Spaces:
Runtime error
Runtime error
# Import the libraries | |
import os | |
import uuid | |
import joblib | |
import json | |
# Run the training script placed in the same directory as app.py | |
# The training script will train and persist a linear regression | |
# model with the filename 'model.joblib' | |
os.system("python train.py") | |
# Load the freshly trained model from disk | |
insurance_charge_predictor = joblib.load("model.joblib") | |
# Prepare the logging functionality | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
scheduler = CommitScheduler( | |
repo_id="insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id | |
repo_type="dataset", | |
folder_path=log_folder, | |
path_in_repo="data", | |
every=2 | |
) | |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model | |
# the functions runs when 'Submit' is clicked or when a API request is made | |
def predict_insurance_charge(age, sex, bmi, children, smoker, region): | |
sample = { | |
'age': age, | |
'bmi': bmi, | |
'children': children, | |
'sex': sex, | |
'smoker': smoker, | |
'region': region | |
} | |
data_point = pd.DataFrame([sample]) | |
prediction = insurance_charge_predictor.predict(data_point).tolist() | |
# While the prediction is made, log both the inputs and outputs to a log file | |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel | |
# access | |
with scheduler.lock: | |
with log_file.open("a") as f: | |
f.write(json.dumps( | |
{ | |
'age': age, | |
'bmi': bmi, | |
'children': children, | |
'sex': sex, | |
'smoker': smoker, | |
'region': region, | |
'prediction': prediction[0] | |
} | |
)) | |
f.write("\n") | |
return prediction[0] | |
# Set up UI components for input and output | |
age_input = gr.Number(label='age') | |
bmi_input = gr.Number(label='bmi') | |
children_input = gr.Number(label='children') | |
sex_input = gr.Dropdown(['male','female'], label='sex') | |
smoker_input = gr.Dropdown(['yes','no'], label='smoker') | |
region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'], label = 'region') | |
model_output = gr.Label(label='Insurance Charges') | |
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" | |
demo = gr.Interface( | |
fn=predict_insurance_charge, | |
inputs=[age_inut, bmi_input, children_input, sex_input, smoker_input, region_input], | |
outputs=model_output, | |
title='HealthyLife Insurance Charge Prediction', | |
description='This API allows you to predict the estimating insurance charges based on customer attributes', | |
examples= [[33,33.44,4,'male','no','southeast'], | |
[62,25.1,2,'male','no','southwest'], | |
[65,26.7,2,'female','no','southwest']], | |
concurrency_limit=16 | |
) | |
# Launch with a load balancer | |
demo.queue() | |
demo.launch(share=False) | |