Spaces:
Running
Running
import base64 | |
from io import BytesIO | |
import gradio as gr | |
import torch | |
from transformers import BlipForConditionalGeneration, BlipProcessor | |
from modules import chat, shared, ui_chat | |
from modules.ui import gather_interface_values | |
from modules.utils import gradio | |
input_hijack = { | |
'state': False, | |
'value': ["", ""] | |
} | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu") | |
def chat_input_modifier(text, visible_text, state): | |
global input_hijack | |
if input_hijack['state']: | |
input_hijack['state'] = False | |
return input_hijack['value'] | |
else: | |
return text, visible_text | |
def caption_image(raw_image): | |
inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32) | |
out = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(out[0], skip_special_tokens=True) | |
def generate_chat_picture(picture, name1, name2): | |
text = f'*{name1} sends {name2} a picture that contains the following: β{caption_image(picture)}β*' | |
# lower the resolution of sent images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history | |
picture.thumbnail((300, 300)) | |
buffer = BytesIO() | |
picture.save(buffer, format="JPEG") | |
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
visible_text = f'<img src="data:image/jpeg;base64,{img_str}" alt="{text}">' | |
return text, visible_text | |
def ui(): | |
picture_select = gr.Image(label='Send a picture', type='pil') | |
# Prepare the input hijack, update the interface values, call the generation function, and clear the picture | |
picture_select.upload( | |
lambda picture, name1, name2: input_hijack.update({ | |
"state": True, | |
"value": generate_chat_picture(picture, name1, name2) | |
}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then( | |
gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( | |
chat.generate_chat_reply_wrapper, gradio(ui_chat.inputs), gradio('display', 'history'), show_progress=False).then( | |
lambda: None, None, picture_select, show_progress=False) | |