Spaces:
Runtime error
Runtime error
from typing import Dict, List, Any | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
from peft import PeftModel | |
import json | |
import os | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
base_model_path = json.load(open(os.path.join(path, "training_params.json")))["model"] | |
model = AutoModelForCausalLM.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
model = PeftModel.from_pretrained(model, path) | |
model = model.merge_and_unload() | |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
if parameters is not None: | |
prediction = self.pipeline(inputs, **parameters) | |
else: | |
prediction = self.pipeline(inputs) | |
return prediction |