File size: 1,559 Bytes
1674ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
from transformers import pipeline
import torchaudio
from config import MODEL_ID

# Load the model and pipeline using the model_id variable
pipe = pipeline("audio-classification", model=MODEL_ID)

def classify_audio(filepath):
    preds = pipe(filepath)
    outputs = {}
    for p in preds:
        outputs[p["label"]] = p["score"]
    return outputs

# Streamlit app layout
st.title("Heartbeat Sound Classification")

# File uploader for audio files
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])

if uploaded_file is not None:
    # Load and display the audio file
    audio_bytes = uploaded_file.read()
    st.audio(audio_bytes, format='audio/wav')

    # Save the uploaded file to a temporary location
    with open("temp_audio_file.wav", "wb") as f:
        f.write(audio_bytes)
    
    # Classify the audio file
    st.write("Classifying the audio...")
    results = classify_audio("temp_audio_file.wav")
    
    # Display the classification results
    st.write("Classification results:")
    for label, score in results.items():
        st.write(f"{label}: {score:.4f}")

# Examples of audio files for classification
st.write("Examples:")
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
for example in examples:
    st.write(example)
    audio_bytes = open(example, 'rb').read()
    st.audio(audio_bytes, format='audio/wav')
    results = classify_audio(example)
    for label, score in results.items():
        st.write(f"{label}: {score:.4f}")