## libraries for data preprocessing import numpy as np import pandas as pd ## libraries for training dl models import tensorflow as tf from tensorflow import keras ## libraries for reading audio files import librosa as lib import gradio as gr ## lets load the model model = keras.models.load_model('best_heartbeatsound_classification.h5') def loading_sound_file(sound_file, sr=22050, duration=10): input_length = sr * duration X, sr = lib.load(sound_file, sr=sr, duration=duration) dur = lib.get_duration(y=X, sr=sr) # # pad audio file same duration # if (round(dur) < duration): # print ("fixing audio lenght :", file_name) # y = lib.util.fix_length(X, input_length) # extract normalized mfcc feature from data # ## pad audio to same duration # if round(dur) < duration: # X = lib.util.fix_length(X, input_length) # Pad or truncate audio file to the same duration if round(dur) < duration: pad_amount = input_length - len(X) X = np.pad(X, (0, pad_amount), mode='constant') elif round(dur) > duration: X = X[:input_length] mfccs = np.mean(lib.feature.mfcc(y=X, sr=sr, n_mfcc=25).T,axis=0) ## Reshape to match the model's input shape data = np.array(mfccs).reshape(1, -1, 1) return data def heart_signal_classification(data): X = loading_sound_file(data) pred = model.predict(X) ## Define the threshold threshold = 0.6 max_prob = np.max(pred) ## Create labels labels = { 0: 'artifact', 1: 'unlabel', 2: 'extrastole', 3: 'extrahls', 4: 'normal', 5: 'murmur' } if max_prob < threshold: label = 'unknown' else: result = pred[0].argmax() label = labels[result] return label ################### Gradio Web APP ################################ title = "Heart Signal Classification App" Input = gr.Audio(sources=["upload"], type="filepath") Output1 = gr.Textbox(label="Type Of Heart Signal") description = "Type Of Signal: Artifact, Murmur, Normal, Extrastole, Extrahls" iface = gr.Interface(fn=heart_signal_classification, inputs=Input, outputs=Output1, title=title, description=description) iface.launch(inline=False)