Spaces:
Build error
Build error
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import cv2 | |
from einops import rearrange | |
from imageio import imwrite | |
from pydantic import validator | |
from my.utils import ( | |
tqdm, EventStorage, HeartBeat, EarlyLoopBreak, | |
get_event_storage, get_heartbeat, read_stats | |
) | |
from my.config import BaseConf, dispatch, optional_load_config | |
from my.utils.seed import seed_everything | |
from adapt import ScoreAdapter, karras_t_schedule | |
from run_img_sampling import GDDPM, SD, StableDiffusion | |
from misc import torch_samps_to_imgs | |
from pose import PoseConfig | |
from run_nerf import VoxConfig | |
from voxnerf.utils import every | |
from voxnerf.render import ( | |
as_torch_tsrs, rays_from_img, ray_box_intersect, render_ray_bundle | |
) | |
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis | |
device_glb = torch.device("cuda") | |
def tsr_stats(tsr): | |
return { | |
"mean": tsr.mean().item(), | |
"std": tsr.std().item(), | |
"max": tsr.max().item(), | |
} | |
class SJC(BaseConf): | |
family: str = "sd" | |
gddpm: GDDPM = GDDPM() | |
sd: SD = SD( | |
variant="v1", | |
prompt="A high quality photo of a delicious burger", | |
scale=100.0 | |
) | |
lr: float = 0.05 | |
n_steps: int = 10000 | |
vox: VoxConfig = VoxConfig( | |
model_type="V_SD", grid_size=100, density_shift=-1.0, c=3, | |
blend_bg_texture=True, bg_texture_hw=4, | |
bbox_len=1.0 | |
) | |
pose: PoseConfig = PoseConfig(rend_hw=64, FoV=60.0, R=1.5) | |
emptiness_scale: int = 10 | |
emptiness_weight: int = 1e4 | |
emptiness_step: float = 0.5 | |
emptiness_multiplier: float = 20.0 | |
depth_weight: int = 0 | |
var_red: bool = True | |
def check_vox(cls, vox_cfg, values): | |
family = values['family'] | |
if family == "sd": | |
vox_cfg.c = 4 | |
return vox_cfg | |
def run(self): | |
cfgs = self.dict() | |
family = cfgs.pop("family") | |
model = getattr(self, family).make() | |
cfgs.pop("vox") | |
vox = self.vox.make() | |
cfgs.pop("pose") | |
poser = self.pose.make() | |
sjc_3d(**cfgs, poser=poser, model=model, vox=vox) | |
def sjc_3d( | |
poser, vox, model: ScoreAdapter, | |
lr, n_steps, emptiness_scale, emptiness_weight, emptiness_step, emptiness_multiplier, | |
depth_weight, var_red, **kwargs | |
): | |
del kwargs | |
assert model.samps_centered() | |
_, target_H, target_W = model.data_shape() | |
bs = 1 | |
aabb = vox.aabb.T.cpu().numpy() | |
vox = vox.to(device_glb) | |
opt = torch.optim.Adamax(vox.opt_params(), lr=lr) | |
H, W = poser.H, poser.W | |
Ks, poses, prompt_prefixes = poser.sample_train(n_steps) | |
ts = model.us[30:-10] | |
fuse = EarlyLoopBreak(5) | |
# same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1) | |
n_steps=200 | |
with tqdm(total=n_steps) as pbar, \ | |
HeartBeat(pbar) as hbeat, \ | |
EventStorage() as metric: | |
for i in range(n_steps): | |
if fuse.on_break(): | |
break | |
p = f"{prompt_prefixes[i]} {model.prompt}" | |
score_conds = model.prompts_emb([p]) | |
# text_z = model.get_text_embeds([p],[""]) | |
score_conds['c']=score_conds['c'].repeat(bs,1,1) | |
score_conds['uc']=score_conds['uc'].repeat(bs,1,1) | |
y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True) | |
if isinstance(model, StableDiffusion): | |
pass | |
else: | |
y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear') | |
opt.zero_grad() | |
with torch.no_grad(): | |
chosen_σs = np.random.choice(ts, bs, replace=False) | |
chosen_σs = chosen_σs.reshape(-1, 1, 1, 1) | |
chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32) | |
# chosen_σs = us[i] | |
noise = torch.randn(bs, *y.shape[1:], device=model.device) | |
zs = y + chosen_σs * noise | |
Ds = model.denoise(zs, chosen_σs, **score_conds) | |
if var_red: | |
grad = (Ds - y) / chosen_σs | |
else: | |
grad = (Ds - zs) / chosen_σs | |
grad = grad.mean(0, keepdim=True) | |
y.backward(-grad, retain_graph=True) | |
if depth_weight > 0: | |
center_depth = depth[7:-7, 7:-7] | |
border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50) | |
center_depth_mean = center_depth.mean() | |
depth_diff = center_depth_mean - border_depth_mean | |
depth_loss = - torch.log(depth_diff + 1e-12) | |
depth_loss = depth_weight * depth_loss | |
depth_loss.backward(retain_graph=True) | |
emptiness_loss = torch.log(1 + emptiness_scale * ws).mean() | |
emptiness_loss = emptiness_weight * emptiness_loss | |
if emptiness_step * n_steps <= i: | |
emptiness_loss *= emptiness_multiplier | |
emptiness_loss.backward() | |
opt.step() | |
metric.put_scalars(**tsr_stats(y)) | |
if every(pbar, percent=1): | |
with torch.no_grad(): | |
if isinstance(model, StableDiffusion): | |
y = model.decode(y) | |
# print(y.shape) | |
# print(depth.shape) | |
vis_routine(metric, y, depth) | |
# if every(pbar, step=2500): | |
# metric.put_artifact( | |
# "ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn) | |
# ) | |
# with EventStorage("test"): | |
# evaluate(model, vox, poser) | |
metric.step() | |
pbar.update() | |
pbar.set_description(p) | |
hbeat.beat() | |
metric.put_artifact( | |
"ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn) | |
) | |
with EventStorage("test"): | |
evaluate(model, vox, poser) | |
metric.step() | |
hbeat.done() | |
def evaluate(score_model, vox, poser): | |
H, W = poser.H, poser.W | |
vox.eval() | |
K, poses = poser.sample_test(100) | |
fuse = EarlyLoopBreak(5) | |
metric = get_event_storage() | |
hbeat = get_heartbeat() | |
aabb = vox.aabb.T.cpu().numpy() | |
vox = vox.to(device_glb) | |
num_imgs = len(poses) | |
for i in (pbar := tqdm(range(num_imgs))): | |
if fuse.on_break(): | |
break | |
pose = poses[i] | |
y, depth = render_one_view(vox, aabb, H, W, K, pose) | |
if isinstance(score_model, StableDiffusion): | |
y = score_model.decode(y) | |
vis_routine(metric, y, depth) | |
metric.step() | |
hbeat.beat() | |
metric.step() | |
def render_one_view(vox, aabb, H, W, K, pose, return_w=False): | |
N = H * W | |
ro, rd = rays_from_img(H, W, K, pose) | |
# print(ro.shape) | |
ro, rd, t_min, t_max = scene_box_filter(ro, rd, aabb) | |
assert len(ro) == N, "for now all pixels must be in" | |
ro, rd, t_min, t_max = as_torch_tsrs(vox.device, ro, rd, t_min, t_max) | |
rgbs, depth, weights = render_ray_bundle(vox, ro, rd, t_min, t_max) | |
rgbs = rearrange(rgbs, "(h w) c -> 1 c h w", h=H, w=W) | |
depth = rearrange(depth, "(h w) 1 -> h w", h=H, w=W) | |
if return_w: | |
return rgbs, depth, weights | |
else: | |
return rgbs, depth | |
def scene_box_filter(ro, rd, aabb): | |
_, t_min, t_max = ray_box_intersect(ro, rd, aabb) | |
# do not render what's behind the ray origin | |
t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0) | |
return ro, rd, t_min, t_max | |
def vis_routine(metric, y, depth): | |
pane = nerf_vis(y, depth, final_H=256) | |
im = torch_samps_to_imgs(y)[0] | |
# depth_ = torch.nn.functional.interpolate( | |
# depth.unsqueeze(dim=0).unsqueeze(dim=0), (512,512), mode='bilinear', antialias=True | |
# ) | |
depth_pt = depth.squeeze().clone() | |
mask=(depth_pt<5) | |
# import pdb; pdb.set_trace() | |
depth_pt = -1* depth_pt | |
depth_pt -= torch.min(depth_pt) | |
depth_pt /= torch.max(depth_pt) | |
depth_pt = depth_pt.cpu().numpy() | |
bg_th=0.01 | |
depth_np = -1*depth.squeeze() | |
depth_np[mask] -= torch.min(depth_np[mask]) | |
depth_np[mask] /= torch.max(depth_np[mask]) | |
depth_np[~mask] = torch.min(depth_np[mask]) | |
depth_np=depth_np.cpu().numpy() | |
# depth_np = np.log(1. + depth_np + 1e-12) | |
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, scale=1000, ksize=3) | |
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, scale=1000,ksize=3) | |
z = np.ones_like(x) * 2*np.pi | |
x[depth_pt < bg_th] = 0 | |
y[depth_pt < bg_th] = 0 | |
normal = np.stack([x, y, z], axis=2) | |
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 | |
normal=np.array(torch.nn.functional.interpolate(torch.from_numpy(normal).permute(2,0,1).unsqueeze(dim=0),(512,512),mode='bilinear').squeeze().cpu().permute(1,2,0)) | |
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
depth = depth.cpu().numpy() | |
metric.put_artifact("normal",'.png',"",lambda fn: imwrite(fn, normal_image)) | |
metric.put_artifact("view", ".png", "",lambda fn: imwrite(fn, pane)) | |
metric.put_artifact("img", ".png", "",lambda fn: imwrite(fn, im)) | |
metric.put_artifact("depth", ".npy","", lambda fn: np.save(fn, depth)) | |
def evaluate_ckpt(): | |
cfg = optional_load_config(fname="full_config.yml") | |
assert len(cfg) > 0, "can't find cfg file" | |
mod = SJC(**cfg) | |
family = cfg.pop("family") | |
model: ScoreAdapter = getattr(mod, family).make() | |
vox = mod.vox.make() | |
poser = mod.pose.make() | |
pbar = tqdm(range(1)) | |
with EventStorage(), HeartBeat(pbar): | |
ckpt_fname = latest_ckpt() | |
state = torch.load(ckpt_fname, map_location="cpu") | |
vox.load_state_dict(state) | |
vox.to(device_glb) | |
with EventStorage("test"): | |
evaluate(model, vox, poser) | |
def latest_ckpt(): | |
ts, ys = read_stats("./", "ckpt") | |
assert len(ys) > 0 | |
return ys[-1] | |
if __name__ == "__main__": | |
seed_everything(0) | |
dispatch(SJC) | |
# evaluate_ckpt() | |