Spaces:
Runtime error
Runtime error
File size: 38,375 Bytes
c334626 be61cf2 c334626 c81908d c334626 c81908d 1a02524 be61cf2 1a02524 c81908d c334626 c81908d c334626 c81908d c334626 be61cf2 1a02524 be61cf2 c81908d c334626 23d6920 c334626 be61cf2 23d6920 be61cf2 c334626 c81908d 23d6920 be61cf2 23d6920 c81908d be61cf2 c81908d 23d6920 c81908d 1a02524 c81908d c334626 c81908d 23d6920 1a02524 c81908d c334626 c81908d c334626 23d6920 c334626 c81908d c334626 23d6920 c334626 23d6920 c81908d 23d6920 be61cf2 23d6920 c334626 be61cf2 c334626 be61cf2 c334626 be61cf2 c334626 c81908d be61cf2 c81908d c334626 be61cf2 c334626 c81908d c334626 be61cf2 c81908d c334626 1a02524 23d6920 c334626 be61cf2 1a02524 c334626 be61cf2 c334626 1a02524 c334626 1a02524 c334626 1a02524 c334626 1a02524 c334626 be61cf2 c334626 be61cf2 1a02524 be61cf2 1a02524 c334626 be61cf2 c334626 be61cf2 c334626 be61cf2 c334626 be61cf2 c334626 be61cf2 c81908d be61cf2 c81908d be61cf2 c81908d be61cf2 c81908d c334626 be61cf2 c334626 be61cf2 c334626 c81908d c334626 be61cf2 c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d 1a02524 c81908d be61cf2 c81908d c334626 c81908d c334626 1a02524 c334626 c81908d c334626 1a02524 c334626 1a02524 c334626 23d6920 be61cf2 23d6920 c334626 c81908d be61cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
from glob import glob
import argparse
import torch
import numpy as np
import os
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10, ImageFolder
from datasets_prep.lsun import LSUN
from datasets_prep.stackmnist_data import StackedMNIST, _data_transforms_stacked_mnist
from datasets_prep.lmdb_datasets import LMDBDataset
from torch.multiprocessing import Process
import torch.distributed as dist
import shutil
import logging
from encoder import build_encoder
from utils import ResampledShards2
from torch.utils.tensorboard import SummaryWriter
def log_and_continue(exn):
logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
return True
def copy_source(file, output_dir):
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
def broadcast_params(params):
for param in params:
dist.broadcast(param.data, src=0)
#%% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1. - torch.exp(2. * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1-betas)
return sigmas, a_s, betas
class Diffusion_Coefficients():
def __init__(self, args, device):
self.sigmas, self.a_s, _ = get_sigma_schedule(args, device=device)
self.a_s_cum = np.cumprod(self.a_s.cpu())
self.sigmas_cum = np.sqrt(1 - self.a_s_cum ** 2)
self.a_s_prev = self.a_s.clone()
self.a_s_prev[-1] = 1
self.a_s_cum = self.a_s_cum.to(device)
self.sigmas_cum = self.sigmas_cum.to(device)
self.a_s_prev = self.a_s_prev.to(device)
def q_sample(coeff, x_start, t, *, noise=None):
"""
Diffuse the data (t == 0 means diffused for t step)
"""
if noise is None:
noise = torch.randn_like(x_start)
x_t = extract(coeff.a_s_cum, t, x_start.shape) * x_start + \
extract(coeff.sigmas_cum, t, x_start.shape) * noise
return x_t
def q_sample_pairs(coeff, x_start, t):
"""
Generate a pair of disturbed images for training
:param x_start: x_0
:param t: time step t
:return: x_t, x_{t+1}
"""
noise = torch.randn_like(x_start)
x_t = q_sample(coeff, x_start, t)
x_t_plus_one = extract(coeff.a_s, t+1, x_start.shape) * x_t + \
extract(coeff.sigmas, t+1, x_start.shape) * noise
return x_t, x_t_plus_one
#%% posterior sampling
class Posterior_Coefficients():
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
#we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def sample_posterior(coefficients, x_0,x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = (1 - (t == 0).type(torch.float32))
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
x = x_init
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
return x
from contextlib import suppress
def filter_no_caption(sample):
return 'txt' in sample
def get_autocast(precision):
if precision == 'amp':
return torch.cuda.amp.autocast
elif precision == 'amp_bfloat16':
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return suppress
def train(rank, gpu, args):
from score_sde.models.discriminator import Discriminator_small, Discriminator_large, CondAttnDiscriminator, SmallCondAttnDiscriminator
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
from EMA import EMA
#torch.manual_seed(args.seed + rank)
#torch.cuda.manual_seed(args.seed + rank)
#torch.cuda.manual_seed_all(args.seed + rank)
device = "cuda"
autocast = get_autocast(args.precision)
batch_size = args.batch_size
nz = args.nz #latent dimension
if args.dataset == 'cifar10':
dataset = CIFAR10('./data', train=True, transform=transforms.Compose([
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]), download=True)
elif args.dataset == 'stackmnist':
train_transform, valid_transform = _data_transforms_stacked_mnist()
dataset = StackedMNIST(root='./data', train=True, download=False, transform=train_transform)
elif args.dataset == 'lsun':
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
train_data = LSUN(root='/datasets/LSUN/', classes=['church_outdoor_train'], transform=train_transform)
subset = list(range(0, 120000))
dataset = torch.utils.data.Subset(train_data, subset)
elif args.dataset == 'celeba_256':
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
dataset = LMDBDataset(root='/datasets/celeba-lmdb/', name='celeba', train=True, transform=train_transform)
elif args.dataset == "image_folder":
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
dataset = ImageFolder(root=args.dataset_root, transform=train_transform)
elif args.dataset == 'wds':
import webdataset as wds
if args.preprocessing == "resize":
train_transform = transforms.Compose([
transforms.Resize(args.image_size),
transforms.CenterCrop(args.image_size),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
elif args.preprocessing == "random_resized_crop_v1":
train_transform = transforms.Compose([
transforms.RandomResizedCrop(args.image_size, scale=(0.95, 1.0), interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
shards = glob(os.path.join(args.dataset_root, "*.tar")) if os.path.isdir(args.dataset_root) else args.dataset_root
pipeline = [ResampledShards2(shards)]
pipeline.extend([
wds.split_by_node,
wds.split_by_worker,
wds.tarfile_to_samples(handler=log_and_continue),
wds.shuffle(
bufsize=5000,
initial=1000,
),
])
pipeline.extend([
wds.select(filter_no_caption),
wds.decode("pilrgb", handler=log_and_continue),
wds.rename(image="jpg;png"),
wds.map_dict(image=train_transform),
wds.to_tuple("image","txt"),
wds.batched(batch_size, partial=False),
])
dataset = wds.DataPipeline(*pipeline)
data_loader = wds.WebLoader(
dataset,
batch_size=None,
shuffle=False,
num_workers=8,
)
if args.dataset != "wds":
train_sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=args.world_size,
rank=rank
)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
drop_last=True,
pin_memory=True,
sampler=train_sampler,
)
text_encoder = build_encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
args.cond_size = text_encoder.output_size
netG = NCSNpp(args).to(device)
nb_params = 0
for param in netG.parameters():
nb_params += param.flatten().shape[0]
print("Number of generator parameters:", nb_params)
if args.discr_type == "small":
netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "small_cond_attn":
netD = SmallCondAttnDiscriminator(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large":
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large_attn_pool":
netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
attn_pool=True,
act=nn.LeakyReLU(0.2)).to(device)
elif args.discr_type == "large_cond_attn":
netD = CondAttnDiscriminator(
nc = 2*args.num_channels,
ngf = args.ngf,
t_emb_dim = args.t_emb_dim,
cond_size=text_encoder.output_size,
act=nn.LeakyReLU(0.2)).to(device)
broadcast_params(netG.parameters())
broadcast_params(netD.parameters())
if args.fsdp:
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
netG = FSDP(
netG,
flatten_parameters=True,
verbose=True,
)
optimizerD = optim.Adam(netD.parameters(), lr=args.lr_d, betas = (args.beta1, args.beta2))
optimizerG = optim.Adam(netG.parameters(), lr=args.lr_g, betas = (args.beta1, args.beta2))
if args.use_ema:
optimizerG = EMA(optimizerG, ema_decay=args.ema_decay)
schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5)
schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5)
if args.fsdp:
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])
else:
netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu])
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])
if args.grad_checkpointing:
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
netG = checkpoint_wrapper(netG)
exp = args.exp
parent_dir = "./saved_info/dd_gan/{}".format(args.dataset)
exp_path = os.path.join(parent_dir,exp)
if rank == 0:
if not os.path.exists(exp_path):
os.makedirs(exp_path)
copy_source(__file__, exp_path)
shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models'))
coeff = Diffusion_Coefficients(args, device)
pos_coeff = Posterior_Coefficients(args, device)
T = get_time_schedule(args, device)
checkpoint_file = os.path.join(exp_path, 'content.pth')
if rank == 0:
log_writer = SummaryWriter(exp_path)
if args.resume and os.path.exists(checkpoint_file):
checkpoint = torch.load(checkpoint_file, map_location="cpu")
init_epoch = checkpoint['epoch']
epoch = init_epoch
netG.load_state_dict(checkpoint['netG_dict'])
# load G
optimizerG.load_state_dict(checkpoint['optimizerG'])
schedulerG.load_state_dict(checkpoint['schedulerG'])
# load D
netD.load_state_dict(checkpoint['netD_dict'])
optimizerD.load_state_dict(checkpoint['optimizerD'])
schedulerD.load_state_dict(checkpoint['schedulerD'])
global_step = checkpoint['global_step']
print("=> loaded checkpoint (epoch {})"
.format(checkpoint['epoch']))
else:
global_step, epoch, init_epoch = 0, 0, 0
use_cond_attn_discr = args.discr_type in ("large_cond_attn", "small_cond_attn", "large_attn_pool")
for epoch in range(init_epoch, args.num_epoch+1):
if args.dataset == "wds":
os.environ["WDS_EPOCH"] = str(epoch)
else:
train_sampler.set_epoch(epoch)
for iteration, (x, y) in enumerate(data_loader):
#print(x.shape)
if args.dataset != "wds":
y = [str(yi) for yi in y.tolist()]
if args.classifier_free_guidance_proba:
u = (np.random.uniform(size=len(y)) <= args.classifier_free_guidance_proba).tolist()
y = ["" if ui else yi for yi,ui in zip(y, u)]
with torch.no_grad():
cond_pooled, cond, cond_mask = text_encoder(y, return_only_pooled=False)
for p in netD.parameters():
p.requires_grad = True
netD.zero_grad()
#sample from p(x_0)
real_data = x.to(device, non_blocking=True)
#sample t
t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
x_t.requires_grad = True
cond_for_discr = (cond_pooled, cond, cond_mask) if use_cond_attn_discr else cond_pooled
if args.grad_penalty_cond:
if use_cond_attn_discr:
#cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
else:
cond_for_discr.requires_grad = True
# train with real
with autocast():
D_real = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errD_real = F.softplus(-D_real)
errD_real = errD_real.mean()
errD_real.backward(retain_graph=True)
grad_penalty = None
if args.lazy_reg is None:
if args.grad_penalty_cond:
inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,)
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=inputs, create_graph=True
)[0]
grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real])
grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=x_t, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
if global_step % args.lazy_reg == 0:
if args.grad_penalty_cond:
inputs = (x_t,) + (cond,) if use_cond_attn_discr else (cond_for_discr,)
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=inputs, create_graph=True
)[0]
grad_real = torch.cat([g.view(g.size(0), -1) for g in grad_real])
grad_penalty = (grad_real.norm(2, dim=1) ** 2).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
else:
grad_real = torch.autograd.grad(
outputs=D_real.sum(), inputs=x_t, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = args.r1_gamma / 2 * grad_penalty
grad_penalty.backward()
# train with fake
latent_z = torch.randn(batch_size, nz, device=device)
with autocast():
if args.grad_checkpointing:
ginp = x_tp1.detach()
ginp.requires_grad = True
latent_z.requires_grad = True
cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask))
else:
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errD_fake = F.softplus(output)
errD_fake = errD_fake.mean()
if args.mismatch_loss:
# following https://github.com/tobran/DF-GAN/blob/bc38a4f795c294b09b4ef5579cd4ff78807e5b96/code/lib/modules.py,
# we add a discr loss for (real image, non matching text)
#inds = torch.flip(torch.arange(len(x_t)), dims=(0,))
with autocast():
inds = torch.cat([torch.arange(1,len(x_t)),torch.arange(1)])
cond_for_discr_mis = (cond_pooled[inds], cond[inds], cond_mask[inds]) if use_cond_attn_discr else cond_pooled[inds]
D_real_mis = netD(x_t, t, x_tp1.detach(), cond=cond_for_discr_mis).view(-1)
errD_real_mis = F.softplus(D_real_mis)
errD_real_mis = errD_real_mis.mean()
errD_fake = errD_fake * 0.5 + errD_real_mis * 0.5
errD_fake.backward()
errD = errD_real + errD_fake
# Update D
optimizerD.step()
#update G
for p in netD.parameters():
p.requires_grad = False
netG.zero_grad()
t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
latent_z = torch.randn(batch_size, nz,device=device)
with autocast():
if args.grad_checkpointing:
ginp = x_tp1.detach()
ginp.requires_grad = True
latent_z.requires_grad = True
cond_pooled.requires_grad = True
cond.requires_grad = True
#cond_mask.requires_grad = True
x_0_predict = netG(ginp, t, latent_z, cond=(cond_pooled, cond, cond_mask))
else:
x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_for_discr).view(-1)
errG = F.softplus(-output)
errG = errG.mean()
errG.backward()
optimizerG.step()
if (iteration % 10 == 0) and (rank == 0):
log_writer.add_scalar('g_loss', errG.item(), global_step)
log_writer.add_scalar('d_loss', errD.item(), global_step)
if grad_penalty is not None:
log_writer.add_scalar('grad_penalty', grad_penalty.item(), global_step)
global_step += 1
if iteration % 100 == 0:
if rank == 0:
print('epoch {} iteration{}, G Loss: {}, D Loss: {}'.format(epoch,iteration, errG.item(), errD.item()))
print('Global step:', global_step)
if iteration % 1000 == 0:
x_t_1 = torch.randn_like(real_data)
with autocast():
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask))
if rank == 0:
torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}_iteration_{}.png'.format(epoch, iteration)), normalize=True)
if args.save_content:
dist.barrier()
print('Saving content.')
def to_cpu(d):
for k, v in d.items():
d[k] = v.cpu()
return d
if args.fsdp:
netG_state_dict = to_cpu(netG.state_dict())
netD_state_dict = to_cpu(netD.state_dict())
#netG_optim_state_dict = (netG.gather_full_optim_state_dict(optimizerG))
netG_optim_state_dict = optimizerG.state_dict()
#print(netG_optim_state_dict)
netD_optim_state_dict = (optimizerD.state_dict())
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'netG_dict': netG_state_dict, 'optimizerG': netG_optim_state_dict,
'schedulerG': schedulerG.state_dict(), 'netD_dict': netD_state_dict,
'optimizerD': netD_optim_state_dict, 'schedulerD': schedulerD.state_dict()}
if rank == 0:
torch.save(content, os.path.join(exp_path, 'content.pth'))
torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
if args.use_ema and rank == 0:
torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
#if args.use_ema:
# dist.barrier()
print("Saved content")
else:
if rank == 0:
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(),
'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(),
'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()}
torch.save(content, os.path.join(exp_path, 'content.pth'))
torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
if not args.no_lr_decay:
schedulerG.step()
schedulerD.step()
"""
if rank == 0:
if epoch % 10 == 0:
torchvision.utils.save_image(x_pos_sample, os.path.join(exp_path, 'xpos_epoch_{}.png'.format(epoch)), normalize=True)
x_t_1 = torch.randn_like(real_data)
with autocast():
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask))
torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}.png'.format(epoch)), normalize=True)
if args.save_content:
if epoch % args.save_content_every == 0:
print('Saving content.')
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(),
'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(),
'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()}
torch.save(content, os.path.join(exp_path, 'content.pth'))
torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
if epoch % args.save_ckpt_every == 0:
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
if args.use_ema:
optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
dist.barrier()
"""
def init_processes(rank, size, fn, args):
""" Initialize the distributed environment. """
import os
args.rank = int(os.environ['SLURM_PROCID'])
args.world_size = int(os.getenv("SLURM_NTASKS"))
args.local_rank = int(os.environ['SLURM_LOCALID'])
print(args.rank, args.world_size)
args.master_address = os.getenv("SLURM_LAUNCH_NODE_IPADDR")
os.environ['MASTER_ADDR'] = args.master_address
os.environ['MASTER_PORT'] = "12345"
torch.cuda.set_device(args.local_rank)
gpu = args.local_rank
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=args.world_size)
fn(rank, gpu, args)
dist.barrier()
cleanup()
def cleanup():
dist.destroy_process_group()
#%%
if __name__ == '__main__':
parser = argparse.ArgumentParser('ddgan parameters')
parser.add_argument('--seed', type=int, default=1024,
help='seed used for initialization')
parser.add_argument('--resume', action='store_true',default=False)
parser.add_argument('--masked_mean', action='store_true',default=False)
parser.add_argument('--mismatch_loss', action='store_true',default=False)
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
parser.add_argument('--cross_attention', action='store_true',default=False)
parser.add_argument('--fsdp', action='store_true',default=False)
parser.add_argument('--grad_checkpointing', action='store_true',default=False)
parser.add_argument('--image_size', type=int, default=32,
help='size of image')
parser.add_argument('--num_channels', type=int, default=3,
help='channel of image')
parser.add_argument('--centered', action='store_false', default=True,
help='-1,1 scale')
parser.add_argument('--use_geometric', action='store_true',default=False)
parser.add_argument('--beta_min', type=float, default= 0.1,
help='beta_min for diffusion')
parser.add_argument('--beta_max', type=float, default=20.,
help='beta_max for diffusion')
parser.add_argument('--classifier_free_guidance_proba', type=float, default=0.0)
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model')
parser.add_argument('--n_mlp', type=int, default=3,
help='number of mlp layers for z')
parser.add_argument('--ch_mult', nargs='+', type=int,
help='channel multiplier')
parser.add_argument('--num_res_blocks', type=int, default=2,
help='number of resnet blocks per scale')
parser.add_argument('--attn_resolutions', default=(16,), nargs='+', type=int,
help='resolution of applying attention')
parser.add_argument('--dropout', type=float, default=0.,
help='drop-out rate')
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
help='always up/down sampling with conv')
parser.add_argument('--conditional', action='store_false', default=True,
help='noise conditional')
parser.add_argument('--fir', action='store_false', default=True,
help='FIR')
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
help='FIR kernel')
parser.add_argument('--skip_rescale', action='store_false', default=True,
help='skip rescale')
parser.add_argument('--resblock_type', default='biggan',
help='tyle of resnet block, choice in biggan and ddpm')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
help='type of time embedding')
parser.add_argument('--fourier_scale', type=float, default=16.,
help='scale of fourier transform')
parser.add_argument('--not_use_tanh', action='store_true',default=False)
#geenrator and training
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--dataset_root', default='', help='name of dataset')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--num_timesteps', type=int, default=4)
parser.add_argument('--z_emb_dim', type=int, default=256)
parser.add_argument('--t_emb_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=128, help='input batch size')
parser.add_argument('--num_epoch', type=int, default=1200)
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--lr_g', type=float, default=1.5e-4, help='learning rate g')
parser.add_argument('--lr_d', type=float, default=1e-4, help='learning rate d')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.9,
help='beta2 for adam')
parser.add_argument('--no_lr_decay',action='store_true', default=False)
parser.add_argument('--grad_penalty_cond', action='store_true',default=False)
parser.add_argument('--use_ema', action='store_true', default=False,
help='use EMA or not')
parser.add_argument('--ema_decay', type=float, default=0.9999, help='decay rate for EMA')
parser.add_argument('--r1_gamma', type=float, default=0.05, help='coef for r1 reg')
parser.add_argument('--lazy_reg', type=int, default=None,
help='lazy regulariation.')
parser.add_argument('--save_content', action='store_true',default=False)
parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs')
parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs')
parser.add_argument('--discr_type', type=str, default="large")
parser.add_argument('--preprocessing', type=str, default="resize")
parser.add_argument('--precision', type=str, default="fp32")
###ddp
parser.add_argument('--num_proc_node', type=int, default=1,
help='The number of nodes in multi node env.')
parser.add_argument('--num_process_per_node', type=int, default=1,
help='number of gpus')
parser.add_argument('--node_rank', type=int, default=0,
help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process in the node')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
args = parser.parse_args()
# args.world_size = args.num_proc_node * args.num_process_per_node
args.world_size = int(os.getenv("SLURM_NTASKS"))
args.rank = int(os.environ['SLURM_PROCID'])
# size = args.num_process_per_node
init_processes(args.rank, args.world_size, train, args)
|