import streamlit as st from transformers import pipeline from config import MODEL_ID # Load the model and pipeline using the model_id variable pipe = pipeline("audio-classification", model=MODEL_ID) def classify_audio(filepath): preds = pipe(filepath) outputs = {"normal": 0.0, "murmur": 0.0, "artifact": 0.0} for p in preds: label = p["label"].replace('_', ' ') if label in outputs: outputs[label] += p["score"] else: outputs["normal"] += p["score"] return outputs # Streamlit app layout st.title("Heartbeat Sound Classification") # File uploader for audio files uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) if uploaded_file is not None: st.subheader("Uploaded Audio File") # Load and display the audio file audio_bytes = uploaded_file.read() st.audio(audio_bytes, format='audio/wav') # Save the uploaded file to a temporary location with open("temp_audio_file.wav", "wb") as f: f.write(audio_bytes) # Classify the audio file st.write("Classifying the audio...") results = classify_audio("temp_audio_file.wav") # Display the classification results in a dedicated output box st.subheader("Classification Results") results_box = st.empty() results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()]) results_box.text(results_str) # Audio Test Samples for classification st.write("Audio Test Samples:") examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav'] cols = st.columns(3) for idx, example in enumerate(examples): col = cols[idx % 3] # Rotate columns for better arrangement if col.button(example): col.subheader(f"Sample Audio: {example}") audio_bytes = open(example, 'rb').read() col.audio(audio_bytes, format='audio/wav') results = classify_audio(example) col.write("Results:") results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()]) col.text(results_str)