import gradio as gr import os import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread TITLE = '''

Google Gemma2 2B it

''' DESCRIPTION = '''
''' LICENSE = """

--- Built with Gemma """ PLACEHOLDER = """

Meta llama3.1

Ask me anything...

""" css = """ h1 { text-align: center; display: block; display: flex; align-items: center; justify-content: center; } #duplicate-button { margin-left: 10px; color: white; background: #1565c0; border-radius: 100vh; font-size: 1rem; padding: 3px 5px; } """ model_id = "bigscience/bloomz-560m" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] MAX_INPUT_TOKEN_LENGTH = 1024 # Gradio inference function @spaces.GPU(duration=120) def chat_llama3_1_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=temperature != 0, # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. temperature=temperature, eos_token_id=terminators, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) #gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr.ChatInterface( fn=chat_llama3_1_8b, chatbot=chatbot, fill_height=True, examples_per_page=3, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], examples=[ ["What is the best way to open a can of worms?"], ["The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. "], ['How to setup a human base on Mars? Give short answer.'], ['Explain theory of relativity to me like I’m 8 years old.'], ['What is 9,000 * 9,000?'], ['Write a pun-filled happy birthday message to my friend Alex.'], ['Justify why a penguin might make a good king of the jungle.'] ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()