Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import yfinance as yf | |
from datetime import datetime | |
from tensorflow.keras.models import load_model | |
from joblib import load | |
# Load the saved LSTM model and scaler | |
lstm_model = load_model('lstm_model.h5') | |
scaler = load('scaler.joblib') | |
# Define the list of stocks | |
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT'] | |
# Function to get the last row of stock data | |
def get_last_stock_data(ticker): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
last_row = data.iloc[-1] | |
return last_row.to_dict() | |
except Exception as e: | |
return str(e) | |
# Function to make predictions | |
def predict_stock_price(ticker, open_price, close_price): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
# Prepare the data | |
data = data[['Close']] | |
dataset = data.values | |
scaled_data = scaler.transform(dataset) | |
# Append the user inputs as the last row in the data | |
user_input = np.array([[close_price]]) | |
user_input_scaled = scaler.transform(user_input) | |
scaled_data = np.vstack([scaled_data, user_input_scaled]) | |
# Prepare the data for LSTM | |
x_test_lstm = [] | |
for i in range(60, len(scaled_data)): | |
x_test_lstm.append(scaled_data[i-60:i]) | |
x_test_lstm = np.array(x_test_lstm) | |
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1)) | |
# LSTM Predictions | |
lstm_predictions = lstm_model.predict(x_test_lstm) | |
lstm_predictions = scaler.inverse_transform(lstm_predictions) | |
next_day_lstm_price = lstm_predictions[-1][0] | |
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}" | |
return result | |
except Exception as e: | |
return str(e) | |
# Function to predict next month's price | |
def predict_next_month_price(ticker): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
# Prepare the data | |
data = data[['Close']] | |
dataset = data.values | |
scaled_data = scaler.transform(dataset) | |
# Prepare the data for LSTM | |
x_test_lstm = [] | |
for i in range(60, len(scaled_data)): | |
x_test_lstm.append(scaled_data[i-60:i]) | |
x_test_lstm = np.array(x_test_lstm) | |
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1)) | |
# Predicting the next 30 days | |
predictions = [] | |
for _ in range(30): | |
pred = lstm_model.predict(x_test_lstm[-1].reshape(1, 60, 1)) | |
predictions.append(pred) | |
x_test_lstm = np.append(x_test_lstm, pred.reshape(1, 1, 1), axis=1) | |
x_test_lstm = x_test_lstm[:, 1:, :] | |
predictions = np.array(predictions).reshape(-1, 1) | |
next_month_predictions = scaler.inverse_transform(predictions) | |
next_month_price = next_month_predictions[-1][0] | |
result = f"Predicted price for {ticker} next month: ${next_month_price:.2f}" | |
return result | |
except Exception as e: | |
return str(e) | |
# Function to display historical data | |
def display_historical_data(ticker): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
return data.tail(30) | |
except Exception as e: | |
return str(e) | |
# Set up Gradio interface | |
with gr.Blocks() as app: | |
with gr.Tab("Predict Today's Price"): | |
gr.Markdown("## Predict Today's Price") | |
ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker") | |
open_price = gr.Number(label="Open") | |
close_price = gr.Number(label="Close") | |
predict_button = gr.Button("Predict") | |
predict_output = gr.Textbox() | |
predict_button.click(predict_stock_price, inputs=[ticker_input, open_price, close_price], outputs=predict_output) | |
with gr.Tab("Predict Next Month's Price"): | |
gr.Markdown("## Predict Next Month's Price") | |
next_month_ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker") | |
next_month_predict_button = gr.Button("Predict") | |
next_month_predict_output = gr.Textbox() | |
next_month_predict_button.click(predict_next_month_price, inputs=[next_month_ticker_input], outputs=next_month_predict_output) | |
with gr.Tab("View Historical Data"): | |
gr.Markdown("## View Historical Data") | |
historical_ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker") | |
historical_view_button = gr.Button("View Data") | |
historical_data_output = gr.Dataframe() | |
historical_view_button.click(display_historical_data, inputs=[historical_ticker_input], outputs=historical_data_output) | |
app.launch() | |