Spaces:
Sleeping
Sleeping
mistermprah
commited on
Commit
•
8ff0005
1
Parent(s):
f731195
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ import yfinance as yf
|
|
6 |
from datetime import datetime
|
7 |
from tensorflow.keras.models import load_model
|
8 |
from joblib import load
|
9 |
-
import io
|
10 |
-
from PIL import Image
|
11 |
|
12 |
# Load the saved LSTM model and scaler
|
13 |
lstm_model = load_model('lstm_model.h5')
|
@@ -57,27 +55,12 @@ def predict_stock_price(ticker, open_price, high_price, low_price, close_price,
|
|
57 |
lstm_predictions = scaler.inverse_transform(lstm_predictions)
|
58 |
next_day_lstm_price = lstm_predictions[-1][0]
|
59 |
|
60 |
-
# Plot the data
|
61 |
-
plt.figure(figsize=(10, 6))
|
62 |
-
plt.plot(data.index, data['Close'], label='Historical Close Prices')
|
63 |
-
plt.axvline(x=data.index[-1], color='r', linestyle='--', label='Prediction Date')
|
64 |
-
plt.plot([data.index[-1], data.index[-1] + pd.DateOffset(1)], [data['Close'].iloc[-1], next_day_lstm_price], 'go-', label='Predicted Price')
|
65 |
-
plt.title(f'Predicted Closing Price for {ticker}')
|
66 |
-
plt.xlabel('Date')
|
67 |
-
plt.ylabel('Close Price USD ($)')
|
68 |
-
plt.legend()
|
69 |
-
|
70 |
-
# Save the plot to a buffer
|
71 |
-
buf = io.BytesIO()
|
72 |
-
plt.savefig(buf, format='png')
|
73 |
-
buf.seek(0)
|
74 |
-
plt.close()
|
75 |
|
76 |
|
77 |
|
78 |
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"
|
79 |
|
80 |
-
return result
|
81 |
except Exception as e:
|
82 |
return str(e)
|
83 |
|
@@ -109,7 +92,7 @@ iface = gr.Interface(
|
|
109 |
gr.Number(label="Adj Close"),
|
110 |
gr.Number(label="Volume")
|
111 |
],
|
112 |
-
outputs=
|
113 |
title="Stock Price Predictor",
|
114 |
description="Select the stock ticker and input the last recorded values to predict the closing price using the LSTM model."
|
115 |
)
|
|
|
6 |
from datetime import datetime
|
7 |
from tensorflow.keras.models import load_model
|
8 |
from joblib import load
|
|
|
|
|
9 |
|
10 |
# Load the saved LSTM model and scaler
|
11 |
lstm_model = load_model('lstm_model.h5')
|
|
|
55 |
lstm_predictions = scaler.inverse_transform(lstm_predictions)
|
56 |
next_day_lstm_price = lstm_predictions[-1][0]
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
|
61 |
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"
|
62 |
|
63 |
+
return result
|
64 |
except Exception as e:
|
65 |
return str(e)
|
66 |
|
|
|
92 |
gr.Number(label="Adj Close"),
|
93 |
gr.Number(label="Volume")
|
94 |
],
|
95 |
+
outputs=gr.Textbox(),
|
96 |
title="Stock Price Predictor",
|
97 |
description="Select the stock ticker and input the last recorded values to predict the closing price using the LSTM model."
|
98 |
)
|