Spaces:
Sleeping
Sleeping
minseokKoo
commited on
Commit
โข
e535275
1
Parent(s):
73fd40e
Update app.py
Browse files
app.py
CHANGED
@@ -20,14 +20,7 @@ def greet(co):
|
|
20 |
if not code:
|
21 |
break
|
22 |
code_text.append(code)
|
23 |
-
|
24 |
-
iter_num = int(
|
25 |
-
input('false alarm์ ๋ถ๋ฅํ๊ธฐ ์ํด์ ์
๋ ฅํ ์ฝ๋์ ๊ฐฏ์๋ ๋ช๊ฐ์ธ๊ฐ์? (์ซ์๋ง ์
๋ ฅํ์ธ์.) : '))
|
26 |
-
code_text = []
|
27 |
-
for _ in range(iter_num):
|
28 |
-
code = input('์ฝ๋๋ฅผ ์
๋ ฅํ์ธ์ : ')
|
29 |
-
code_text.append(code)
|
30 |
-
'''
|
31 |
code_text = ' '.join(code_text)
|
32 |
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
|
33 |
code_text = re.sub('\/\/.*', '', code_text)
|
@@ -53,6 +46,7 @@ def greet(co):
|
|
53 |
input_ids = torch.tensor([input_ids])
|
54 |
model = AutoModelForSequenceClassification.from_pretrained(
|
55 |
path, num_labels=2)
|
|
|
56 |
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
|
57 |
|
58 |
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
|
@@ -63,6 +57,7 @@ def greet(co):
|
|
63 |
input_ids = torch.tensor([input_ids])
|
64 |
model = RobertaForSequenceClassification.from_pretrained(
|
65 |
path, num_labels=2)
|
|
|
66 |
pred_3 = model(input_ids)[0].detach().cpu().numpy()
|
67 |
|
68 |
# 4. codeT5 finetuning model
|
@@ -217,12 +212,12 @@ with gr.Blocks() as demo1:
|
|
217 |
"""
|
218 |
)
|
219 |
with gr.Row():
|
220 |
-
with gr.
|
221 |
inputs_1 = gr.Textbox(placeholder="์ฝ๋๋ฅผ ์
๋ ฅํ์์ค.", label='Text')
|
222 |
with gr.Row():
|
223 |
btn = gr.Button("์ ์ถํ๊ธฐ")
|
224 |
with gr.Column():
|
225 |
-
outputs_1 = gr.
|
226 |
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
|
227 |
|
228 |
if __name__ == "__main__":
|
|
|
20 |
if not code:
|
21 |
break
|
22 |
code_text.append(code)
|
23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
code_text = ' '.join(code_text)
|
25 |
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
|
26 |
code_text = re.sub('\/\/.*', '', code_text)
|
|
|
46 |
input_ids = torch.tensor([input_ids])
|
47 |
model = AutoModelForSequenceClassification.from_pretrained(
|
48 |
path, num_labels=2)
|
49 |
+
model.to('cpu')
|
50 |
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
|
51 |
|
52 |
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
|
|
|
57 |
input_ids = torch.tensor([input_ids])
|
58 |
model = RobertaForSequenceClassification.from_pretrained(
|
59 |
path, num_labels=2)
|
60 |
+
model.to('cpu')
|
61 |
pred_3 = model(input_ids)[0].detach().cpu().numpy()
|
62 |
|
63 |
# 4. codeT5 finetuning model
|
|
|
212 |
"""
|
213 |
)
|
214 |
with gr.Row():
|
215 |
+
with gr.Columns():
|
216 |
inputs_1 = gr.Textbox(placeholder="์ฝ๋๋ฅผ ์
๋ ฅํ์์ค.", label='Text')
|
217 |
with gr.Row():
|
218 |
btn = gr.Button("์ ์ถํ๊ธฐ")
|
219 |
with gr.Column():
|
220 |
+
outputs_1 = gr.Number(label = 'Result')
|
221 |
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
|
222 |
|
223 |
if __name__ == "__main__":
|