STOCKS / app.py
mistermprah's picture
Update app.py
13fdc8c verified
raw
history blame
4.1 kB
import gradio as gr
import numpy as np
import pandas as pd
import yfinance as yf
from datetime import datetime
from tensorflow.keras.models import load_model
from joblib import load
import io
from PIL import Image
# Load the saved LSTM model and scaler
lstm_model = load_model('lstm_model.h5')
scaler = load('scaler.joblib')
# Define the list of stocks
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT']
# Function to get the last row of stock data
def get_last_stock_data(ticker):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
last_row = data.iloc[-1]
return last_row.to_dict()
except Exception as e:
return str(e)
# Function to make predictions
def predict_stock_price(ticker, open_price, high_price, low_price, close_price, adj_close_price, volume):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
# Prepare the data
data = data[['Close']]
dataset = data.values
scaled_data = scaler.transform(dataset)
# Append the user inputs as the last row in the data
user_input = np.array([[close_price]])
user_input_scaled = scaler.transform(user_input)
scaled_data = np.vstack([scaled_data, user_input_scaled])
# Prepare the data for LSTM
x_test_lstm = []
for i in range(60, len(scaled_data)):
x_test_lstm.append(scaled_data[i-60:i])
x_test_lstm = np.array(x_test_lstm)
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))
# LSTM Predictions
lstm_predictions = lstm_model.predict(x_test_lstm)
lstm_predictions = scaler.inverse_transform(lstm_predictions)
next_day_lstm_price = lstm_predictions[-1][0]
# Plot the data
plt.figure(figsize=(10, 6))
plt.plot(data.index, data['Close'], label='Historical Close Prices')
plt.axvline(x=data.index[-1], color='r', linestyle='--', label='Prediction Date')
plt.plot([data.index[-1], data.index[-1] + pd.DateOffset(1)], [data['Close'].iloc[-1], next_day_lstm_price], 'go-', label='Predicted Price')
plt.title(f'Predicted Closing Price for {ticker}')
plt.xlabel('Date')
plt.ylabel('Close Price USD ($)')
plt.legend()
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Load the image from the buffer
img = Image.open(buf)
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"
return result, img
except Exception as e:
return str(e)
# Set up Gradio interface
ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker")
def get_user_inputs(ticker):
last_data = get_last_stock_data(ticker)
if isinstance(last_data, str):
return gr.Textbox.update(value=last_data)
else:
return gr.update(inputs=[
gr.Number(value=last_data['Open'], label='Open'),
gr.Number(value=last_data['High'], label='High'),
gr.Number(value=last_data['Low'], label='Low'),
gr.Number(value=last_data['Close'], label='Close'),
gr.Number(value=last_data['Adj Close'], label='Adj Close'),
gr.Number(value=last_data['Volume'], label='Volume')
])
iface = gr.Interface(
fn=predict_stock_price,
inputs=[
ticker_input,
gr.Number(label="Open"),
gr.Number(label="High"),
gr.Number(label="Low"),
gr.Number(label="Close"),
gr.Number(label="Adj Close"),
gr.Number(label="Volume")
],
outputs=[gr.Textbox(), gr.Image(type="pil")],
title="Stock Price Predictor",
description="Select the stock ticker and input the last recorded values to predict the closing price using the LSTM model."
)
iface.launch()