenceModel = SentenceModelWithLinearTransformation(config.modelBase, config.numDims)
+
+ @tf.function
+ def call(self, inputs, training=False, mask=None):
+ return self.sentenceModel.call(inputs, training)
diff --git a/Multilingual_CLIP/requirements.txt b/Multilingual_CLIP/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..976a2b1f3998279c10c413279a095be86bf69167
--- /dev/null
+++ b/Multilingual_CLIP/requirements.txt
@@ -0,0 +1 @@
+transformers
diff --git a/Multilingual_CLIP/setup.py b/Multilingual_CLIP/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..28d4bba75429f73b17806d00b1bd98d371875cc1
--- /dev/null
+++ b/Multilingual_CLIP/setup.py
@@ -0,0 +1,38 @@
+from setuptools import setup, find_packages
+from pathlib import Path
+import os
+
+if __name__ == "__main__":
+ with Path(Path(__file__).parent, "README.md").open(encoding="utf-8") as file:
+ long_description = file.read()
+
+ def _read_reqs(relpath):
+ fullpath = os.path.join(os.path.dirname(__file__), relpath)
+ with open(fullpath) as f:
+ return [s.strip() for s in f.readlines() if (s.strip() and not s.startswith("#"))]
+
+ REQUIREMENTS = _read_reqs("requirements.txt")
+
+ setup(
+ name="multilingual_clip",
+ packages=find_packages(),
+ include_package_data=True,
+ version="1.0.10",
+ license="MIT",
+ description="OpenAI CLIP text encoders for multiple languages!",
+ long_description=long_description,
+ long_description_content_type="text/markdown",
+ author="Fredrik Carlsson",
+ author_email="FreddeFc@gmail.com",
+ url="https://github.com/FreddeFrallan/Multilingual-CLIP",
+ data_files=[(".", ["README.md"])],
+ keywords=["machine learning"],
+ install_requires=REQUIREMENTS,
+ classifiers=[
+ "Development Status :: 4 - Beta",
+ "Intended Audience :: Developers",
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
+ "License :: OSI Approved :: MIT License",
+ "Programming Language :: Python :: 3.6",
+ ],
+ )
diff --git a/Multilingual_CLIP/translation/01_ccs_to_df.py b/Multilingual_CLIP/translation/01_ccs_to_df.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0e671cf14341318d70968cf4060d6bdf43b2bcc
--- /dev/null
+++ b/Multilingual_CLIP/translation/01_ccs_to_df.py
@@ -0,0 +1,11 @@
+import pandas as pd
+import json
+
+with open("data/ccs_synthetic_filtered_large.json") as f:
+ d = json.load(f)
+
+df = pd.DataFrame(d)
+df["index"] = df.index + 1
+df["nr_words"] = df["caption"].apply(lambda x: len(x.split()))
+
+df.to_feather("data/ccs_synthetic.feather")
diff --git a/Multilingual_CLIP/translation/01_translate_sv.py b/Multilingual_CLIP/translation/01_translate_sv.py
new file mode 100644
index 0000000000000000000000000000000000000000..469c00e97d837c1c37d8abfbbea1b11fe6fa5d26
--- /dev/null
+++ b/Multilingual_CLIP/translation/01_translate_sv.py
@@ -0,0 +1,68 @@
+import pandas as pd
+import torch
+from tqdm import tqdm
+from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorWithPadding
+from torch.utils.data import Dataset, DataLoader
+
+df = pd.read_feather("data/ccs_synthetic.feather")
+
+# from transformers import MarianTokenizer
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+
+class CaptionDataset(Dataset):
+ def __init__(self, df, tokenizer_name):
+ self.df = df
+ self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
+
+ def __len__(self):
+ return len(self.df)
+
+ def __getitem__(self, index):
+ sentence1 = df.loc[index, "caption"]
+
+ tokens = self.tokenizer(sentence1, return_tensors="pt")
+
+ return tokens
+
+
+tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-sv")
+model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-sv")
+model.to(device)
+model.eval()
+
+
+def custom_collate_fn(data):
+ """
+ Data collator with padding.
+ """
+ tokens = [sample["input_ids"][0] for sample in data]
+ attention_masks = [sample["attention_mask"][0] for sample in data]
+
+ attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
+ padded_tokens = torch.nn.utils.rnn.pad_sequence(tokens, batch_first=True)
+
+ batch = {"input_ids": padded_tokens, "attention_mask": attention_masks}
+ return batch
+
+
+test_data = CaptionDataset(df, "Helsinki-NLP/opus-mt-en-sv")
+test_dataloader = DataLoader(
+ test_data,
+ batch_size=64,
+ shuffle=False,
+ num_workers=4,
+ collate_fn=custom_collate_fn,
+)
+
+with torch.no_grad():
+ decoded_tokens = []
+ for i, batch in enumerate(tqdm(test_dataloader)):
+
+ batch = {k: v.to(device) for k, v in batch.items()}
+ output_tokens = model.generate(**batch)
+ decoded_tokens += tokenizer.batch_decode(output_tokens.to("cpu"), skip_special_tokens=True)
+
+
+df["caption_sv"] = decoded_tokens
+df.to_feather("data/ccs_synthetic_sv.feather")
diff --git a/Multilingual_CLIP/translation/02_multilingual_shard.py b/Multilingual_CLIP/translation/02_multilingual_shard.py
new file mode 100644
index 0000000000000000000000000000000000000000..6952757406cded470b78f9547d5736c571400286
--- /dev/null
+++ b/Multilingual_CLIP/translation/02_multilingual_shard.py
@@ -0,0 +1,48 @@
+import os
+import pandas as pd
+import numpy as np
+
+n = 150000 # Chunk size. How many obs to translate per language.
+
+df_blip = pd.read_csv("data/fine_tune_languages.csv", index_col=None)
+df = pd.read_feather("data/ccs_synthetic_sv.feather")
+df = df[["caption", "caption_sv", "url", "index"]]
+
+df2 = pd.DataFrame(np.repeat(df_blip.to_numpy(), n, axis=0), columns=df_blip.columns)
+df = pd.concat([df, df2], axis=1)
+
+df["caption_multi"] = None
+df = df.rename(
+ columns={"language_code": "multi_language_code", "language_name": "multi_language_name"}
+)
+df = df[
+ [
+ "caption",
+ "caption_sv",
+ "caption_multi",
+ "url",
+ "multi_language_code",
+ "multi_language_name",
+ "multi_target",
+ "target_code",
+ "opus_mt_url",
+ "index",
+ ]
+]
+df["multi_target"] = df["multi_target"].astype("Int64")
+
+df.loc[df["multi_language_code"] == "en", "caption_multi"] = df.loc[
+ df["multi_language_code"] == "en", "caption"
+]
+
+
+df_list = [df[i : i + n].reset_index(drop=True) for i in range(0, len(df), n)]
+
+os.makedirs("data_multi", exist_ok=True)
+for i in range(0, len(df_list)):
+ code = df_list[i]["multi_language_code"][0]
+ part_num = str(i).zfill(3)
+ df_list[i].to_feather(f"data_multi/{part_num}_ccs_synthetic_{code}.feather")
+
+
+df.to_feather("data/ccs_synthetic_multi.feather")
diff --git a/Multilingual_CLIP/translation/02_translate_multi.sh b/Multilingual_CLIP/translation/02_translate_multi.sh
new file mode 100644
index 0000000000000000000000000000000000000000..594186a27520507fb3c1b1e7943ae41382fc4396
--- /dev/null
+++ b/Multilingual_CLIP/translation/02_translate_multi.sh
@@ -0,0 +1,4 @@
+for filename in $(ls data_multi);
+do
+ python 02_translate_multilingual.py --filename $filename
+done
\ No newline at end of file
diff --git a/Multilingual_CLIP/translation/02_translate_multilingual.py b/Multilingual_CLIP/translation/02_translate_multilingual.py
new file mode 100644
index 0000000000000000000000000000000000000000..37be9ab5145f9f05bf2b7e181a17de590c83c94d
--- /dev/null
+++ b/Multilingual_CLIP/translation/02_translate_multilingual.py
@@ -0,0 +1,95 @@
+import os
+import pandas as pd
+import torch
+import argparse
+import shutil
+from tqdm import tqdm
+from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorWithPadding
+from torch.utils.data import Dataset, DataLoader
+
+parser = argparse.ArgumentParser()
+parser.add_argument("-f", "--filename", type=str)
+parser.add_argument(
+ "data_folder",
+ nargs="?",
+ type=str,
+ default="data_multi",
+)
+args = parser.parse_args()
+
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+os.makedirs("data_translated", exist_ok=True)
+
+if args.filename == "015_ccs_synthetic_en.feather":
+ # No need to translate English -> English
+ shutil.copy2(os.path.join(args.data_folder, "015_ccs_synthetic_en.feather"), "data_translated")
+ os._exit(0)
+
+df = pd.read_feather(os.path.join(args.data_folder, args.filename))
+df["opus_mt_url"] = df["opus_mt_url"].str.replace("https://huggingface.co/", "")
+print(f"Starting translation of English to {df['multi_language_name'][0]}")
+
+
+class CaptionDataset(Dataset):
+ def __init__(self, df, tokenizer_name):
+ self.df = df
+ self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
+
+ def __len__(self):
+ return len(self.df)
+
+ def __getitem__(self, index):
+ sentence1 = df.loc[index, "caption"]
+
+ tokens = self.tokenizer(sentence1, return_tensors="pt")
+
+ return tokens
+
+
+tokenizer = AutoTokenizer.from_pretrained(df["opus_mt_url"][0])
+model = AutoModelForSeq2SeqLM.from_pretrained(df["opus_mt_url"][0])
+model.to(device)
+model.eval()
+
+
+def custom_collate_fn(data):
+ """
+ Data collator with padding.
+ """
+ tokens = [sample["input_ids"][0] for sample in data]
+ attention_masks = [sample["attention_mask"][0] for sample in data]
+
+ attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
+ padded_tokens = torch.nn.utils.rnn.pad_sequence(tokens, batch_first=True)
+
+ batch = {"input_ids": padded_tokens, "attention_mask": attention_masks}
+ return batch
+
+
+if df["multi_target"][0] == 1:
+ # If model is a multilingual model we need to concatenate target language code
+ # in the form '>> CODE >>' in front of string so model outputs correct language.
+ df["caption"] = ">>" + df["target_code"] + "<<" + df["caption"]
+
+test_data = CaptionDataset(df, df["opus_mt_url"][0])
+test_dataloader = DataLoader(
+ test_data,
+ batch_size=50,
+ shuffle=False,
+ num_workers=4,
+ collate_fn=custom_collate_fn,
+)
+
+with torch.no_grad():
+ decoded_tokens = []
+ for i, batch in enumerate(tqdm(test_dataloader)):
+
+ batch = {k: v.to(device) for k, v in batch.items()}
+ output_tokens = model.generate(**batch)
+ decoded_tokens += tokenizer.batch_decode(output_tokens.to("cpu"), skip_special_tokens=True)
+
+df["caption_multi"] = decoded_tokens
+df.to_feather(os.path.join("data_translated", args.filename))
+
+print(f"Finished translating English to {df['multi_language_name'][0]}")
diff --git a/Multilingual_CLIP/translation/03_merge_sv_multi.py b/Multilingual_CLIP/translation/03_merge_sv_multi.py
new file mode 100644
index 0000000000000000000000000000000000000000..3c7490bb4bbcc8732638eb9e16c9a8115b3f48d4
--- /dev/null
+++ b/Multilingual_CLIP/translation/03_merge_sv_multi.py
@@ -0,0 +1,31 @@
+import os
+import pandas as pd
+
+filenames = os.listdir("data_translated")
+df = pd.read_feather("data/ccs_synthetic_multi.feather")
+df_list = [pd.read_feather(os.path.join("data_translated", filename)) for filename in filenames]
+df_multi = pd.concat(df_list)
+df_multi = df_multi.reset_index(drop=True)
+
+df = df.drop("caption_multi", axis=1)
+df = df.merge(df_multi[["caption_multi", "index"]], how="left", on="index")
+
+df = df[
+ [
+ "caption",
+ "caption_sv",
+ "caption_multi",
+ "url",
+ "multi_language_code",
+ "multi_language_name",
+ "multi_target",
+ "target_code",
+ "opus_mt_url",
+ "index",
+ ]
+]
+
+df = df.rename(columns={"multi_target": "multiple_target_model"})
+df["opus_mt_url"] = df["opus_mt_url"].str.replace("https://huggingface.co/", "")
+
+df.to_feather("ccs_synthetic.feather")
diff --git a/Multilingual_CLIP/translation/README.md b/Multilingual_CLIP/translation/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3d5eb47d9af21e9b974130f432292e8085ff5914
--- /dev/null
+++ b/Multilingual_CLIP/translation/README.md
@@ -0,0 +1,51 @@
+A set of scripts to machine translate the subset of (synthetic) Conceptual Captions used in [BLIP](https://github.com/salesforce/BLIP#pre-training-datasets-download). The conda `environment.yml` file allows you to recreate the environment we used via `conda env create -f environment.yml` (creates env named `translate`).
+
+## Step 0: Download data
+
+```bash
+wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/datasets/ccs_synthetic_filtered_large.json -P data
+```
+
+## Step 1: Swedish captions
+
+Convert to tabular and save data to `.feather`. File is saved as `data/ccs_synthetic.feather`
+
+```hash
+python 01_ccs_to_df.py
+```
+
+Now translate captions from English -> Swedish. Will take about ~26 hours to translate 12.5 million captions with an RTX 3090.
+
+```bash
+python 01_translate_sv.py
+```
+
+### Step 2: Multilingual captions
+
+We separate the original file into `n=150000` observations sized chunks for each language we are translating to. Run `02_multilingual_shard.py` to create a separate data file with 150k obs for each target language. Resulting files will be in `data_multi/` folder. The purpose of this script is also to merge target language metadata from `data/fine_tune_languages.csv` into the data files. This way the data files contain URL:s and languages codes for calling the correct language pair model and tokenizer names from `OPUS-MT` (via the `Helsinki-NLP` model repository on Huggingface).
+
+The list of language pairs and links to models were manually assembled. [This leaderboard](https://opus.nlpl.eu/leaderboard/) may help in getting an overview of further available pairs.
+
+```bash
+python 02_multilingual_shard.py
+```
+
+Clean up and remove the chunks that did not have a target language (file names ending with `nan`)
+
+```bash
+find data_multi | grep nan.feather | xargs rm -f
+```
+
+Run the multilingual translation script for every data file. Use the bash script `02_translate_multi.sh`. Results will be stored in `data_translated/`.
+
+```bash
+bash 02_translate_multi.sh
+```
+
+### Step 3 (optional): Merge to single big file
+
+Merge everything to the same file as the Swedish captions.
+
+```bash
+python 03_merge_sv_multi.py
+```
diff --git a/Multilingual_CLIP/translation/data/fine_tune_languages.csv b/Multilingual_CLIP/translation/data/fine_tune_languages.csv
new file mode 100644
index 0000000000000000000000000000000000000000..98f0b96f9eb8b13406853f4b6d7aa1d2998f508f
--- /dev/null
+++ b/Multilingual_CLIP/translation/data/fine_tune_languages.csv
@@ -0,0 +1,49 @@
+language_name,language_code,multi_target,target_code,opus_mt_url
+afrikaans,af,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-af
+albanian,sq,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-sq
+amharic,am,1,amh,https://huggingface.co/Helsinki-NLP/opus-mt-en-mul
+arabic,ar,1,ara,https://huggingface.co/Helsinki-NLP/opus-mt-en-ar
+azerbaijani,az,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-az
+bengali,bn,1,ben,https://huggingface.co/Helsinki-NLP/opus-mt-en-mul
+bosnian,bs,1,bos_Latn,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+bulgarian,bg,1,bul,https://huggingface.co/Helsinki-NLP/opus-mt-en-bg
+catalan,ca,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-ca
+chinese_simplified,zh,1,cmn_Hans,https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
+chinese_traditional,zh,1,cmn_Hant,https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
+croatian,hr,1,hrv,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+czech,cs,1,ces,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+danish,da,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-da
+dutch,nl,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-nl
+english,en,0,,
+estonian,et,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-et
+french,fr,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-fr
+german,de,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-de
+greek,el,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-el
+hindi,hi,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-hi
+hungarian,hu,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-hu
+icelandic,is,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-is
+indonesian,id,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-id
+italian,it,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-it
+japanese,ja,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-jap
+macedonian,mk,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-mk
+malayalam,ml,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-ml
+marathi,mr,1,mar,https://huggingface.co/Helsinki-NLP/opus-mt-en-mul
+polish,pl,1,pol,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+portuguese,pt,1,por,https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-pt
+romanian,ro,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-ro
+russian,ru,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-ru
+serbian,sr,1,srp_Cyrl,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+slovenian,sl,1,slv,https://huggingface.co/Helsinki-NLP/opus-mt-en-sla
+spanish,es,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-es
+swahili,sw,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-sw
+swedish,sv,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-sv
+tagalog,tl,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-tl
+telugu,te,1,tel,https://huggingface.co/Helsinki-NLP/opus-mt-en-mul
+turkish,tr,0,,https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-tr
+turkmen,tk,1,tuk,https://huggingface.co/Helsinki-NLP/opus-mt-en-trk
+ukrainian,uk,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-uk
+urdu,ur,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-ur
+uyghur,ug,1,uig_Arab,https://huggingface.co/Helsinki-NLP/opus-mt-en-trk
+uzbek,uz,1,uzb_Latn,https://huggingface.co/Helsinki-NLP/opus-mt-en-trk
+vietnamese,vi,1,vie,https://huggingface.co/Helsinki-NLP/opus-mt-en-vi
+xhosa,xh,0,,https://huggingface.co/Helsinki-NLP/opus-mt-en-xh
diff --git a/Multilingual_CLIP/translation/environment.yml b/Multilingual_CLIP/translation/environment.yml
new file mode 100644
index 0000000000000000000000000000000000000000..6cd5b5681ea7d382829532ec9a8c8ed12e9ddbfa
--- /dev/null
+++ b/Multilingual_CLIP/translation/environment.yml
@@ -0,0 +1,120 @@
+name: translate
+channels:
+ - pytorch
+ - defaults
+dependencies:
+ - _libgcc_mutex=0.1=main
+ - _openmp_mutex=4.5=1_gnu
+ - blas=1.0=mkl
+ - brotlipy=0.7.0=py38h27cfd23_1003
+ - bzip2=1.0.8=h7b6447c_0
+ - ca-certificates=2022.3.29=h06a4308_0
+ - certifi=2021.10.8=py38h06a4308_2
+ - cffi=1.15.0=py38hd667e15_1
+ - charset-normalizer=2.0.4=pyhd3eb1b0_0
+ - cryptography=36.0.0=py38h9ce1e76_0
+ - cudatoolkit=11.3.1=h2bc3f7f_2
+ - ffmpeg=4.3=hf484d3e_0
+ - freetype=2.11.0=h70c0345_0
+ - giflib=5.2.1=h7b6447c_0
+ - gmp=6.2.1=h2531618_2
+ - gnutls=3.6.15=he1e5248_0
+ - idna=3.3=pyhd3eb1b0_0
+ - intel-openmp=2021.4.0=h06a4308_3561
+ - jpeg=9d=h7f8727e_0
+ - lame=3.100=h7b6447c_0
+ - lcms2=2.12=h3be6417_0
+ - ld_impl_linux-64=2.35.1=h7274673_9
+ - libffi=3.3=he6710b0_2
+ - libgcc-ng=9.3.0=h5101ec6_17
+ - libgomp=9.3.0=h5101ec6_17
+ - libiconv=1.15=h63c8f33_5
+ - libidn2=2.3.2=h7f8727e_0
+ - libpng=1.6.37=hbc83047_0
+ - libstdcxx-ng=9.3.0=hd4cf53a_17
+ - libtasn1=4.16.0=h27cfd23_0
+ - libtiff=4.2.0=h85742a9_0
+ - libunistring=0.9.10=h27cfd23_0
+ - libuv=1.40.0=h7b6447c_0
+ - libwebp=1.2.2=h55f646e_0
+ - libwebp-base=1.2.2=h7f8727e_0
+ - lz4-c=1.9.3=h295c915_1
+ - mkl=2021.4.0=h06a4308_640
+ - mkl-service=2.4.0=py38h7f8727e_0
+ - mkl_fft=1.3.1=py38hd3c417c_0
+ - mkl_random=1.2.2=py38h51133e4_0
+ - ncurses=6.3=h7f8727e_2
+ - nettle=3.7.3=hbbd107a_1
+ - numpy=1.21.2=py38h20f2e39_0
+ - numpy-base=1.21.2=py38h79a1101_0
+ - openh264=2.1.1=h4ff587b_0
+ - openssl=1.1.1n=h7f8727e_0
+ - pip=21.2.4=py38h06a4308_0
+ - pycparser=2.21=pyhd3eb1b0_0
+ - pyopenssl=22.0.0=pyhd3eb1b0_0
+ - pysocks=1.7.1=py38h06a4308_0
+ - python=3.8.13=h12debd9_0
+ - pytorch=1.11.0=py3.8_cuda11.3_cudnn8.2.0_0
+ - pytorch-mutex=1.0=cuda
+ - readline=8.1.2=h7f8727e_1
+ - requests=2.27.1=pyhd3eb1b0_0
+ - setuptools=58.0.4=py38h06a4308_0
+ - six=1.16.0=pyhd3eb1b0_1
+ - sqlite=3.38.2=hc218d9a_0
+ - tk=8.6.11=h1ccaba5_0
+ - torchvision=0.12.0=py38_cu113
+ - typing_extensions=4.1.1=pyh06a4308_0
+ - urllib3=1.26.8=pyhd3eb1b0_0
+ - wheel=0.37.1=pyhd3eb1b0_0
+ - xz=5.2.5=h7b6447c_0
+ - zlib=1.2.11=h7f8727e_4
+ - zstd=1.4.9=haebb681_0
+ - pip:
+ - aiohttp==3.8.1
+ - aiosignal==1.2.0
+ - arabic-reshaper==2.1.3
+ - async-timeout==4.0.2
+ - attrs==21.4.0
+ - beautifulsoup4==4.11.1
+ - black==22.3.0
+ - click==8.1.2
+ - datasets==2.0.0
+ - diffimg==0.2.3
+ - dill==0.3.4
+ - filelock==3.6.0
+ - frozenlist==1.3.0
+ - fsspec==2022.3.0
+ - future==0.18.2
+ - huggingface-hub==0.5.1
+ - jiwer==2.3.0
+ - joblib==1.1.0
+ - multidict==6.0.2
+ - multiprocess==0.70.12.2
+ - mypy-extensions==0.4.3
+ - nltk==3.7
+ - opencv-python==4.5.5.64
+ - packaging==21.3
+ - pandas==1.4.2
+ - pathspec==0.9.0
+ - pillow==7.0.0
+ - platformdirs==2.5.1
+ - pyarrow==7.0.0
+ - pycountry==22.3.5
+ - pyparsing==3.0.8
+ - python-bidi==0.4.2
+ - python-dateutil==2.8.2
+ - python-levenshtein==0.12.2
+ - pytz==2022.1
+ - pyyaml==6.0
+ - regex==2022.3.15
+ - responses==0.18.0
+ - sacremoses==0.0.49
+ - sentencepiece==0.1.96
+ - soupsieve==2.3.2
+ - tokenizers==0.11.6
+ - tomli==2.0.1
+ - tqdm==4.64.0
+ - transformers==4.18.0
+ - trdg==1.6.0
+ - xxhash==3.0.0
+ - yarl==1.7.2