Spaces:
Sleeping
Sleeping
## libraries for data preprocessing | |
import numpy as np | |
import pandas as pd | |
## libraries for training dl models | |
import tensorflow as tf | |
from tensorflow import keras | |
## libraries for reading audio files | |
import librosa as lib | |
import gradio as gr | |
## lets load the model | |
model = keras.models.load_model('best_heartbeatsound_classification.h5') | |
def loading_sound_file(sound_file, sr=22050, duration=10): | |
input_length = sr * duration | |
X, sr = lib.load(sound_file, sr=sr, duration=duration) | |
dur = lib.get_duration(y=X, sr=sr) | |
# # pad audio file same duration | |
# if (round(dur) < duration): | |
# print ("fixing audio lenght :", file_name) | |
# y = lib.util.fix_length(X, input_length) | |
# extract normalized mfcc feature from data | |
# ## pad audio to same duration | |
# if round(dur) < duration: | |
# X = lib.util.fix_length(X, input_length) | |
# Pad or truncate audio file to the same duration | |
if round(dur) < duration: | |
pad_amount = input_length - len(X) | |
X = np.pad(X, (0, pad_amount), mode='constant') | |
elif round(dur) > duration: | |
X = X[:input_length] | |
mfccs = np.mean(lib.feature.mfcc(y=X, sr=sr, n_mfcc=25).T,axis=0) | |
## Reshape to match the model's input shape | |
data = np.array(mfccs).reshape(1, -1, 1) | |
return data | |
def heart_signal_classification(data): | |
X = loading_sound_file(data) | |
pred = model.predict(X) | |
## Define the threshold | |
threshold = 0.6 | |
max_prob = np.max(pred) | |
## Create labels | |
labels = { | |
0: 'artifact', | |
1: 'unlabel', | |
2: 'extrastole', | |
3: 'extrahls', | |
4: 'normal', | |
5: 'murmur' | |
} | |
if max_prob < threshold: | |
label = 'unknown' | |
else: | |
result = pred[0].argmax() | |
label = labels[result] | |
return label | |
################### Gradio Web APP ################################ | |
title = "Heart Signal Classification App" | |
Input = gr.Audio(sources=["upload"], type="filepath") | |
Output1 = gr.Textbox(label="Type Of Heart Signal") | |
description = "Type Of Signal: Artifact, Murmur, Normal, Extrastole, Extrahls" | |
iface = gr.Interface(fn=heart_signal_classification, inputs=Input, outputs=Output1, title=title, description=description) | |
iface.launch(inline=False) |