import gradio as gr from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image from model import * # SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1" # Constants # base = "stabilityai/stable-diffusion-xl-base-1.0" # repo = "ByteDance/SDXL-Lightning" # checkpoints = { # "1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1], # "2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2], # "4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4], # "8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8], # } # loaded = None # Ensure model and scheduler are initialized in GPU-enabled function # if torch.cuda.is_available(): # pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") # Function # @spaces.GPU(enable_queue=True) def generate_image(prompt): return prompt_to_img(prompt)[0] # Gradio Interface description = """ This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps. As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning """ with gr.Blocks(css="style.css") as demo: gr.HTML("

Text-to-Image with SDXL-Lightning ⚡

") gr.Markdown(description) with gr.Group(): with gr.Row(): prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) submit = gr.Button(scale=1, variant='primary') img = gr.Image(label='SDXL-Lightning Generated Image') prompt.submit(fn=generate_image, inputs=[prompt], outputs=img, ) submit.click(fn=generate_image, inputs=[prompt], outputs=img, ) demo.queue().launch()