File size: 8,499 Bytes
5354d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import json
import re
from pathlib import Path

import yaml

from modules import loaders, metadata_gguf, shared, ui


def get_fallback_settings():
    return {
        'wbits': 'None',
        'groupsize': 'None',
        'desc_act': False,
        'model_type': 'None',
        'max_seq_len': 2048,
        'n_ctx': 2048,
        'rope_freq_base': 0,
        'compress_pos_emb': 1,
        'truncation_length': shared.settings['truncation_length'],
        'skip_special_tokens': shared.settings['skip_special_tokens'],
        'custom_stopping_strings': shared.settings['custom_stopping_strings'],
    }


def get_model_metadata(model):
    model_settings = {}

    # Get settings from models/config.yaml and models/config-user.yaml
    settings = shared.model_config
    for pat in settings:
        if re.match(pat.lower(), model.lower()):
            for k in settings[pat]:
                model_settings[k] = settings[pat][k]

    if 'loader' not in model_settings:
        loader = infer_loader(model, model_settings)
        if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
            loader = 'AutoGPTQ'

        model_settings['loader'] = loader

    # Read GGUF metadata
    if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
        path = Path(f'{shared.args.model_dir}/{model}')
        if path.is_file():
            model_file = path
        else:
            model_file = list(path.glob('*.gguf'))[0]

        metadata = metadata_gguf.load_metadata(model_file)
        if 'llama.context_length' in metadata:
            model_settings['n_ctx'] = metadata['llama.context_length']
        if 'llama.rope.scale_linear' in metadata:
            model_settings['compress_pos_emb'] = metadata['llama.rope.scale_linear']
        if 'llama.rope.freq_base' in metadata:
            model_settings['rope_freq_base'] = metadata['llama.rope.freq_base']

    else:
        # Read transformers metadata
        path = Path(f'{shared.args.model_dir}/{model}/config.json')
        if path.exists():
            metadata = json.loads(open(path, 'r').read())
            if 'max_position_embeddings' in metadata:
                model_settings['truncation_length'] = metadata['max_position_embeddings']
                model_settings['max_seq_len'] = metadata['max_position_embeddings']

            if 'rope_theta' in metadata:
                model_settings['rope_freq_base'] = metadata['rope_theta']

            if 'rope_scaling' in metadata and type(metadata['rope_scaling']) is dict and all(key in metadata['rope_scaling'] for key in ('type', 'factor')):
                if metadata['rope_scaling']['type'] == 'linear':
                    model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor']

            if 'quantization_config' in metadata:
                if 'bits' in metadata['quantization_config']:
                    model_settings['wbits'] = metadata['quantization_config']['bits']
                if 'group_size' in metadata['quantization_config']:
                    model_settings['groupsize'] = metadata['quantization_config']['group_size']
                if 'desc_act' in metadata['quantization_config']:
                    model_settings['desc_act'] = metadata['quantization_config']['desc_act']

        # Read AutoGPTQ metadata
        path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json')
        if path.exists():
            metadata = json.loads(open(path, 'r').read())
            if 'bits' in metadata:
                model_settings['wbits'] = metadata['bits']
            if 'group_size' in metadata:
                model_settings['groupsize'] = metadata['group_size']
            if 'desc_act' in metadata:
                model_settings['desc_act'] = metadata['desc_act']

    # Ignore rope_freq_base if set to the default value
    if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000:
        model_settings.pop('rope_freq_base')

    # Apply user settings from models/config-user.yaml
    settings = shared.user_config
    for pat in settings:
        if re.match(pat.lower(), model.lower()):
            for k in settings[pat]:
                model_settings[k] = settings[pat][k]

    return model_settings


def infer_loader(model_name, model_settings):
    path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
    if not path_to_model.exists():
        loader = None
    elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
        loader = 'AutoGPTQ'
    elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()):
        loader = 'AutoAWQ'
    elif len(list(path_to_model.glob('*.gguf'))) > 0:
        loader = 'llama.cpp'
    elif re.match(r'.*\.gguf', model_name.lower()):
        loader = 'llama.cpp'
    elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
        loader = 'RWKV'
    elif re.match(r'.*exl2', model_name.lower()):
        loader = 'ExLlamav2_HF'
    else:
        loader = 'Transformers'

    return loader


# UI: update the command-line arguments based on the interface values
def update_model_parameters(state, initial=False):
    elements = ui.list_model_elements()  # the names of the parameters
    gpu_memories = []

    for i, element in enumerate(elements):
        if element not in state:
            continue

        value = state[element]
        if element.startswith('gpu_memory'):
            gpu_memories.append(value)
            continue

        if initial and element in shared.provided_arguments:
            continue

        # Setting null defaults
        if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
            value = vars(shared.args_defaults)[element]
        elif element in ['cpu_memory'] and value == 0:
            value = vars(shared.args_defaults)[element]

        # Making some simple conversions
        if element in ['wbits', 'groupsize', 'pre_layer']:
            value = int(value)
        elif element == 'cpu_memory' and value is not None:
            value = f"{value}MiB"

        if element in ['pre_layer']:
            value = [value] if value > 0 else None

        setattr(shared.args, element, value)

    found_positive = False
    for i in gpu_memories:
        if i > 0:
            found_positive = True
            break

    if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
        if found_positive:
            shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
        else:
            shared.args.gpu_memory = None


# UI: update the state variable with the model settings
def apply_model_settings_to_state(model, state):
    model_settings = get_model_metadata(model)
    if 'loader' in model_settings:
        loader = model_settings.pop('loader')

        # If the user is using an alternative loader for the same model type, let them keep using it
        if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF', 'ExLlamav2', 'ExLlamav2_HF']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']):
            state['loader'] = loader

    for k in model_settings:
        if k in state:
            if k in ['wbits', 'groupsize']:
                state[k] = str(model_settings[k])
            else:
                state[k] = model_settings[k]

    return state


# Save the settings for this model to models/config-user.yaml
def save_model_settings(model, state):
    if model == 'None':
        yield ("Not saving the settings because no model is loaded.")
        return

    with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
        if p.exists():
            user_config = yaml.safe_load(open(p, 'r').read())
        else:
            user_config = {}

        model_regex = model + '$'  # For exact matches
        if model_regex not in user_config:
            user_config[model_regex] = {}

        for k in ui.list_model_elements():
            if k == 'loader' or k in loaders.loaders_and_params[state['loader']]:
                user_config[model_regex][k] = state[k]

        shared.user_config = user_config

        output = yaml.dump(user_config, sort_keys=False)
        with open(p, 'w') as f:
            f.write(output)

        yield (f"Settings for {model} saved to {p}")