Spaces:
Sleeping
Sleeping
mistermprah
commited on
Commit
•
f9dbd70
1
Parent(s):
5f14ed7
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
from config import MODEL_ID
|
4 |
|
5 |
# Load the model and pipeline using the model_id variable
|
@@ -7,68 +8,14 @@ pipe = pipeline("audio-classification", model=MODEL_ID)
|
|
7 |
|
8 |
def classify_audio(filepath):
|
9 |
preds = pipe(filepath)
|
10 |
-
outputs = {
|
11 |
for p in preds:
|
12 |
-
|
13 |
-
if label in outputs:
|
14 |
-
outputs[label] += p["score"]
|
15 |
-
else:
|
16 |
-
outputs["normal"] += p["score"]
|
17 |
return outputs
|
18 |
|
19 |
# Streamlit app layout
|
20 |
st.title("Heartbeat Sound Classification")
|
21 |
|
22 |
-
# Theme selection
|
23 |
-
theme = st.sidebar.selectbox(
|
24 |
-
"Select Theme",
|
25 |
-
["Light Green", "Light Blue"]
|
26 |
-
)
|
27 |
-
|
28 |
-
# Add custom CSS for styling based on the selected theme
|
29 |
-
if theme == "Light Green":
|
30 |
-
st.markdown(
|
31 |
-
"""
|
32 |
-
<style>
|
33 |
-
body, .stApp {
|
34 |
-
background-color: #e8f5e9; /* Light green background */
|
35 |
-
}
|
36 |
-
.stApp {
|
37 |
-
color: #004d40; /* Dark green text */
|
38 |
-
}
|
39 |
-
.stButton > button, .stFileUpload > div {
|
40 |
-
background-color: #004d40; /* Dark green button and file uploader background */
|
41 |
-
color: white; /* White text */
|
42 |
-
}
|
43 |
-
.stButton > button:hover, .stFileUpload > div:hover {
|
44 |
-
background-color: #00332c; /* v Darker green on hover */
|
45 |
-
}
|
46 |
-
</style>
|
47 |
-
""",
|
48 |
-
unsafe_allow_html=True
|
49 |
-
)
|
50 |
-
elif theme == "Light Blue":
|
51 |
-
st.markdown(
|
52 |
-
"""
|
53 |
-
<style>
|
54 |
-
body, .stApp {
|
55 |
-
background-color: #e0f7fa; /* Light blue background */
|
56 |
-
}
|
57 |
-
.stApp {
|
58 |
-
color: #006064; /* Dark blue text */
|
59 |
-
}
|
60 |
-
.stButton > button, .stFileUpload > div {
|
61 |
-
background-color: #006064; /* Dark blue button and file uploader background */
|
62 |
-
color: white; /* White text */
|
63 |
-
}
|
64 |
-
.stButton > button:hover, .stFileUpload > div:hover {
|
65 |
-
background-color: #004d40; /* Darker blue on hover */
|
66 |
-
}
|
67 |
-
</style>
|
68 |
-
""",
|
69 |
-
unsafe_allow_html=True
|
70 |
-
)
|
71 |
-
|
72 |
# File uploader for audio files
|
73 |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
74 |
|
@@ -92,36 +39,15 @@ if uploaded_file is not None:
|
|
92 |
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
|
93 |
results_box.text(results_str)
|
94 |
|
95 |
-
# Audio
|
96 |
-
st.write("Audio
|
97 |
-
|
98 |
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
num_columns = 1 if is_mobile else 3
|
103 |
-
|
104 |
-
# Arrange buttons in the columns
|
105 |
-
cols = st.columns(num_columns)
|
106 |
-
|
107 |
-
for idx, example in enumerate(examples):
|
108 |
-
col = cols[idx % num_columns] # Rotate columns for better arrangement
|
109 |
-
if col.button(example):
|
110 |
-
col.subheader(f"Sample Audio: {example}")
|
111 |
audio_bytes = open(example, 'rb').read()
|
112 |
-
|
113 |
results = classify_audio(example)
|
114 |
-
|
115 |
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
|
116 |
-
|
117 |
-
|
118 |
-
# JavaScript to detect if the user is on a mobile device
|
119 |
-
st.markdown(
|
120 |
-
"""
|
121 |
-
<script>
|
122 |
-
const isMobile = /iPhone|iPad|iPod|Android/i.test(navigator.userAgent);
|
123 |
-
window.parent.postMessage({type: 'streamlit:storeSessionState', key: 'is_mobile', value: isMobile}, '*');
|
124 |
-
</script>
|
125 |
-
""",
|
126 |
-
unsafe_allow_html=True
|
127 |
-
)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
import torchaudio
|
4 |
from config import MODEL_ID
|
5 |
|
6 |
# Load the model and pipeline using the model_id variable
|
|
|
8 |
|
9 |
def classify_audio(filepath):
|
10 |
preds = pipe(filepath)
|
11 |
+
outputs = {}
|
12 |
for p in preds:
|
13 |
+
outputs[p["label"].replace('_', ' ')] = p["score"]
|
|
|
|
|
|
|
|
|
14 |
return outputs
|
15 |
|
16 |
# Streamlit app layout
|
17 |
st.title("Heartbeat Sound Classification")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# File uploader for audio files
|
20 |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
21 |
|
|
|
39 |
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
|
40 |
results_box.text(results_str)
|
41 |
|
42 |
+
# Sample Audio Files for classification
|
43 |
+
st.write("Sample Audio Files:")
|
|
|
44 |
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
|
45 |
+
for example in examples:
|
46 |
+
if st.button(example):
|
47 |
+
st.subheader(f"Sample Audio: {example}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
audio_bytes = open(example, 'rb').read()
|
49 |
+
st.audio(audio_bytes, format='audio/wav')
|
50 |
results = classify_audio(example)
|
51 |
+
st.write("Results:")
|
52 |
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
|
53 |
+
st.text(results_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|