Spaces:
Sleeping
Sleeping
File size: 5,396 Bytes
1674ccb faac171 1674ccb faac171 1674ccb 0875d49 6da5de1 0875d49 1674ccb a2fa92e 1674ccb a2fa92e 1674ccb b8c55dd 5c30903 1674ccb 5c30903 0875d49 5c30903 b8c55dd 5c30903 b8c55dd bc6c98d b8c55dd bc6c98d b8c55dd 0875d49 b8c55dd 5c30903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
from transformers import pipeline
from config import MODEL_ID
# Load the model and pipeline using the model_id variable
pipe = pipeline("audio-classification", model=MODEL_ID)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {"normal": 0.0, "murmur": 0.0, "artifact": 0.0}
for p in preds:
label = p["label"].replace('_', ' ')
if label in outputs:
outputs[label] += p["score"]
else:
outputs["normal"] += p["score"]
return outputs
# Streamlit app layout
st.title("Heartbeat Sound Classification")
# Theme selection
theme = st.sidebar.selectbox(
"Select Theme",
["Light Green", "Light Blue", "Dark Green", "Dark Blue"]
)
# Add custom CSS for styling based on the selected theme
if theme == "Light Green":
st.markdown(
"""
<style>
body {
background-color: #e8f5e9; /* Light green background */
}
.stApp {
color: #004d40; /* Dark green text */
}
.stButton > button, .stFileUpload > div {
background-color: #004d40; /* Dark green button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #00332c; /* Darker green on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Light Blue":
st.markdown(
"""
<style>
body {
background-color: #e0f7fa; /* Light blue background */
}
.stApp {
color: #006064; /* Dark blue text */
}
.stButton > button, .stFileUpload > div {
background-color: #006064; /* Dark blue button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #004d40; /* Darker blue on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Dark Green":
st.markdown(
"""
<style>
body {
background-color: #1b5e20; /* Dark green background */
}
.stApp {
color: #a5d6a7; /* Light green text */
}
.stButton > button, .stFileUpload > div {
background-color: #004d40; /* Dark green button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #00332c; /* Darker green on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Dark Blue":
st.markdown(
"""
<style>
body {
background-color: #0d47a1; /* Dark blue background */
}
.stApp {
color: #bbdefb; /* Light blue text */
}
.stButton > button, .stFileUpload > div {
background-color: #006064; /* Dark blue button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #004d40; /* Darker blue on hover */
}
</style>
""",
unsafe_allow_html=True
)
# File uploader for audio files
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if uploaded_file is not None:
st.subheader("Uploaded Audio File")
# Load and display the audio file
audio_bytes = uploaded_file.read()
st.audio(audio_bytes, format='audio/wav')
# Save the uploaded file to a temporary location
with open("temp_audio_file.wav", "wb") as f:
f.write(audio_bytes)
# Classify the audio file
st.write("Classifying the audio...")
results = classify_audio("temp_audio_file.wav")
# Display the classification results in a dedicated output box
st.subheader("Classification Results")
results_box = st.empty()
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
results_box.text(results_str)
# Audio Test Samples for classification
st.write("Audio Test Samples:")
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
# Determine the number of columns based on the screen size
is_mobile = st.session_state.get("is_mobile", False)
num_columns = 1 if is_mobile else 3
# Arrange buttons in the columns
cols = st.columns(num_columns)
for idx, example in enumerate(examples):
col = cols[idx % num_columns] # Rotate columns for better arrangement
if col.button(example):
col.subheader(f"Sample Audio: {example}")
audio_bytes = open(example, 'rb').read()
col.audio(audio_bytes, format='audio/wav')
results = classify_audio(example)
col.write("Results:")
results_str = "\n.join([f"{label}: {score:.2f}" for label, score in results.items()])
col.text(results_str)
# JavaScript to detect if the user is on a mobile device
st.markdown(
"""
<script>
const isMobile = /iPhone|iPad|iPod|Android/i.test(navigator.userAgent);
window.parent.postMessage({type: 'streamlit:storeSessionState', key: 'is_mobile', value: isMobile}, '*');
</script>
""",
unsafe_allow_html=True
)
|