Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
from extensions.openai.errors import ServiceUnavailableError | |
from extensions.openai.utils import debug_msg, float_list_to_base64 | |
from sentence_transformers import SentenceTransformer | |
embeddings_params_initialized = False | |
# using 'lazy loading' to avoid circular import | |
# so this function will be executed only once | |
def initialize_embedding_params(): | |
global embeddings_params_initialized | |
if not embeddings_params_initialized: | |
global st_model, embeddings_model, embeddings_device | |
from extensions.openai.script import params | |
st_model = os.environ.get("OPENEDAI_EMBEDDING_MODEL", params.get('embedding_model', 'all-mpnet-base-v2')) | |
embeddings_model = None | |
# OPENEDAI_EMBEDDING_DEVICE: auto (best or cpu), cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone | |
embeddings_device = os.environ.get("OPENEDAI_EMBEDDING_DEVICE", params.get('embedding_device', 'cpu')) | |
if embeddings_device.lower() == 'auto': | |
embeddings_device = None | |
embeddings_params_initialized = True | |
def load_embedding_model(model: str) -> SentenceTransformer: | |
initialize_embedding_params() | |
global embeddings_device, embeddings_model | |
try: | |
embeddings_model = 'loading...' # flag | |
# see: https://www.sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer | |
emb_model = SentenceTransformer(model, device=embeddings_device) | |
# ... emb_model.device doesn't seem to work, always cpu anyways? but specify cpu anyways to free more VRAM | |
print(f"\nLoaded embedding model: {model} on {emb_model.device} [always seems to say 'cpu', even if 'cuda'], max sequence length: {emb_model.max_seq_length}") | |
except Exception as e: | |
embeddings_model = None | |
raise ServiceUnavailableError(f"Error: Failed to load embedding model: {model}", internal_message=repr(e)) | |
return emb_model | |
def get_embeddings_model() -> SentenceTransformer: | |
initialize_embedding_params() | |
global embeddings_model, st_model | |
if st_model and not embeddings_model: | |
embeddings_model = load_embedding_model(st_model) # lazy load the model | |
return embeddings_model | |
def get_embeddings_model_name() -> str: | |
initialize_embedding_params() | |
global st_model | |
return st_model | |
def get_embeddings(input: list) -> np.ndarray: | |
return get_embeddings_model().encode(input, convert_to_numpy=True, normalize_embeddings=True, convert_to_tensor=False, device=embeddings_device) | |
def embeddings(input: list, encoding_format: str) -> dict: | |
embeddings = get_embeddings(input) | |
if encoding_format == "base64": | |
data = [{"object": "embedding", "embedding": float_list_to_base64(emb), "index": n} for n, emb in enumerate(embeddings)] | |
else: | |
data = [{"object": "embedding", "embedding": emb.tolist(), "index": n} for n, emb in enumerate(embeddings)] | |
response = { | |
"object": "list", | |
"data": data, | |
"model": st_model, # return the real model | |
"usage": { | |
"prompt_tokens": 0, | |
"total_tokens": 0, | |
} | |
} | |
debug_msg(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}") | |
return response | |