import streamlit as st from transformers import pipeline import torchaudio from config import MODEL_ID # Load the model and pipeline using the model_id variable pipe = pipeline("audio-classification", model=MODEL_ID) def classify_audio(filepath): preds = pipe(filepath) outputs = {} for p in preds: outputs[p["label"].replace('_', ' ')] = p["score"] return outputs # Streamlit app layout st.title("Heartbeat Sound Classification") # File uploader for audio files uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) if uploaded_file is not None: st.subheader("Uploaded Audio File") # Load and display the audio file audio_bytes = uploaded_file.read() st.audio(audio_bytes, format='audio/wav') # Save the uploaded file to a temporary location with open("temp_audio_file.wav", "wb") as f: f.write(audio_bytes) # Classify the audio file st.write("Classifying the audio...") results = classify_audio("temp_audio_file.wav") # Display the classification results in a dedicated output box st.subheader("Classification Results") results_box = st.empty() results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()]) results_box.text(results_str) # Examples of audio files for classification st.write("Examples:") examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav'] for example in examples: if st.button(example): st.subheader(f"Example: {example}") audio_bytes = open(example, 'rb').read() st.audio(audio_bytes, format='audio/wav') results = classify_audio(example) st.write("Results:") results_str = "\n".join([f"{label}: {score:.4f}" for label, score in results.items()]) st.text(results_str)