Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
•
2dd6f73
1
Parent(s):
51784c0
Update llama2-13b
Browse files- app.py +100 -142
- requirements.txt +6 -5
app.py
CHANGED
@@ -3,10 +3,9 @@
|
|
3 |
# ruff: noqa: E501
|
4 |
import os
|
5 |
import time
|
6 |
-
from dataclasses import asdict, dataclass
|
7 |
from pathlib import Path
|
8 |
from types import SimpleNamespace
|
9 |
-
from urllib.parse import urlparse
|
10 |
|
11 |
import gradio as gr
|
12 |
import psutil
|
@@ -14,7 +13,9 @@ from about_time import about_time
|
|
14 |
|
15 |
# from ctransformers import AutoConfig, AutoModelForCausalLM
|
16 |
from ctransformers import AutoModelForCausalLM
|
17 |
-
|
|
|
|
|
18 |
from loguru import logger
|
19 |
|
20 |
filename_list = [
|
@@ -35,15 +36,58 @@ filename_list = [
|
|
35 |
]
|
36 |
|
37 |
URL = "https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML/raw/main/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin" # 4.05G
|
38 |
-
MODEL_FILENAME = Path(URL).name
|
39 |
-
MODEL_FILENAME = filename_list[0] # q2_K 4.05G
|
40 |
-
MODEL_FILENAME = filename_list[5] # q4_1 4.21
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
os.environ["TZ"] = "Asia/Shanghai"
|
49 |
try:
|
@@ -57,10 +101,37 @@ ns = SimpleNamespace(
|
|
57 |
generator=[],
|
58 |
)
|
59 |
|
60 |
-
default_system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
def predict_str(prompt, bot): # bot is in fact bot_history
|
@@ -74,10 +145,7 @@ def predict_str(prompt, bot): # bot is in fact bot_history
|
|
74 |
try:
|
75 |
# user_prompt = prompt
|
76 |
generator = generate(
|
77 |
-
|
78 |
-
GENERATION_CONFIG,
|
79 |
-
system_prompt=default_system_prompt,
|
80 |
-
user_prompt=prompt.strip(),
|
81 |
)
|
82 |
|
83 |
ns.generator = generator # for .then
|
@@ -100,8 +168,6 @@ def bot_str(bot):
|
|
100 |
else:
|
101 |
bot = [["Something is wrong", ""]]
|
102 |
|
103 |
-
print(assistant_prefix, end=" ", flush=True)
|
104 |
-
|
105 |
response = ""
|
106 |
|
107 |
flag = 1
|
@@ -128,15 +194,12 @@ def predict(prompt, bot):
|
|
128 |
try:
|
129 |
# user_prompt = prompt
|
130 |
generator = generate(
|
131 |
-
|
132 |
-
GENERATION_CONFIG,
|
133 |
-
system_prompt=default_system_prompt,
|
134 |
-
user_prompt=prompt.strip(),
|
135 |
)
|
136 |
|
137 |
ns.generator = generator # for .then
|
138 |
|
139 |
-
print(
|
140 |
|
141 |
response = ""
|
142 |
buff.update(value="diggin...")
|
@@ -183,15 +246,13 @@ def predict_api(prompt):
|
|
183 |
seed=42,
|
184 |
reset=False, # reset history (cache)
|
185 |
stream=True, # TODO stream=False and generator
|
186 |
-
threads=
|
187 |
-
stop=[
|
188 |
)
|
189 |
|
190 |
-
# TODO: stream does not make sense in api?
|
191 |
generator = generate(
|
192 |
-
|
193 |
)
|
194 |
-
print(assistant_prefix, end=" ", flush=True)
|
195 |
|
196 |
response = ""
|
197 |
buff.update(value="diggin...")
|
@@ -211,113 +272,6 @@ def predict_api(prompt):
|
|
211 |
return response
|
212 |
|
213 |
|
214 |
-
def download_quant(destination_folder: str, repo_id: str, model_filename: str):
|
215 |
-
local_path = os.path.abspath(destination_folder)
|
216 |
-
return hf_hub_download(
|
217 |
-
repo_id=repo_id,
|
218 |
-
filename=model_filename,
|
219 |
-
local_dir=local_path,
|
220 |
-
local_dir_use_symlinks=True,
|
221 |
-
)
|
222 |
-
|
223 |
-
|
224 |
-
@dataclass
|
225 |
-
class GenerationConfig:
|
226 |
-
temperature: float
|
227 |
-
top_k: int
|
228 |
-
top_p: float
|
229 |
-
repetition_penalty: float
|
230 |
-
max_new_tokens: int
|
231 |
-
seed: int
|
232 |
-
reset: bool
|
233 |
-
stream: bool
|
234 |
-
threads: int
|
235 |
-
stop: list[str]
|
236 |
-
|
237 |
-
|
238 |
-
def format_prompt(system_prompt: str, user_prompt: str):
|
239 |
-
"""Format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py."""
|
240 |
-
# TODO: fix prompts
|
241 |
-
|
242 |
-
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
|
243 |
-
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
|
244 |
-
assistant_prompt = "<|im_start|>assistant\n"
|
245 |
-
|
246 |
-
return f"{system_prompt}{user_prompt}{assistant_prompt}"
|
247 |
-
|
248 |
-
|
249 |
-
def generate(
|
250 |
-
llm: AutoModelForCausalLM,
|
251 |
-
generation_config: GenerationConfig,
|
252 |
-
system_prompt: str = default_system_prompt,
|
253 |
-
user_prompt: str = "",
|
254 |
-
):
|
255 |
-
"""Run model inference, will return a Generator if streaming is true."""
|
256 |
-
# if not user_prompt.strip():
|
257 |
-
return llm(
|
258 |
-
format_prompt(
|
259 |
-
system_prompt,
|
260 |
-
user_prompt,
|
261 |
-
),
|
262 |
-
**asdict(generation_config),
|
263 |
-
)
|
264 |
-
|
265 |
-
|
266 |
-
# if "mpt" in model_filename:
|
267 |
-
# config = AutoConfig.from_pretrained("mosaicml/mpt-30b-cha t", context_length=8192)
|
268 |
-
# llm = AutoModelForCausalLM.from_pretrained(
|
269 |
-
# os.path.abspath(f"models/{model_filename}"),
|
270 |
-
# model_type="mpt",
|
271 |
-
# config=config,
|
272 |
-
# )
|
273 |
-
|
274 |
-
# https://huggingface.co/spaces/matthoffner/wizardcoder-ggml/blob/main/main.py
|
275 |
-
_ = """
|
276 |
-
llm = AutoModelForCausalLM.from_pretrained(
|
277 |
-
"TheBloke/WizardCoder-15B-1.0-GGML",
|
278 |
-
model_file="WizardCoder-15B-1.0.ggmlv3.q4_0.bin",
|
279 |
-
model_type="starcoder",
|
280 |
-
threads=8
|
281 |
-
)
|
282 |
-
# """
|
283 |
-
|
284 |
-
logger.info(f"start dl, {REPO_ID=}, {MODEL_FILENAME=}, {DESTINATION_FOLDER=}")
|
285 |
-
download_quant(DESTINATION_FOLDER, REPO_ID, MODEL_FILENAME)
|
286 |
-
logger.info("done dl")
|
287 |
-
|
288 |
-
logger.debug(f"{os.cpu_count()=} {psutil.cpu_count(logical=False)=}")
|
289 |
-
cpu_count = os.cpu_count() // 2 # type: ignore
|
290 |
-
cpu_count = psutil.cpu_count(logical=False)
|
291 |
-
|
292 |
-
logger.debug(f"{cpu_count=}")
|
293 |
-
|
294 |
-
logger.info("load llm")
|
295 |
-
|
296 |
-
_ = Path("models", MODEL_FILENAME).absolute().as_posix()
|
297 |
-
logger.debug(f"model_file: {_}, exists: {Path(_).exists()}")
|
298 |
-
LLM = AutoModelForCausalLM.from_pretrained(
|
299 |
-
# "TheBloke/WizardCoder-15B-1.0-GGML",
|
300 |
-
REPO_ID, # DESTINATION_FOLDER, # model_path_or_repo_id: str required
|
301 |
-
model_file=_,
|
302 |
-
model_type="llama", # "starcoder", AutoConfig.from_pretrained(REPO_ID)
|
303 |
-
threads=cpu_count,
|
304 |
-
)
|
305 |
-
|
306 |
-
logger.info("done load llm")
|
307 |
-
|
308 |
-
GENERATION_CONFIG = GenerationConfig(
|
309 |
-
temperature=0.2,
|
310 |
-
top_k=0,
|
311 |
-
top_p=0.9,
|
312 |
-
repetition_penalty=1.0,
|
313 |
-
max_new_tokens=512, # adjust as needed
|
314 |
-
seed=42,
|
315 |
-
reset=False, # reset history (cache)
|
316 |
-
stream=True, # streaming per word/token
|
317 |
-
threads=cpu_count,
|
318 |
-
stop=["<|im_end|>", "|<"], # TODO possible fix of stop
|
319 |
-
)
|
320 |
-
|
321 |
css = """
|
322 |
.importantButton {
|
323 |
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
@@ -332,6 +286,8 @@ css = """
|
|
332 |
"""
|
333 |
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
|
334 |
examples = [
|
|
|
|
|
335 |
["How to pick a lock? Provide detailed steps."],
|
336 |
["Explain the plot of Cinderella in a sentence."],
|
337 |
[
|
@@ -364,7 +320,7 @@ examples = [
|
|
364 |
|
365 |
with gr.Blocks(
|
366 |
# title="mpt-30b-chat-ggml",
|
367 |
-
title=f"{
|
368 |
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
|
369 |
css=css,
|
370 |
) as block:
|
@@ -373,7 +329,7 @@ with gr.Blocks(
|
|
373 |
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
|
374 |
# )
|
375 |
gr.Markdown(
|
376 |
-
f"""<h5><center><{
|
377 |
The bot only speaks English.
|
378 |
|
379 |
Most examples are meant for another model.
|
@@ -404,7 +360,7 @@ with gr.Blocks(
|
|
404 |
with gr.Column(scale=2):
|
405 |
system = gr.Textbox(
|
406 |
label="System Prompt",
|
407 |
-
value=
|
408 |
show_label=False,
|
409 |
).style(container=False)
|
410 |
with gr.Column():
|
@@ -421,7 +377,7 @@ with gr.Blocks(
|
|
421 |
|
422 |
# with gr.Row():
|
423 |
with gr.Accordion("Disclaimer", open=False):
|
424 |
-
_ =
|
425 |
gr.Markdown(
|
426 |
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
|
427 |
"factually accurate information. {_} was trained on various public datasets; while great efforts "
|
@@ -449,7 +405,8 @@ with gr.Blocks(
|
|
449 |
# """
|
450 |
msg.submit(
|
451 |
# fn=conversation.user_turn,
|
452 |
-
fn=predict_str,
|
|
|
453 |
inputs=[msg, chatbot],
|
454 |
outputs=[msg, chatbot],
|
455 |
queue=True,
|
@@ -457,7 +414,8 @@ with gr.Blocks(
|
|
457 |
api_name="predict",
|
458 |
).then(bot_str, chatbot, chatbot)
|
459 |
submit.click(
|
460 |
-
fn=lambda x, y: ("",) + predict_str(x, y)[1:], # clear msg
|
|
|
461 |
inputs=[msg, chatbot],
|
462 |
outputs=[msg, chatbot],
|
463 |
queue=True,
|
|
|
3 |
# ruff: noqa: E501
|
4 |
import os
|
5 |
import time
|
6 |
+
from dataclasses import asdict, dataclass, field
|
7 |
from pathlib import Path
|
8 |
from types import SimpleNamespace
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import psutil
|
|
|
13 |
|
14 |
# from ctransformers import AutoConfig, AutoModelForCausalLM
|
15 |
from ctransformers import AutoModelForCausalLM
|
16 |
+
|
17 |
+
# from huggingface_hub import hf_hub_download
|
18 |
+
from dl_hf_model import dl_hf_model
|
19 |
from loguru import logger
|
20 |
|
21 |
filename_list = [
|
|
|
36 |
]
|
37 |
|
38 |
URL = "https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML/raw/main/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin" # 4.05G
|
|
|
|
|
|
|
39 |
|
40 |
+
url = "https://huggingface.co/savvamadar/ggml-gpt4all-j-v1.3-groovy/blob/main/ggml-gpt4all-j-v1.3-groovy.bin"
|
41 |
+
url = "https://huggingface.co/TheBloke/Llama-2-13B-GGML/blob/main/llama-2-13b.ggmlv3.q4_K_S.bin" # 7.37G
|
42 |
+
url = "https://huggingface.co/localmodels/Llama-2-13B-Chat-ggml/blob/main/llama-2-13b-chat.ggmlv3.q4_K_S.bin" # 7.37G
|
43 |
+
url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.binhttps://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.bin" # 6.93G
|
44 |
+
|
45 |
+
prompt_template="""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
46 |
+
|
47 |
+
### Instruction: {user_prompt}
|
48 |
+
|
49 |
+
### Response:
|
50 |
+
"""
|
51 |
+
|
52 |
+
prompt_template_qa = """Question: {question}
|
53 |
+
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
|
54 |
+
|
55 |
+
prompt_template = """System: You are a helpful,
|
56 |
+
respectful and honest assistant. Always answer as
|
57 |
+
helpfully as possible, while being safe. Your answers
|
58 |
+
should not include any harmful, unethical, racist,
|
59 |
+
sexist, toxic, dangerous, or illegal content. Please
|
60 |
+
ensure that your responses are socially unbiased and
|
61 |
+
positive in nature. If a question does not make any
|
62 |
+
sense, or is not factually coherent, explain why instead
|
63 |
+
of answering something not correct. If you don't know
|
64 |
+
the answer to a question, please don't share false
|
65 |
+
information.
|
66 |
+
User: {prompt}
|
67 |
+
Assistant: """
|
68 |
+
|
69 |
+
prompt_prefix = [elm.split(":")[0] + ":" for elm in prompt_template.splitlines()]
|
70 |
+
|
71 |
+
logger.debug(f"{prompt_prefix=}")
|
72 |
+
|
73 |
+
model_loc, file_size = dl_hf_model(url)
|
74 |
+
|
75 |
+
logger.debug(f"{model_loc} {file_size}GB")
|
76 |
+
|
77 |
+
cpu_count = psutil.cpu_count(logical=False)
|
78 |
+
logger.debug(f"{cpu_count=}")
|
79 |
+
|
80 |
+
logger.info("load llm")
|
81 |
+
_ = Path(model_loc).absolute().as_posix()
|
82 |
+
logger.debug(f"model_file: {_}, exists: {Path(_).exists()}")
|
83 |
+
LLM = None
|
84 |
+
LLM = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_loc,
|
86 |
+
model_type="llama", # "starcoder", AutoConfig.from_pretrained(REPO_ID)
|
87 |
+
threads=cpu_count,
|
88 |
+
)
|
89 |
|
90 |
+
logger.info("done load llm")
|
91 |
|
92 |
os.environ["TZ"] = "Asia/Shanghai"
|
93 |
try:
|
|
|
101 |
generator=[],
|
102 |
)
|
103 |
|
|
|
104 |
|
105 |
+
@dataclass
|
106 |
+
class GenerationConfig:
|
107 |
+
temperature: float = 0.7
|
108 |
+
top_k: int = 0
|
109 |
+
top_p: float = 0.9
|
110 |
+
repetition_penalty: float = 1.0
|
111 |
+
max_new_tokens: int = 512
|
112 |
+
seed: int = 42
|
113 |
+
reset: bool = False
|
114 |
+
stream: bool = True
|
115 |
+
threads: int = psutil.cpu_count(logical=False), # type: ignore
|
116 |
+
stop: list[str] = field(default_factory=lambda: prompt_prefix[1:2])
|
117 |
+
|
118 |
+
|
119 |
+
def generate(
|
120 |
+
prompt: str,
|
121 |
+
llm: AutoModelForCausalLM = LLM,
|
122 |
+
generation_config: GenerationConfig = GenerationConfig(),
|
123 |
+
):
|
124 |
+
"""Run model inference, will return a Generator if streaming is true."""
|
125 |
+
# if not user_prompt.strip():
|
126 |
+
_ = prompt_template.format(prompt=prompt)
|
127 |
+
print(_)
|
128 |
+
return llm(
|
129 |
+
_,
|
130 |
+
**asdict(generation_config),
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
logger.debug(f"{asdict(GenerationConfig())=}")
|
135 |
|
136 |
|
137 |
def predict_str(prompt, bot): # bot is in fact bot_history
|
|
|
145 |
try:
|
146 |
# user_prompt = prompt
|
147 |
generator = generate(
|
148 |
+
prompt,
|
|
|
|
|
|
|
149 |
)
|
150 |
|
151 |
ns.generator = generator # for .then
|
|
|
168 |
else:
|
169 |
bot = [["Something is wrong", ""]]
|
170 |
|
|
|
|
|
171 |
response = ""
|
172 |
|
173 |
flag = 1
|
|
|
194 |
try:
|
195 |
# user_prompt = prompt
|
196 |
generator = generate(
|
197 |
+
prompt,
|
|
|
|
|
|
|
198 |
)
|
199 |
|
200 |
ns.generator = generator # for .then
|
201 |
|
202 |
+
print("--", end=" ", flush=True)
|
203 |
|
204 |
response = ""
|
205 |
buff.update(value="diggin...")
|
|
|
246 |
seed=42,
|
247 |
reset=False, # reset history (cache)
|
248 |
stream=True, # TODO stream=False and generator
|
249 |
+
threads=psutil.cpu_count(local=False), # type: ignore # adjust for your CPU
|
250 |
+
stop=prompt_prefix[1:2],
|
251 |
)
|
252 |
|
|
|
253 |
generator = generate(
|
254 |
+
prompt,
|
255 |
)
|
|
|
256 |
|
257 |
response = ""
|
258 |
buff.update(value="diggin...")
|
|
|
272 |
return response
|
273 |
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
css = """
|
276 |
.importantButton {
|
277 |
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
|
|
286 |
"""
|
287 |
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
|
288 |
examples = [
|
289 |
+
["What NFL team won the Super Bowl in the year Justin Bieber was born?"],
|
290 |
+
["What NFL team won the Super Bowl in the year Justin Bieber was born? Think step by step."],
|
291 |
["How to pick a lock? Provide detailed steps."],
|
292 |
["Explain the plot of Cinderella in a sentence."],
|
293 |
[
|
|
|
320 |
|
321 |
with gr.Blocks(
|
322 |
# title="mpt-30b-chat-ggml",
|
323 |
+
title=f"{Path(model_loc).name}",
|
324 |
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
|
325 |
css=css,
|
326 |
) as block:
|
|
|
329 |
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
|
330 |
# )
|
331 |
gr.Markdown(
|
332 |
+
f"""<h5><center><{Path(model_loc).name}</center></h4>
|
333 |
The bot only speaks English.
|
334 |
|
335 |
Most examples are meant for another model.
|
|
|
360 |
with gr.Column(scale=2):
|
361 |
system = gr.Textbox(
|
362 |
label="System Prompt",
|
363 |
+
value=prompt_template,
|
364 |
show_label=False,
|
365 |
).style(container=False)
|
366 |
with gr.Column():
|
|
|
377 |
|
378 |
# with gr.Row():
|
379 |
with gr.Accordion("Disclaimer", open=False):
|
380 |
+
_ = Path(model_loc).name
|
381 |
gr.Markdown(
|
382 |
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
|
383 |
"factually accurate information. {_} was trained on various public datasets; while great efforts "
|
|
|
405 |
# """
|
406 |
msg.submit(
|
407 |
# fn=conversation.user_turn,
|
408 |
+
# fn=predict_str,
|
409 |
+
fn=predict,
|
410 |
inputs=[msg, chatbot],
|
411 |
outputs=[msg, chatbot],
|
412 |
queue=True,
|
|
|
414 |
api_name="predict",
|
415 |
).then(bot_str, chatbot, chatbot)
|
416 |
submit.click(
|
417 |
+
# fn=lambda x, y: ("",) + predict_str(x, y)[1:], # clear msg
|
418 |
+
fn=lambda x, y: ("",) + predict(x, y)[1:], # clear msg
|
419 |
inputs=[msg, chatbot],
|
420 |
outputs=[msg, chatbot],
|
421 |
queue=True,
|
requirements.txt
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
ctransformers==0.2.10
|
2 |
-
transformers==4.30.2
|
3 |
-
huggingface_hub
|
4 |
gradio
|
5 |
loguru
|
6 |
-
about-time
|
7 |
-
psutil
|
|
|
|
1 |
+
ctransformers # ==0.2.10
|
2 |
+
transformers # ==4.30.2
|
3 |
+
# huggingface_hub
|
4 |
gradio
|
5 |
loguru
|
6 |
+
# about-time
|
7 |
+
psutil
|
8 |
+
dl-hf-model
|