Spaces:
Running
Running
from functools import partial | |
import torch | |
import transformers | |
import math | |
from torch.optim.lr_scheduler import LambdaLR | |
#FPHAM custom training scheduller block - should be extracted to separate file | |
last_print_label = '' | |
# hold constant to the half of epochs then cosine down to 0 | |
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
half_steps = num_training_steps//2 | |
num_warmup_steps = min(num_warmup_steps,half_steps) | |
if current_step < num_warmup_steps: | |
print_label = 'Scheduler: Warmup' | |
elif current_step < half_steps: | |
print_label = 'Scheduler: Hold' | |
else: | |
print_label = 'Scheduler: Annealing' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
if current_step < half_steps: | |
return 1.0 | |
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) | |
num_cycles = 0.5 | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
# constant to the first epochs then cosine down to 0 over the rest epochs | |
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): | |
global last_print_label | |
print_label = '' | |
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps) | |
if current_step < num_warmup_steps: | |
print_label = 'Scheduler: Warmup' | |
elif current_step < num_firstepoch_steps: | |
print_label = 'Scheduler: Hold' | |
else: | |
print_label = 'Scheduler: Annealing' | |
if print_label != last_print_label: | |
print(print_label) | |
last_print_label = print_label | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
if current_step < num_firstepoch_steps: | |
return 1.0 | |
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps)) | |
num_cycles = 0.5 | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): | |
""" | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The total number of training steps. | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
lr_lambda = partial( | |
_get_fp_cosine_schedule_with_warmup_lr_lambda, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): | |
""" | |
Args: | |
optimizer ([`~torch.optim.Optimizer`]): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (`int`): | |
The total number of training steps. | |
last_epoch (`int`, *optional*, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
lr_lambda = partial( | |
_get_fp_half_schedule_with_warmup_lr_lambda, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
class FPSchedulerTrainer(transformers.Trainer): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): | |
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument. | |
num_train_epochs = self.args.num_train_epochs | |
num_warmup_steps=self.args.get_warmup_steps(num_training_steps) | |
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs) | |
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps | |
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps | |
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps | |
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps") | |
if self.args.lr_scheduler_type == 'cosine': | |
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc) | |
if num_warmup_acc>num_firstepoch_steps_acc: | |
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m") | |
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") | |
else: | |
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") | |
self.lr_scheduler = custom_cosine_scheduler_with_warmup( | |
optimizer=self.optimizer if optimizer is None else optimizer, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
self._created_lr_scheduler = True | |
return self.lr_scheduler | |
elif self.args.lr_scheduler_type == 'constant': | |
half_step_acc = num_training_steps_acc//2 | |
num_warmup_acc_min = min(num_warmup_acc, half_step_acc) | |
if num_warmup_acc>half_step_acc: | |
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m") | |
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") | |
else: | |
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") | |
self.lr_scheduler = custom_half_scheduler_with_warmup( | |
optimizer=self.optimizer if optimizer is None else optimizer, | |
num_warmup_steps=num_warmup_steps, | |
num_training_steps=num_training_steps, | |
num_firstepoch_steps = num_firstepoch_steps, | |
) | |
self._created_lr_scheduler = True | |
return self.lr_scheduler | |
else: | |
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) |