File size: 6,330 Bytes
9ecbf84
b6c28a6
27e09a4
4a12906
9310ba1
43a7079
 
 
 
27e09a4
9310ba1
43a7079
 
9310ba1
43a7079
7ea924f
0830175
4b81ca2
27e09a4
 
0a1b03b
770d29d
38dd464
770d29d
187ceeb
0830175
 
 
19af074
0830175
19af074
27e09a4
19af074
27e09a4
 
 
 
 
 
 
 
 
43a7079
 
27e09a4
 
 
43a7079
 
 
 
27e09a4
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
770d29d
43a7079
27e09a4
 
 
 
 
 
 
 
 
43a7079
27e09a4
7b75ee1
43a7079
6c68933
27e09a4
 
 
43a7079
 
 
 
 
 
 
 
 
 
7b75ee1
43a7079
 
27e09a4
 
 
 
 
 
43a7079
 
27e09a4
 
 
 
 
 
 
43a7079
 
27e09a4
43a7079
 
 
 
 
 
27e09a4
43a7079
27e09a4
 
43a7079
 
 
 
 
 
27e09a4
43a7079
27e09a4
43a7079
 
27e09a4
43a7079
 
27e09a4
43a7079
 
 
 
 
27e09a4
 
 
43a7079
27e09a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a7079
27e09a4
 
 
 
 
 
43a7079
27e09a4
 
43a7079
27e09a4
43a7079
27e09a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import subprocess
import os
import torch

import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from transformers.utils.import_utils import _is_package_available

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = """
# [MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention](https://aka.ms/MInference) (NeurIPS'24 Spotlight)

_Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_

<h3 style="text-align: center;"><a href="https://github.com/microsoft/MInference" target="blank"> [Code]</a> 
<a href="https://aka.ms/MInference" target="blank"> [Project Page]</a>
<a href="https://arxiv.org/abs/2407.02490" target="blank"> [Paper]</a></h3>

## News
- 🧤 [24/09/26] MInference has been accepted as **spotlight** at **NeurIPS'24**. See you in Vancouver!
- 👘 [24/09/16] We are pleased to announce the release of our KV cache offloading work, [RetrievalAttention](https://aka.ms/RetrievalAttention), which accelerates long-context LLM inference via vector retrieval.
- 🥤 [24/07/24] MInference support [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) now.
- 🪗 [24/07/07] Thanks @AK for sponsoring. You can now use MInference online in the [HF Demo](https://huggingface.co/spaces/microsoft/MInference) with ZeroGPU.
- 📃 [24/07/03] Due to an issue with arXiv, the PDF is currently unavailable there. You can find the paper at this [link](https://export.arxiv.org/pdf/2407.02490).
- 🧩 [24/07/03] We will present **MInference 1.0** at the _**Microsoft Booth**_ and _**ES-FoMo**_ at ICML'24. See you in Vienna!

<font color="brown"><b>This is only a deployment demo. You can follow the code below to try MInference locally.</b></font>

```bash
git clone https://huggingface.co/spaces/microsoft/MInference
cd MInference
pip install -r requirments.txt
pip install flash_attn pycuda==2023.1
python app.py
```
"""

LICENSE = """
<div style="text-align: center;">
    <p>© 2024 Microsoft</p>
</div>
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-3-8B-Gradient-1M w/ MInference</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
"""

# Load the tokenizer and model
model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" if torch.cuda.is_available() else "Qwen/Qwen2-0.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name, torch_dtype="auto", device_map="auto"
)  # to("cuda:0")

if torch.cuda.is_available() and _is_package_available("pycuda"):
    from minference import MInference

    minference_patch = MInference("minference", model_name)
    model = minference_patch(model)

terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]


@spaces.GPU(duration=120)
def chat_llama3_8b(
    message: str, history: list, temperature: float, max_new_tokens: int
) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    # global model
    conversation = []
    for user, assistant in history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(
        model.device
    )

    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
    if temperature == 0:
        generate_kwargs["do_sample"] = False

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        # print(outputs)
        yield "".join(outputs)


# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")

with gr.Blocks(fill_height=True, css=css) as demo:

    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters", open=False, render=False
        ),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.95,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=512,
                label="Max new tokens",
                render=False,
            ),
        ],
        examples=[
            ["How to setup a human base on Mars? Give short answer."],
            ["Explain theory of relativity to me like I’m 8 years old."],
            ["What is 9,000 * 9,000?"],
            ["Write a pun-filled happy birthday message to my friend Alex."],
            ["Justify why a penguin might make a good king of the jungle."],
        ],
        cache_examples=False,
    )

    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.launch(share=False)